
Argus: Programming with Communication Protocols in a
Belief-Desire-Intention Architecture

Samuel H. Christie Va, Munindar P. Singha, Amit K. Choprab

aNorth Carolina State University Raleigh NC 27695 USA.
bLancaster University Lancaster LA1 4WA UK.

Abstract

Protocols model multiagent systems (MAS) by capturing the communications between its agents.
Belief-Desire-Intention (BDI) architectures provide an attractive way for organizing an agent in
terms of cognitive concepts. Current BDI approaches, however, lack adequate support for engineer-
ing protocol-based agents.

We describe Argus, an approach that melds recent advances in flexible, declarative communica-
tion protocols with BDI architectures. For concreteness, we adopt Jason as an exemplar of the BDI
paradigm and show how to support protocol-based reasoning in it. Specifically, Argus contributes
(1) a novel architecture and formal operational semantics combining protocols and BDI; (2) a code
generation-based programming model that guides the implementation of agents; and (3) integrity
checking for incoming and outgoing messages that help ensure that the agents are well-behaved.
The Argus conceptual architecture builds quite naturally on top of Jason. Thus, Argus enables
building more flexible multiagent systems while using a BDI architecture than is currently possible.

1. Introduction

We address the problem of building decentralized multiagent systems, whose member agents
are autonomous and heterogeneous. Decentralization is a crucial requirement in any application
setting in which more than one stakeholder is involved because the agents representing and acting
on behalf of different stakeholders must be able to (1) act independently and flexibly, thereby
indicating their autonomy [1], and (2) be designed and configured independently, thereby indicating
their heterogeneity [2].

With these concerns at heart, interaction-oriented approaches have historically emphasized agent
communication [3], especially protocols [4, 5], including higher-level abstractions such as commit-
ments, as models of multiagent systems [6, 7]. Broadly, a protocol specifies the constraints on
messaging between agents. The main benefit of a protocol as a basis for a multiagent system
is that it enables the implementation of each agent in the system independently of other agents,
based solely on the roles it plays in the protocol. In other words, a protocol supports implementing
autonomous and heterogeneous agents by capturing the extent of the coupling between them. A
second benefit of protocols is that they can be verified to help design suitable interactions for a

Email addresses: schrist@ncsu.edu (Samuel H. Christie V), singh@ncsu.edu (Munindar P. Singh),
amit.chopra@lancaster.ac.uk (Amit K. Chopra)

Preprint submitted to Elsevier July 24, 2025

multiagent system [8, 9] without being overwhelmed with the internal details of the agents in the
multiagent system being designed.

In this paper, we turn to the problem of implementing cognitive agents on the basis of protocols.
Agent-oriented approaches in the cognitive tradition, such as Jason [10], help specify autonomous
agents in terms of their beliefs and intentions. These abstractions can capture stakeholder require-
ments succinctly and naturally by matching folk psychological constructs that stakeholders would
understand and avoiding implementation details [11]. The agent-oriented approaches are under-
girded by formal semantics and supported by programming frameworks that enable a programmer
to specify the operations of an agent in terms of beliefs and intentions such that the agent’s be-
havior is directly linked to its cognitive makeup. Existing cognitive agent programming approaches
support communication between agents; however, in general, they haven’t kept up with advances
in modeling interactions.

In a nutshell, both agent-oriented and interaction-oriented approaches aim to simplify the engi-
neering of multiagent systems via programming abstractions. Further, they are mutually comple-
mentary. Whereas the cognitive agent-oriented approaches can be seen as capturing the internal
reasoning that drives an agent’s interactions, the interaction-oriented approaches may be seen as
placing constraints on such reasoning for purposes of interoperability. However, as of yet, there is
no approach that combines the two themes in a cohesive approach for building multiagent systems.

1.1. The Argus Approach
This paper tackles the above challenge. It synthesizes the agent-oriented and interaction-

oriented approaches into a new approach for developing multiagent systems. Our proposed approach
is to replace the agent communication part of a BDI architecture with protocols. Specifically, we
leave the BDI reasoning engine and the core abstractions of beliefs, goals, and plans unchanged.
That is, we do not demand any change to whatever operational semantics holds for the BDI rea-
soning except for what concerns communication. Thus, agents can be authored and executed much
as before, albeit with streamlining due to the proposed communication semantics and protocol
handling.

We adopt Jason as the exemplar of the cognitive tradition because of its well-deserved promi-
nence in agent programming and its extensive support for communications. Jason is an exemplary
BDI framework that provides rule-based programming based on beliefs and intentions to build BDI
agents. Jason agents can communicate with each other based on their beliefs and intentions, and
thereby realize multiagent systems. Jason’s communication model and semantics, however, suffer
from fundamental limitations: They provide predetermined performatives (message or “speech act”
types) and couple agents unnecessarily. Jason’s strong treatment of communications makes it an
ideal target for our investigation for two reasons. One, Jason provides a concrete model of commu-
nications in a traditional BDI approach that enables us to demonstrate the benefits of introducing
interaction orientation. Two, because Jason has a communication model, it provides us with an
engineering challenge to replace the communications part of it.

In contrast, other BDI approaches, e.g., CAN [12], do not pay special attention to commu-
nication, potentially treating it like any action. Incorporating communication protocols in those
approaches is conceptually unproblematic since there is nothing that has to be replaced. Likewise,
they provide less of an opportunity to show the benefits of an interaction-oriented approach to
communication vis à vis a BDI approach.

We adopt information protocols [13] as an exemplar of the interaction-oriented tradition. Infor-
mation protocols capture interactions between agents abstractly and seek to maximally decouple

2

the agents—that is, couple the agents only to the extent necessary for interoperation in the de-
sired multiagent system. The associated abstractions deal with information transfer as a basis for
causality and integrity, which as well are undergirded by a formal semantics and associated with a
programming framework. Information protocols may be composed and verified for properties such
as liveness and safety, thus enabling the verification of a multiagent system before implementing
agents to play roles in it [14]. They can be enacted flexibly and asynchronously without requiring
message ordering guarantees from the underlying communication service [15]. Information proto-
cols enable specifying and implementing fault tolerance at the application level [16]. In addition,
they enable precise specification of commitments and other norms [17, 18].

Because the concrete realization of our approach relies on Jason and contributes to the Jason
ecosystem, we name our approach Argus—in Greek mythology, the builder of the Argo, the ship
that transports Jason on his quest.

1.2. Contributions
Our overarching contribution is to unite BDI-oriented agent programming and information

protocols to simplify implementing loosely coupled agents, and demonstrated concretely via Argus,
as stated above.

Argus supports a reactive model to map information-based communication to BDI reasoning.
The Argus operational semantics makes weak assumptions about the infrastructure, preserves au-
tonomy (agents may ignore or respond to messages as they see fit), and preserves heterogeneity
(separating local and internal states and avoiding hidden dependencies). Argus makes few as-
sumptions about the underlying agent reasoning and may be readily adapted to other cognitive
agent-programming languages, such as 2APL [19], 3APL [20], CAN [12], and GOAL [21].

We identify and resolve limitations of Jason’s support for communications: no support for
protocols; adoption of Knowledge Query and Manipulation Language (KQML) [22] primitives and
semantics; selection and social acceptability functions to control communications that are neither
public nor based in beliefs and plans; and inadequate support for autonomy and heterogeneity.
KQML was a landmark contribution to agent communication, but there is no good reason to
confine agent programming to KQML over thirty years after its inception. Our objective here is
not to criticize Jason or KQML but to bring forth shortcomings of Jason’s treatment of agent
communication to show the need for improvement.

It is worth noting that implementing an agent that is compliant with the protocol and exploits
its flexibility is a nontrivial activity. A flexible protocol can, in the worst case, have enactments
that are exponential in the size of its specification. To support the task of implementing an agent,
Argus bundles a code generator that produces Jason code that captures the changes to an agent’s
view of the protocol state and guides the implementation.

1.3. Running Example: Academic Testing
We consider a typical US university setting, which involves professors, teaching assistants (TAs),

and students. In our example, a course is taught by one professor, who is assisted by one TA for
that course. Students enroll in one or more courses. Each course has a test that the professor
prepares along with a grading rubric (instructions) for the TA. Each student enrolled in that course
prepares a solution to the test.

We focus on the interactions here. A professor begins a test and asks students to provide
solutions to a series of questions. The professor sends the grading rubric to the TA. A student

3

submits their solutions to the TA, who grades them according to the rubric and sends the grades
to the professor.

2. Background: Agent Programming in Jason

Jason is an extended implementation of the AgentSpeak logic-programming language for spec-
ifying agent behavior [10]. In Jason, an agent is modeled as having beliefs, which capture the state
of the world; goals, which capture its objectives; and plans, which are methods for realizing its
goals. To facilitate building multiagent systems, Jason adopts communication primitives based on
KQML.

To illustrate Jason’s programming model, especially how it weaves together communication and
reasoning in an agent, Listing 1 and Listing 2 give snippets of professor Pnin and student Lancelot’s
implementations in Jason.

Listing 1: Jason snippet of Pnin, the agent who plays Professor.

1 s t uden t (s1 , l a n c e l o t) .
2 s t uden t (s2 , ga lahad) .
3 qu e s t i o n (q1 , "What i s your name? ") .
4 qu e s t i o n (q2 , "What i s your que s t ? ") .
5 ! s t a r t .
6
7 +! s t a r t <−
8 f o r (s t uden t (TID , Student)) {
9 . send (Student , t e l l , b eg i n_te s t (TID)) ;

10 f o r (q u e s t i o n (QID , Q)) {
11 . send (Student , t e l l , c h a l l e n g e (TID , QID , Q)) ;
12 . p r i n t (" c h a l l e n g e " , Student , TID , QID , Q) ;
13 } ;
14 } .

The first two lines of Listing 1 add beliefs that there are two students, Lancelot and Galahad,
with student IDs s1 and s2, respectively. The next two lines add beliefs for questions, each composed
of an identifier and a string stating the questions. Line 5 adds an initial goal to achieve start.

Lines 7–14 describe a plan for achieving the start goal: for each student, send a begin test
message containing just the TID, and then send each question. Note that functions (plans), loops,
and procedures (e.g., .send, which is built-in) work via parameter unification. For example, the
for loop works by finding all terms that match the provided structure, using capitalized names
(e.g., TID and Student) to represent variables. The loop body is executed once for each match;
in this case, once for each student, with (TID, Student) bound to (s1, lancelot) and (s2, galahad)
successively. The .send procedure takes three parameters: the name of the agent receiving the
message (the Student), the speech act to perform (Tell), and the term to send (the challenge). The
Tell speech act adds the term to the recipient’s belief base (and triggers a matching plan if there
is one).

Listing 2: Jason snippet of Lancelot, an agent who plays Student.

1 +ch a l l e n g e (TID , QID , Q) <−
2 . p r i n t (" I have been g i v en c h a l l e n g e : " , Q) .

Lines 1–2 of Listing 2 give a plan for student Lancelot that reacts to the addition of the chal-
lenge(TID, QID, Q) belief. This belief is added automatically when the Tell is received, triggering

4

the plan. The specific implementation simply prints information about the question the student
was given.

An agent can have multiple plans for achieving a goal. If so, it tries to select the first one that
is applicable, based on the guards of the plan.

Listing 3: Guard for challenge plan.

1 +ch a l l e n g e (TID , QID , Q)
2 : s t uden t (TID , l a n c e l o t)
3 <− . . .

Line 2 in Listing 3 shows the plan for challenge extended with a single guard. This guard
checks for the existence of the belief student(TID, lancelot)—in other words, it checks that
Lancelot’s agent believes TID is his student ID. If Lancelot’s agent has a matching belief, it will
select and execute this plan. Otherwise, it will skip over this plan and pick another one if available.

2.1. Communication
Communication in Jason primarily uses the .send function, though others such as .broadcast

also exist, and the language can be extended with custom plugins.
The syntax of sending a message is .send(Recipient, Performative, Content). Here, Re-

cipient is a reference to the agent the Jason runtime should deliver the message to. Performative
is the name of the speech act (i.e., illocutionary act [23]) this message is performing. Content is a
literal being sent as the body of a message and refers to the content of the message, i.e., a belief that
the recipient should adopt. Listing 1 uses Tell as the performative, which means that the receiving
agent should adopt the content of the message as a belief. The list of supported performatives is
given in Table 1.

Table 1: Performatives supported by Jason.

Performative Meaning

tell ⟨belief⟩ recipient should add ⟨belief⟩
untell ⟨belief⟩ recipient should remove ⟨belief⟩
achieve ⟨goal⟩ recipient should achieve ⟨goal⟩
unachieve ⟨goal⟩ recipient should drop the intention of achieving ⟨goal⟩
tellHow ⟨plan⟩ recipient should add ⟨plan⟩
untellHow ⟨plan⟩ recipient should disregard ⟨plan⟩
askIf ⟨query⟩ recipient should reply if ⟨query⟩ is true
askAll ⟨query⟩ recipient should reply with all answers matching ⟨query⟩
askHow ⟨query⟩ recipient should reply with plans matching ⟨event⟩

2.2. Jason Reasoning Cycle
Figure 1 shows the Jason reasoning cycle, involving the various processing steps and how a

Jason reasoner may transition from one step to the next. The entire set of processing steps in Jason
is {ProcMsg, SelEv, RelPl, ApplPl, SelAppl, AddIM, SelInt, ExecInt, ClrInt} [24, pp. 234–235]. These
labels stand for, respectively: processing a message from the agent’s mail inbox, selecting an event
from the set of events, retrieving all relevant plans, checking which of those are applicable, selecting
one particular applicable plan (the intended means), adding the new intended means to the set

5

of intentions, selecting an intention, executing the selected intention, and clearing an intention or
intended means that may have finished in the previous step.

ProcMsg SelEv RelPl ApplPl SelAppl

AddIMSelIntExecIntClrInt

Figure 1: The Jason reasoning cycle, highlighting the transitions pertaining to communication with zig-zag arrows.
The other transitions arise from internal reasoning (processing of beliefs, plans, and intentions) in Jason.

In Jason, a receiver processes a message from its inbox when (1) its programmer-specified
selection function SM selects that message, and (2) the constraints specified in the SocAcc function
are met. Processing the message means inserting it into the receiver’s belief base. (See Jason’s
Tell rule [24, p. 244].) The motivation behind SM is to capture the priority of a message. The
motivation behind SocAcc is to capture reasoning based on social constraints such as power, trust,
and so on.

3. Information Protocols

An information protocol, as specified in the Blindingly Simple Protocol Language (BSPL) [13],
specifies communication in a multiagent system and provides a basis for implementing its flexible
agents in a loosely-coupled manner. Listing 4 illustrates the main features of BSPL via our running
example.

Listing 4: The grading protocol.

1 Grad ing {
2 r o l e s P r o f e s s o r , Student , TA
3 pa ramete r s out TID key , out QID key , out Grade
4 p r i v a t e Quest ion , So l u t i on , Answer
5
6 P r o f e s s o r 7→ Student : b eg i nTes t [out TID key]
7 P r o f e s s o r 7→ Student : c h a l l e n g e [i n TID key , out QID key , out Ques t ion]
8
9 P r o f e s s o r 7→ TA: r u b r i c [i n TID key , i n QID key , out S o l u t i o n]

10 Student 7→ TA: r e s pon s e [i n TID key , i n QID key , i n Quest ion , out Answer]
11 TA 7→ P r o f e s s o r : r e s u l t [i n TID key , i n QID key , i n Answer , i n So l u t i on ,

out Grade]
12 }

A protocol specifies the roles that participate in it. It also specifies the message schemas of the
messages to be sent and received by the (agents playing the) roles. A message schema has a name,
a sender role, a receiver role, and one or more parameters, some of which are designated ⌜key⌝ and
each of which is adorned ⌜in⌝, ⌜out⌝, or ⌜nil⌝. A message instance is a tuple of bindings for the ⌜in⌝
and ⌜out⌝ parameters of that schema (⌜nil⌝ parameters have no bindings). The ⌜key⌝ parameters
of a schema form a composite key and uniquely identify its instances.

6

Parameter adornments capture causality. An agent’s local state is the set of messages it has
observed, that is, sent or received. To emit an instance of a schema, parameters adorned ⌜in⌝ must
have bindings in the sender’s local state, and parameters adorned ⌜out⌝ and ⌜nil⌝ must not have
bindings in the sender’s local state. We say a parameter binding is known to the agent if its binding
exists in the local state. Thus, in simple terms, to emit an instance, the ⌜in⌝ parameters’ bindings
must be known already to the agent, and the ⌜out⌝ and ⌜nil⌝ parameters’ bindings must not be
known already. Upon emission of the instance, it becomes part of the local state, and the ⌜out⌝
parameters bindings become known; the ⌜nil⌝ parameters remain unknown.

By uniqueness, no two message instances with the same bindings for overlapping ⌜key⌝ param-
eters may have distinct bindings for common non-key parameters. Since bindings are introduced
through ⌜out⌝ parameters, no two message instances may have overlapping key parameter bindings
as well as a binding of the same ⌜out⌝ parameter. BSPL thus captures causality and integrity
through information.

How may an agent create message instances for emission? The bindings for the ⌜in⌝ parameters
must obviously come from the local state. The bindings for the ⌜out⌝ parameters must, however,
be generated by the agent via internal reasoning. For example, say Pnin (an agent playing the
role Professor) wants to send a challenge. Pnin’s internal reasoning for generating Question may
involve looking up a database of questions from which it selects a question with a suitable difficulty
level and, moreover, has not been used in challenges in the last three years.

TID identifies the test being taken. Since TID and QID are both marked ⌜key⌝, where they
appear together, they constitute a composite key and jointly identify a challenge within a test.
That is, each test may have multiple challenges, one for each binding of QID. To send result, for
any ⟨TID, QID⟩ tuple, an agent playing the TA role needs to know Solution and Answer. This use of
key parameters illustrates correlation and joining of information from different roles.

Notably, a message may be received at any time, that is, in any relative order with respect to
other messages, obviating the need for ordered-delivery communication services. For example, the
information needed for TA to send result comes from receiving response from Student and rubric
from Professor. These messages may be received in any order by TA.

Grading can be enacted flexibly. After beginning a test, Professor may send challenges and
rubrics in any order. Moreover, they may be received by Student and TA in any order. Student
may respond to challenges received in any order and TA may grade responses (for which it has also
received rubrics) in any order. Figure 2 demonstrates an enactment for TID t1 and QIDs q1 and q2
(other parameters are elided).

The formal syntax of our language, based on BSPL [13], is given in Table 2, and described in
detail below. A superscript of + indicates one or more repetitions, superscript ∗ indicates zero or
more, and ⌊ and ⌋ delimit expressions, which are optional when without a superscript.
L1. A specification document consists of one or more protocols (which may be individual messages).
L2. A protocol declaration consists of a name, roles, a public parameter expression, optional private

parameters, and references to constituent protocols or messages. The public parameters with
the key qualifier form this declaration’s key.

L3. A parameter expression is a comma-separated list of parameters.
L4. A parameter has an adornment and name and may be optionally declared key.
L5. A reference to a protocol consists of the name of the referenced protocol and a parenthesized

parameter expression matching the protocol’s declaration.
L6. A message schema consists of a name, a sending role, a receiving role, and a parameter

7

Professor Student TA

beginTest(t1)

challenge(t1, q1)

challenge(t1, q2)

response(t1, q2)
rubric(t1, q1)

rubric(t1, q2)

result(t1, q2)

Figure 2: An enactment of Grading demonstrating the flexibility afforded by information protocols.

expression.
L7. An adornment is either ⌜in⌝, ⌜out⌝, or ⌜nil⌝.

Together, ⌜in⌝, ⌜out⌝, and ⌜nil⌝ capture all the possibilities from the point of view of what
knowledge an agent has and what knowledge it may generate through its actions (message emis-
sions). These are either know (⌜in⌝) or don’t know (⌜out⌝ or ⌜nil⌝). Don’t know can be further
broken down into can generate (⌜out⌝) and cannot generate (⌜nil⌝). The parameter adornments
may be used to constrain the ordering and occurrence of an agent’s actions with respect to other
actions. For example, if we wanted to ensure that an agent could only emit message m after ob-
serving (sending or receiving) another message m′, then we would have some parameter that was
⌜out⌝ only in m′ and ⌜in⌝ in m. If we wanted ensure that a message m could not occur after m′

had been observed, then we would have some parameter that was either ⌜in⌝ or ⌜out⌝ in m′ and
⌜nil⌝ in m.

4. The Argus Architecture

Argus is a programming model for agents based on information protocols. The programming
model takes a protocol as an input and provides abstractions that make it convenient to indepen-
dently implement agents.

We describe the main elements of the Argus architecture. Let Pnin and Timofey be agents
playing the Professor and TA roles, respectively. Let Galahad and Lancelot be agents playing
the Student role.

Figure 3 shows a multiagent system under Argus. BDI Agents interact on the basis of an
information protocol. An agent’s local state comprises beliefs corresponding to the messages it has

8

Table 2: BSPL Syntax

L1 Spec −→ ⌊Protocol |Message⌋+
L2 Protocol −→ Name {

roles Name+

public ParamExpr
⌊private ParamExpr⌋
Reference+ }

L3 ParamExpr −→ Parameter ⌊,Parameter⌋+
L4 Parameter −→ Adornment Name ⌊key⌋
L5 Reference −→ Name(ParamExpr) | Message
L6 Message −→ Name 7→ Name: Name[ParamExpr]
L7 Adornment −→ in | nil | out

observed (sent or received) and is used for validating messages before emission and after reception.
The internal state comprises beliefs about whatever is relevant to the agent’s reasoning besides what
is included in the protocol. That is, the internal state is separate from the local state. There are no
other beliefs. The adapter applies the protocol specification to validate both incoming and outgoing
messages and update the local state. Each agent has plans and a BDI reasoner that executes its
plans. An agent’s control state is given by its current intentions and associated objects.

Some of the plans are generated by our tooling based on the protocol specification. These plans
are essentially to emit messages. Each plan is triggered by the addition of a belief corresponding to
a message observation and specifies the state the enactment should be in for a further message to be
emitted. These plans offer an opportunity for the developer to plug in internal reasoning satisfying
which the message will be emitted. Such an emission plan is necessarily incomplete because the
internal logic is necessary to produce the bindings of the message’s ⌜out⌝ parameters. The internal
reasoning could itself involve other plans written by the agent developer.

Plans

Internal State

Local State

Argus Adapter

Plans

Internal State

Local State

Argus Adapter

Beliefs Beliefs

BDI Agent BDI Agent

Asynchronous Communication Infrastructure

Information Protocol

Figure 3: The Argus architecture is realized on top of the BDI architecture in that Argus addresses how BDI agents
interact. Each agent has an Argus adapter generated for the roles it plays in the information protocol. The adapter
validates incoming and outgoing messages against the protocol and updates the local state. Argus blends into the
BDI architecture because the Argus local state is nothing more than a set of beliefs, as are already available to the
BDI reasoner in the BDI architecture.

9

4.1. Representing the Local State
Argus preserves agent autonomy by separating each agent’s local state (containing information

shared between agents who communicate with each other) from its internal state (containing private
information).

In Argus, a valid message observation (emission or reception) is represented as a belief and
added to the local state. For example, referring to Listing 4, the message

challenge[s1, q1, “What is your name?”]

from Pnin to Lancelot, if it passes validation, is constructed as the Jason term

challenge(“Pnin”, “Lancelot”, s1, q1, “What is your name?”)

and is added to Pnin’s local state upon emission and to Lancelot’s local state upon reception.

4.2. Handling Message Observations
To avoid conflict with Jason’s builtin procedure .send, we postulate (and implement) new builtin

procedures .emit and .emitAll.
Executing .emit for some message instance causes the adapter to validate the instance against

the local state. Specifically, the bindings for the ⌜in⌝ parameters must be already known (from the
local state); and the bindings for the ⌜out⌝ and ⌜nil⌝ parameters must not already be known. If
the validation is successful, the adapter adds the instance to the local state (as described above)
and transmits the message instance to the recipient via the appropriate channel. The recepient
can be specified directly as a string address in "ip:port" format, or will be loaded from the adapter
configuration.

Similarly, for .emitAll, a multicast primitive, the same message is emitted in every MAS that
the sender is already participating in. This means that for Pnin, who is configured with two MASs,
one for Lancelot and one for Galahad, he can send the questions to both students with a single
.emitAll.

Listing 5: Partial Professor Pnin in Argus.

1 s t uden t (" l a n c e l o t " , " Lan c e l o t ")
2 s t uden t (" ga lahad " , " Galahad ") .
3 qu e s t i o n (q1 , "What i s your name? ") .
4 s o l u t i o n (" l a n c e l o t " , q1 , " S i r L an c e l o t o f Camelot ") .
5 s o l u t i o n (" ga lahad " , q1 , " S i r Galahad o f Camelot ") .
6 ! s t a r t .
7
8 +! s t a r t <−
9 TID = "midterm " ;

10 . p r i n t (" S t a r t i n g t e s t " , TID) ;
11 . em i tA l l (b eg i n_te s t (MasID , P r o f e s s o r , Student , TID)) ;
12
13 f o r (q u e s t i o n (QID , Ques t ion)) {
14 . p r i n t (" Cha l l e ng e " , QID , " : " , Ques t ion) ;
15 . em i tA l l (c h a l l e n g e (MasID , P r o f e s s o r , Student , TID , QID , Ques t ion)) ;
16 f o r (s t uden t (MasID , Student)) {
17 s o l u t i o n (MasID , QID , S o l u t i o n) ;
18 . emit (r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)) ;

10

19 . p r i n t (" S o l u t i o n f o r " , MasID , QID , " i s " , S o l u t i o n) ;
20 } ;
21 } .

For example, in Line 15, Pnin sends challenge to all students by invoking .emitAll. Suppose
TID is “midterm” and QID is q1, and Question is “What is your name?”. Pnin’s adapter constructs
the corresponding message instance and validates it. If the instance passes validation, it adds the
assertion challenge(“lancelot”, “Pnin”, “Lancelot”, "midterm", q1, “What is your name?”) to the
local state and sends the message instance to Lancelot, with a similar message for Galahad.

Each interaction happens within the context of MAS. In our implementation, borrowing from
Kiko [25], the variable MasID identifies the MAS. In Listing 5, the MasID corresponds to the name
of the student in lowercase, e.g., lancelot (line 1). In effect, each student is in a different MAS
but with the same Professor and the same TA.

When the adapter receives a message instance and finds it consistent with the local state, it
inserts the message into the local state. Given the information model, consistency simply means
that there would be no key violation in the local state if that message were inserted. For example,
when Lancelot receives the above message, Lancelot’s adapter checks the local state to verify that
no message with the same TID and QID but a different Question has been observed. If the check
passes, then

challenge(“lancelot”, “Pnin”, “Lancelot”, s1, q1, “What is your name?”)

is added to Lancelot’s local state.
It is worth emphasizing the distinction between an agent’s local state and internal state. Lines 1–

5 model Pnin’s question bank. The questions and their solutions are part of Pnin’s internal state.
Message parameters exclusively apply to the local state; their bindings don’t become part of the
local state until a message containing them is recorded in the local state. Whether a message
may be emitted depends only on the local state, not the internal state. The rubric message has
⌜out⌝ Solution. Pnin’s emission of this message (Line 18) is not blocked merely because he has the
solutions in his internal state. A solution in the internal state doesn’t become a Solution in Pnin’s
local state until he sends a rubric for some TID, QID combination with the solution as the binding
for Solution. Once Pnin has sent it, Solution becomes part of the his local state relative to that TID,
QID combination and he is blocked from sending any further rubric messages for the combination.

Multicast messages are handled by generating separate messages for each MAS. Each message
is validated and stored in the local state separately, just like any other message. Thus, Pnin would
store two copies of the Challenge message, one for each student, while the students would each
store the single instance they receive.

4.3. Programming Agents for Enacting Protocols in Argus
A conceptually simple programming model is based on the Stellar approach for Jason [26]. Here,

agents react to message receptions. In Argus, we model message receptions by adding terms to the
recipient’s knowledge base, which they can react to using goals triggered by term addition.

Our tooling supports this programming model by generating code for the agents based on the
protocol specification. Listing 6 gives the skeleton code generated for Timofey, the TA, from the
grading protocol specification.

Listing 6: Generated code for TA

1 +r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)

11

2 : r e s pon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)
3 <− ! s e nd_r e su l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , S o l u t i o n) .
4
5 +re spon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)
6 : r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)
7 <− ! s e nd_r e su l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , S o l u t i o n) .
8
9 +! s end_re su l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , S o l u t i o n)

10 <− // i n s e r t code to compute r e s u l t out pa ramete r s [’ Grade ’] he r e
11 . emit (r e s u l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , So l u t i on , Grade)

) .

Our code generator focuses on enabling the emissions that the agent could send, rather than
simply generating stub reactions for every reception, so the developer doesn’t have to rewrite the
interaction logic from the protocol. In Grading, TA needs to observe rubric and response before it
is enabled to send result. These dependencies are reflected in the generated code in Listing 6 by
two goals that react to the observation of rubric and response respectively. Because the messages
are asynchronous and could be received in any order, both goals have guards that check for prior
observation of the other message; if there are N prerequisite messages for a specific emission, the
generator automatically produces N goals, each triggered by one reception and guarded by all of the
others. Whichever reception is last will pass the guard, and consequently trigger the unified goal
for sending the dependent message (in this case, !send_result for sending result). The developer
will need to add code as indicated by the comment to bind the ⌜out⌝ parameters.

Listing 7 shows a complete implementation for Timofey, the TA, according to this model.
Timofey checks if Answer equals Solution, and if so, gives a grade of 1 for that question; otherwise,
0. It then prints the grade and emits result.

Listing 7: TA Timofey in Argus

1 +r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)
2 : r e s pon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)
3 <− ! s e nd_re su l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , S o l u t i o n) .
4
5 +re spon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)
6 : r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)
7 <− ! s e nd_re su l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , S o l u t i o n) .
8
9 +! s end_re su l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , S o l u t i o n)

10 <− i f (Answer = So l u t i o n) {
11 . p r i n t (TID , QID , Answer , " matches " , S o l u t i o n) ;
12 Grade = 1 ;
13 } e l s e {
14 . p r i n t (TID , QID , Answer , " does not match " , S o l u t i o n) ;
15 Grade = 0 ;
16 }
17 . p r i n t (" Grade : " , Grade) ;
18 . emit (r e s u l t (MasID , TA, P r o f e s s o r , TID , QID , Answer , So l u t i on , Grade)

) .

This programming model resembles traditional Jason communication patterns in that it is based
on responding to events (which arise from incoming messages), but is enhanced with message
validation based on protocols.

12

4.3.1. Code Generation Algorithms
The Argus code generator performs sophisticated analysis of protocol specifications to automat-

ically create appropriate plan skeletons. This process relies on two key algorithms: cover calculation
and conflict identification.

Emission Covers. For each message that an agent playing a given role can emit, the cover algorithm
determines which incoming messages must be observed before the emission becomes possible. A
cover is a set of messages that, when observed, collectively bind all the necessary ⌜in⌝ parameters
required for an emission.

The algorithm first identifies all possible enactments of the protocol that include the target
emission as paths, that is, sequences of emission and reception events. For each path, it tracks
the ⌜in⌝ parameters needed by the emission and identifies observable messages that provide these
parameters. When a set of messages collectively satisfies all parameter requirements, it becomes
a valid cover and stops consideration of that path. Once initial covers are identified, they are
pruned to eliminate redundancy. A message is removed from a cover if all the ⌜in⌝ parameters it
provides are also provided by other messages in the cover. This ensures minimal covers that avoid
unnecessary dependencies.

Conflict Guards. The conflict identification algorithm identifies messages which should block an
emission when observed. These conflicts are used to add guards to the message emission plans, so
they are not attempted in situations where they are blocked. The protocol adapter will enforce the
constraint during emission, but the guards help avoid even attempting such violations.

For each message a role can emit, the algorithm checks all other observable messages to deter-
mine if they would disable the emission. Message A is considered to block message B if A contains
parameters adorned ⌜in⌝ or ⌜out⌝ which B has adorned ⌜out⌝ or ⌜nil⌝. However, applying this cri-
teria naively would mean that direct dependencies (with ⌜in⌝ parameters) block the message that
enables them (which bind it as ⌜out⌝). While these guards would be harmless, they are unneces-
sary. Thus, our disablement calculation excludes messages that are the sole source of a necessary
parameter.

Plan Generation. The code generator combines the results of these algorithms to create three types
of plans:

1. For emissions with no dependencies, it generates a simple plan triggered by a goal with
appropriate conflict guards. That is, the agent must set a goal to produce this message; it is
not automatically triggered.

2. For emissions dependent on a single message, it generates a plan triggered by the addition of
that message as a belief, which happens on reception, with conflict guards.

3. For emissions dependent on multiple messages, it generates multiple plans—one triggered by
each dependency and guarded by the presence of the others, plus a goal plan to perform the
actual emission.

The generation of these plans is illustrated in Listing 6, where two plans are created for the
result message. These plans are triggered by the reception of either rubric or response and guarded
by the presence of the other message, ensuring that both prerequisites are satisfied before the result
can be emitted.

13

4.3.2. Agent Listings
For completeness, Listings 8–10 gives all the Argus agents.

Listing 8: Complete Professor Pnin in Argus.

1 qu e s t i o n (q1 , "What i s your name? ") .
2 s o l u t i o n (" l a n c e l o t " , q1 , " S i r L an c e l o t o f Camelot ") .
3 s o l u t i o n (" ga lahad " , q1 , " S i r Galahad o f Camelot ") .
4 qu e s t i o n (q2 , "What i s your que s t ? ") .
5 s o l u t i o n (" l a n c e l o t " , q2 , " To seek the Holy G r a i l ") .
6 s o l u t i o n (" ga lahad " , q2 , " To seek the G r a i l ") .
7 qu e s t i o n (q3 , "What i s your f a v o r i t e c o l o r ? ") .
8 s o l u t i o n (" l a n c e l o t " , q3 , " Blue ") .
9 s o l u t i o n (" ga lahad " , q3 , " Ye l low ") .

10
11 s t uden t (" l a n c e l o t " , " Lan c e l o t ") .
12 s t uden t (" ga lahad " , " Galahad ") .
13
14 ! s t a r t .
15
16 +! s t a r t <−
17 TID = "midterm " ;
18 . p r i n t (" S t a r t i n g t e s t " , TID) ;
19 . em i tA l l (b eg i n_te s t (MasID , P r o f e s s o r , Student , TID)) ;
20
21 f o r (q u e s t i o n (QID , Ques t ion)) {
22 . p r i n t (" Cha l l e ng e " , QID , " : " , Ques t ion) ;
23 . em i tA l l (c h a l l e n g e (MasID , P r o f e s s o r , Student , TID , QID , Ques t ion)) ;
24 f o r (s t uden t (MasID , Student)) {
25 s o l u t i o n (MasID , QID , S o l u t i o n) ;
26 . emit (r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)) ;
27 . p r i n t (" S o l u t i o n f o r " , MasID , QID , " i s " , S o l u t i o n) ;
28 } ;
29 } .
30
31 +r e s u l t (MasID , TA, P r o f e s s o r , TID , QID , Ans , Sol , Grade) <−
32 . p r i n t (" Rece i v ed r e s u l t f o r " , MasID , QID , " wi th grade " , Grade) ;
33 . count (r e s u l t (MasID , _, _, TID , _, _, _, _) , C) ;
34 . count (c h a l l e n g e (MasID , _, _, TID , _, _) , Cha l l e n g e s) ;
35 i f (C >= Cha l l e n g e s) {
36 ! r e p o r t (MasID , TID) ;
37 } .
38
39 +! r e p o r t (MasID , TID) : not r e p o r t e d (MasID , TID) <−
40 . f i n d a l l (Grade , r e s u l t (MasID , _, _, TID , _, _, _, Grade) , L) ;
41 ! sum(L , Tota l) ;
42 . count (c h a l l e n g e (MasID , _, _, TID , _, _) , C) ;
43 . p r i n t (" Tota l g rade f o r s t uden t " , MasID , " i s " , Tota l , " / " , C) ;
44 +repo r t e d (MasID , TID) .
45 +! r e p o r t (MasID , TID) <− t r u e .
46
47 +! sum([] , 0) .
48 +! sum([T|R] , M) <−

14

49 ! sum(R , S) ;
50 M = T+S .

Listing 9: Lancelot’s decision making in Argus.

1 answer ("What i s your name? " , " S i r L an c e l o t o f Camelot ") .
2 answer ("What i s your que s t ? " , "To seek the Holy G r a i l ") .
3 answer ("What i s your f a v o r i t e c o l o r ? " , " Blue ") .
4
5 +beg in_te s t (MasID , P r o f e s s o r , Student , TID) <−
6 . p r i n t (" S t a r t i n g t e s t w i th TID " , TID) .
7
8 +ch a l l e n g e (MasID , P r o f e s s o r , Student , TID , QID , Ques t ion) : answer (

Quest ion , Answer) <−
9 . p r i n t (" Answer ing " , QID , " wi th " , Answer) ;

10 . emit (r e s pon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)) .

Listing 10: Galahad’s decision making in Argus.

1 +beg in_te s t (MasID , P r o f e s s o r , Student , TID) <−
2 . p r i n t (" S t a r t i n g t e s t w i th TID " , TID) .
3
4 +ch a l l e n g e (MasID , P r o f e s s o r , Student , TID , QID , Ques t ion) <−
5 ! answer (Quest ion , Answer) ;
6 . p r i n t (" Answer ing " , QID , " wi th " , Answer) ;
7 . emit (r e s pon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)) .
8
9 +! answer ("What i s your name? " , " S i r Galahad o f Camelot ") .

10 +! answer ("What i s your que s t ? " , "To seek the G r a i l ") .
11 +! answer ("What i s your f a v o r i t e c o l o r ? " , " Blue ") .
12 +! answer (_, " I don ’ t know tha t ") .

We launched all agents from a shell script. Listing 11 shows the output.

Listing 11: Example execution trace.

1 S t a r t i n g Galahad . . .
2 S t a r t i n g Lanc e l o t . . .
3 S t a r t i n g Timofey . . .
4 Pre s s any key to s top . . .
5 S t a r t i n g Pnin . . .
6 Pnin S t a r t i n g t e s t midterm
7 Pnin Cha l l e ng e q1 : What i s your name?
8 Pnin S o l u t i o n f o r l a n c e l o t q1 i s S i r L an c e l o t o f Camelot
9 Pnin S o l u t i o n f o r ga lahad q1 i s S i r Galahad o f Camelot

10 Pnin Cha l l e ng e q2 : What i s your que s t ?
11 Pnin S o l u t i o n f o r l a n c e l o t q2 i s To seek the Holy G r a i l
12 Pnin S o l u t i o n f o r ga lahad q2 i s To seek the G r a i l
13 Pnin Cha l l e ng e q3 : What i s your f a v o r i t e c o l o r ?
14 Pnin S o l u t i o n f o r l a n c e l o t q3 i s Blue
15 Pnin S o l u t i o n f o r ga lahad q3 i s Ye l low
16 Galahad S t a r t i n g t e s t w i th TID midterm
17 Lanc e l o t S t a r t i n g t e s t w i th TID midterm
18 Galahad Answer ing q1 wi th S i r Galahad o f Camelot
19 Lanc e l o t Answer ing q1 wi th S i r L an c e l o t o f Camelot

15

20 Galahad Answer ing q2 wi th To seek the G r a i l
21 Galahad Answer ing q3 wi th Blue
22 Lanc e l o t Answer ing q2 wi th To seek the Holy G r a i l
23 Timofey ga lahad q1 S i r Galahad o f Camelot matches S i r Galahad o f Camelot
24 Lanc e l o t Answer ing q3 wi th Blue
25 Timofey Grade : 1
26 Pnin Rece i v ed r e s u l t f o r ga lahad q1 wi th grade 1
27 Timofey l a n c e l o t q1 S i r L an c e l o t o f Camelot matches S i r L an c e l o t o f

Camelot
28 Timofey Grade : 1
29 Timofey ga lahad q2 To seek the G r a i l matches To seek the G r a i l
30 Timofey Grade : 1
31 Timofey ga lahad q3 Blue does not match Ye l low
32 Timofey Grade : 0
33 Timofey l a n c e l o t q2 To seek the Holy G r a i l matches To seek the Holy G r a i l
34 Timofey Grade : 1
35 Pnin Rece i v ed r e s u l t f o r l a n c e l o t q1 wi th grade 1
36 Timofey l a n c e l o t q3 Blue matches Blue
37 Timofey Grade : 1
38 Pnin Rece i v ed r e s u l t f o r ga lahad q2 wi th grade 1
39 Pnin Rece i v ed r e s u l t f o r ga lahad q3 wi th grade 0
40 Pnin Tota l g rade f o r s t uden t ga lahad i s 2 / 3
41 Pnin Rece i v ed r e s u l t f o r l a n c e l o t q2 wi th grade 1
42 Pnin Tota l g rade f o r s t uden t l a n c e l o t i s 3 / 3
43 Pnin Rece i v ed r e s u l t f o r l a n c e l o t q3 wi th grade 1

5. Formal Semantics for Argus

Since Argus is a synthesis of protocols and BDI concepts, it helps to leverage BDI semantics.
Accordingly, we begin with a brief description of the BDI semantics. Next, we introduce the key
concepts of protocols and then describe the operational semantics for Argus.

5.1. Background on BDI Semantics
We adopt the specific semantics for Jason to guide our choices since it is well worked out and

compatible with our approach.
For the present purposes, we introduce the following elements of the Jason semantics [24,

pp. 231–232]. An agent program ag comprises a set of beliefs bs and a set of plans ps. An in-
tention is a stack of partially instantiated plans; i[p] is an intention with plan p at the top. ⊤ is
the empty intention. An event e = ⟨t, i⟩ pairs a trigger with an intention. An agent configuration
⟨ag , C,M, T, s⟩, includes an agent ag and four components:

• A circumstance C = ⟨I, E,A⟩, where (1) I is a set of intentions; (2) E is a set of events; (3)
A is a set of actions.

• A messaging subsystem M = ⟨In,Out ,SI ⟩, where In is ag ’s inbox, Out its outbox, and SI
its set of suspended intentions (as while awaiting a reply to an Ask). We don’t use M or its
subcomponents.

16

• Temporary information T = ⟨R,Ap, ι, ϵ, ρ⟩, where R is the set of relevant plans for the cur-
rent event; Ap ⊆ R the applicable plans (those whose contexts are true); and ι, ϵ, ρ are the
intention, event, applicable plan under consideration in the current reasoning cycle.

• The current step in the agent’s reasoning cycle, s. Of the nine steps defined in Jason, Argus
concerns (1) ProcMsg, processing an incoming message, and (2) ExecInt, executing an inten-
tion, specifically to emit a message. In the Jason reasoning cycle (Figure 1), ProcMsg leads
to SelEv (selecting an event); ExecInt may lead to ProcMsg or to ClrInt (clearing an intention)
but in our semantics leads only to ClrInt.

The Jason semantics uses the environment, env , as well, but in parts not relevant to Argus.

5.2. The Argus Model
Argus adopts the circumstance, temporary information, and current step from Jason’s semantics,

and adds the following:

• For each pair of communicating agents, there is a point-to-point communication channel Zi,j ,
where i ̸= j are its sender and receiver, respectively. A channel’s contents are an unordered
set, to model unordered communication. That is, a receiver can remove a message from a
channel if it is present there, independently of when that message was added relative to other
messages in the channel. We can think of the channels as being part of the environment.

• We identify the local state of an agent, crucial to BSPL semantics, as L ⊆ bs. An agent’s
internal state comprises its beliefs and is also a subset of bs. However, the internal state is
irrelevant to the Argus semantics, so we don’t assign a symbol to it. An agent may consult
(but not alter) its local state and consult (and possibly alter) its internal state, produce
additional intentions, and emit and receive messages.

We adopt information protocols as introduced in BSPL [14]. A protocol is given by one or more
roles and one or more message schemas involving those roles.

Definition 1 (Message Schema). A message schema is given by λ[x, y, p⃗K , p⃗I , p⃗O, p⃗N], where x and
y are its sender and receiver roles; p⃗I , p⃗O, and p⃗N are its (pairwise disjoint) ⌜in⌝, ⌜out⌝, and ⌜nil⌝
parameters, respectively; and p⃗K ⊆ p⃗I ∪ p⃗O its key parameters.

The semantics of a protocol in BSPL is grounded in terms of the messages sent and received by
the agents enacting that protocol. Specifically, although BSPL allows a protocol to refer to other
protocols, for the purposes of semantics all that matters are the message schemas defined in a pro-
tocol, including the message schemas defined in the protocols referenced from it [14]. Accordingly,
for a protocol P , we define Λ(P) as the set of message schemas defined in P .

Let p⃗ = p⃗I∪p⃗O be the lists of ⌜in⌝ and ⌜out⌝ parameters in a schema. We write r to indicate what
a parameter is bound to and q to indicate a list of bindings corresponding to a list of parameters.
(We use the same notation to avoid clutter since the context always makes clear whether we have
an individual or a list.) For any parameter r, the expression r ←↩ r refers to the parameter having
a binding r. Likewise, for any list of parameters, q⃗, the expression q⃗ ←↩ q refers to each parameter
in q⃗ having the corresponding binding in q.

Definition 2 (Message Instance). A message instance λ[x, y, p⃗ ←↩ p] is given by a schema name
λ, a sender x and a receiver y playing appropriate roles, and a payload (p⃗←↩ p, which are bindings
for ⌜in⌝ and ⌜out⌝ parameters).

17

5.3. Local State Data Model
Below, we write λ[[]] to distinguish the relation contents from the relation (message schema) λ

or λ[]. We also use λ[] for message instances, since instances (comprising parameter bindings) are
easily distinguished from schemas (comprising lists of key, in, out, and nil parameters).

Definition 3 (Local State). Let ag be an agent and let P be a protocol. Then, ag’s local state (with
respect to P), agL, is given as follows:

• For each message schema λ[x, y, p⃗K , p⃗I , p⃗O, p⃗N] ∈ Λ(P), where ag has adopted role x or y,
agL contains a relation λ[[p⃗K , p⃗I , p⃗O, p⃗N]], where this relation has a key constructed from the
parameters in p⃗K .

• agL contains nothing else.

A message instance maps to a ground atom, the same as a belief in Jason. That is, each message
instance of a message schema λ emitted or received corresponds to a row λ[[p⃗←↩ p]] being inserted
in the relation for that schema. Each relation’s contents at any time describe the agent’s history
relative to that message schema.

BSPL defines integrity independently of specific messages and considers the totality of the local
states across all agents. For a safe protocol [14, 8], if each agent separately ensures the integrity
of its emissions, the multiagent system retains integrity. Local integrity means that if any two
rows in any relations agree on bindings of their common key parameters, they agree on bindings
of all other common parameters [27]. Accordingly, implementing the BSPL semantics requires the
adapter to verify that parameter bindings present in a message instance are consistent with any
bindings stored in the local state before it adds the message to its agent’s local state.

The underlying intuition in BSPL is that an enactment of a protocol computes a social object.
This social object is identified by the bindings of the key parameters of the protocol and contains
the bindings for the other parameters of the protocol. For a parameter, in general, its binding
is nonsensical unless it is associated with a key. This situation is the same as in databases. For
example, in an enterprise database, salary = 100000 is meaningless, but a row in a payroll table that
captures employeeID = ABC, salary = 100000 is indeed meaningful. That is, we cannot divorce
parameters from the keys with respect to which they are defined. Recall that each message schema
is an elementary protocol; thus, the foregoing applies to messages as well as to full protocols.

The above motivation leads us to impose two well-formedness criteria on protocols, motivated
in Clouseau [18, §5]. First, if any two or more messages share a parameter, their keys must jointly
overlap, else that parameter would have two conceptions.

Well-formedness requirement 1 (Overlapping key parameters). Let p be a parameter and P
be a protocol. Let {. . . λi[xi, yi, ⃗pK,i, p⃗I,i, ⃗pO,i, ⃗pN,i] . . .} be the set of message schemas in P where
p ∈ p⃗I,i ∪ ⃗pO,i ∪ ⃗pN,i. Then,

⋂
i ⃗pK,i ̸= ∅.

That is, the set of key parameters common to these schemas is nonempty.
Second, informally, when a parameter is adorned ⌜in⌝ in a message schema, any parameter that

is “essential” in identifying that parameter must also be adorned ⌜in⌝. Otherwise, that parameter’s
binding would be meaningless, floating in the ether as it were without being anchored to a key. The
determinant of a parameter captures the intuition of what its essential key is. The determinant of
a parameter is the intersection of the keys of all schemas in which the parameter appears.

18

Definition 4 (Determinant of a parameter). Let p be a parameter and P be a protocol. Let
{. . . λi[xi, yi, ⃗pK,i, p⃗I,i, ⃗pO,i, ⃗pN,i] . . .} be the set of message schemas in P , where p ∈ p⃗I,i∪ ⃗pO,i∪ ⃗pN,i.
Then, ∆(p), the determinant of p is given by

⋂
i ⃗pK,i.

Listing 12 illustrates the idea of a determinant through a fictitious variant of our running
example. The parameter Question occurs in two message schemas, challenge and responseMulti. The
parameters marked ⌜key⌝ in these message schemas are TID, QID and TID, QID, AID, respectively.
Therefore, the determinant of Question in this protocol is TID, QID.

Listing 12: Determinant example

1 Determinant Example {
2 r o l e s P r o f e s s o r , Student , TA
3 pa ramete r s out TID key , out QID key , out AID key , Quest ion , Answer
4
5 P r o f e s s o r 7→ Student : c h a l l e n g e [out TID key , out QID key , out Ques t i on]
6
7 Student 7→ TA: r e s p on s eMu l t i [i n TID key , i n QID key , out AID key , i n

Quest ion , out Answer]
8 }

Well-formedness requirement 2 (Parameters adorned ⌜in⌝). Let p be a parameter and P be a
protocol. Let λ[x, y, p⃗K , p⃗I , p⃗O, p⃗N] be a message schema in P where p ∈ p⃗I . Then, p⃗K∩∆(p) ⊆ p⃗I).

That is, when a parameter is adorned ⌜in⌝ in a message schema, so is each parameter in its
determinant that occurs in that schema.

Notice that, in Listing 12, Question appears ⌜out⌝ in challenge so the above well-formed require-
ment is met. In addition, Question appears ⌜in⌝ in responseMulti as do TID and QID, so the above
well-formed requirement is met there too.

5.4. Integrity Checks on the Local State
Given bindings for the key parameters, some parameters are deemed known, written K, if the

bindings of these parameters exist in the belief base. And, given bindings for the key parameters,
some parameters are deemed unknown, written U, if their bindings are not already known. An
incoming message is compatible, written C, with the local state if it is consistent (with respect to
its key parameters) with the bindings already present in the local state.

Below, we adopt the notation that m ∋ q⃗ ←↩ q means that the specified bindings occur in the
row corresponding to message instance m.

Definition 5. [Known bindings] The primitive K(L, k⃗, q⃗ ←↩ q) verifies if, given key parameters k⃗,
the parameter bindings for q⃗ are identical to those in the local state L.

K(L, k⃗, q⃗ ←↩ q) iff (∀r ∈ q⃗ : (∃λ ∈ L,m ∈ λ[[]] : m ∋ k⃗ ←↩ k and m ∋ r ←↩ r))

Consider a parameter r ∈ q⃗. For r to be known, its determinant must be a subset of q⃗ ∩ k⃗, and
its binding must be present in some message m with the same key bindings k⃗ ←↩ k in the contents
of some relation λ[[]].

Definition 6 (Unknown bindings). The primitive U(L, k⃗ ←↩ k, q⃗) verifies if, given the key bindings,
the q⃗ parameters have no bindings in the local state L.

U(L, k⃗ ←↩ k, q⃗) iff (∀r ∈ q⃗ : (∀λ ∈ L : (∄m ∈ λ[[]] : m ∋ k⃗ ←↩ k and m ∋ r ←↩ r)))
19

That is, for each parameter in q⃗, no message m with the same key bindings in the contents of
any relation λ[[]] must have a binding for that parameter.

Definition 7 (Consistent bindings). The primitive C(L, k⃗, q⃗ ←↩ q) verifies if the stated parameter
bindings are compatible with the local state L.

C(L, k⃗, q⃗ ←↩ q) iff (∀r ∈ q⃗, λ ∈ L,m ∈ λ[[]], s : if m ∋ k⃗ ←↩ k and m ∋ r ←↩ s then s = r)

That is, for each parameter in q⃗, no message m with the same key bindings in any relation
contents λ[[]] has a different binding for that parameter. An absent binding is acceptable.

5.5. Operational Semantics
The style of the semantic description we adopt here is called (structural) operational semantics

[28]. Specifically, like Vieira et al. [24], our presentation matches the notion of a labeled transition
system [28, p. 24] where the set of configurations is given by multiagent system configurations
(Definition 11), the labels or actions are given by the actions of an agent emitting or receiving
a message, and the transition relation is given by the progression of one system configuration to
another (Definition 12). Our focus on message emission and reception is likewise in congruence
with Plotkin’s advice that “It is a matter of experience to choose the right definition of external
behavior” [28, p. 20].

Our semantics shows how BDI constructs can be adapted to incorporate information protocols.
Definition 8 captures an agent configuration emphasizing what is needed for communication.

Definition 8 (Agent configuration). The configuration of an agent ag is a tuple ⟨L,C, T,Step⟩,
where L = agL is ag’s local state, C = agC is ag’s circumstance, T = agT is ag’s temporary
information, and Step is ag’s current step.

Definition 9 characterizes a multiagent system and Definition 10 describes how a multiagent
system enacts a protocol.

Definition 9 (Multiagent system). A multiagent system for P is given by ⟨Agents,Channels⟩,
where Agents is a set of agents and Channels is a set of channels, each channel being Zs,r, where
s, r ∈ Agents and s ̸= r.

Definition 10 characterizes a MAS for a protocol: a MAS must assign agents to all of the protocol
roles, and have the channels between the assigned agents that are necessary for sending all of its
messages.

Definition 10 (System for protocols). Let P be a protocol and MAS = ⟨Agents,Channels⟩ be a
multiagent system. Let Roles be the set of roles such that x ∈ R iff x appears as sender or receiver
in some schema of Λ(P). Then, MAS is a multiagent system for P provided there is a function
Assign, where Assign : Roles → ℘(Agents) is a total and injective function, and if there exists a
schema in Λ(P) with sender Sender and receiver Receiver, then there is a corresponding channel
from the agent Assign(Sender) to every agent in Assign(Receiver).

Definition 11 defines a configuration for a multiagent system based on the configurations of its
member agents and the contents of the communication channels between them.

20

Definition 11 (System configuration). Let MAS = ⟨{ag0 . . . agn}, {Zs0,r0 . . .Zsc,rc}⟩ be a multia-
gent system. Then, a configuration for MAS is given by:

⟨{⟨L0, C0, T0, Step0⟩ . . . ⟨Ln, Cn, Tn,Stepn⟩},Zs0,r0 . . .Zsc,rc⟩

For ease of exposition, it helps to show how reasoning in Argus relates to the Jason reasoning
cycle. Figure 4 shows the Jason reasoning cycle highlighting the parts (squiggly red transitions)
relevant to our semantics.

ProcMsg SelEv RelPl ApplPl SelAppl

AddIMSelIntExecIntClrInt

Figure 4: Argus reasoning related to the Jason reasoning cycle. This diagram highlights the two transitions pertaining
to communication, which correspond to communication-related transitions in Jason for emitting and receiving a
message. The communication-related transition in Jason corresponding to a blocking emission waiting for a reply
(shown dashed) is eliminated in Argus.

An agent’s configuration may change according to the Jason reasoning cycle (the blue, solid
transitions in Figure 4). These configuration changes are not important in the Argus semantics.
The remaining configuration changes (shown as squiggly red transitions in Figure 4) correspond to
the emission or reception of a message, which, in each case, also changes the requisite channel.

Definition 12 describes that a multiagent system’s configuration progresses whenever an agent’s
configuration changes due to the emission or reception of a message, which, in each case, also changes
the requisite channel to which the message is emitted or from which the message is received.

Definition 12 (Progression).

⟨{⟨L0, C0, T0, Step0⟩ . . . ⟨Ln, Cn, Tn, Stepn⟩},Zs0,r0 . . .Zsc,rc⟩ −→

⟨{⟨L′
0, C

′
0, T

′
0, Step

′
0⟩ . . . ⟨L′

n, C
′
n, T

′
n,Step

′
n⟩},Z′

s0,r0 . . .Z
′
sc,rc⟩

such that there exist i and x such that Li ̸= L′
i and either Zi,x ̸= Z′

i,x or Zx,i ̸= Z′
x,i.

Notice that Definition 12 admits concurrency in that there could be two (or more) agents sending
or receiving messages at the same time as long as they send and receive from channels that change.
The definition prevents lockstep sending and receiving of a message. For example, if Alice sends
Bob a message and Bob receives the message at the same time, Alice and Bob’s local states would
change but the channel from Alice to Bob that Alice sent the message to and which Bob received
that message from would remain net unchanged. In BSPL, the causal intuition is crucial, meaning
that sends causally precede receives, and thus do not occur concurrently. Therefore, we require a
channel to first gain a message (through an emission) and only subsequently to lose that message
(through a reception).

In Argus, sending is nonblocking and receptions are always enabled and nondeterministic. Point-
to-point channels (Section 5.2) convey messages from the emitter to the receiver. The emitter or

21

receiver’s configuration changes in conjunction with changes to the relevant channel. Nothing else
changes in the multiagent system so we leave it out for brevity.

The Argus semantics requires only two rules to describe communication, one for message emis-
sion and one for message reception, because message emission and reception are the only two actions
in our model of interaction between agents. The rules below provide the elements of the structure of
the transitions as characterized by Definition 12 and thus flesh out the progression of a multiagent
system.

Let’s briefly explain how to read each of these operational rules. On the left of the horizontal
line is a name for the rule describing its purpose in our semantics. Below the horizontal line is a
statement of a transition from a prior agent configuration defined abstractly (using metavariables
L, C, and so on) to a posterior agent configuration defined abstractly. Above the horizontal line is
a set of assertions that impose some constraints on the metavariables occurring below the line in
the prior agent configuration. These assertions must hold before the rule fires for the corresponding
values of the metavariables. That is, they characterize the prior agent configuration. The where
statements below the transition define the metavariables occurring below the line in the posterior
agent configuration.

5.5.1. Message Emission
Given a protocol P , an agent in its ExecInt step executes an intention whose first part is to emit

a message instance. We perform two tests for a message instance using its message schema and the
local state: (1) the bindings of its ⌜in⌝ parameters are known in the local state, and (2) no bindings
for its ⌜out⌝ and ⌜nil⌝ parameters are known in the agent’s local state.

Emit

Tι = i[head← .emit(λ[ag , j, p⃗←↩ p]);h] λ[x, y, p⃗K , p⃗I , p⃗O, p⃗N] ∈ Λ(P)
K(L, [p⃗K ∩ p⃗I], [p⃗I ←↩ pI]) U(L, [p⃗K ∩ p⃗I ←↩ pK ∩ pI], [p⃗O, p⃗N])

⟨L,C, T,ExecInt⟩,Zag,j −→ ⟨L′, C ′, T,ClrInt⟩,Z′
ag,j

where :
L′ = L+ λ[[ag , j, p⃗←↩ p]]
C ′
I = (CI \ {Tι}) ∪ {i[head← h]}

Z ′ = Z ∪ {λ[[ag , j, p⃗←↩ p]]}

Upon emitting the message, the agent advances as follows. One, it consumes its current inten-
tion, replaces it with the residual intention, and moves to the ClrInt step. Two, it updates its local
state to record the bindings of the emitted message in the corresponding relation. Simultaneously
with the update, it adds the emitted message to the appropriate channel.

5.5.2. Message Reception
When the agent is in its ProcMsg step and a message is available in some incoming channel,

it may receive the message. For the reception to proceed, we verify if the bindings are compatible
with the agent’s local state. Given a safe protocol and trustworthy agents, this compatibility check
is redundant but we include it as good practice.

Upon receiving a message, if it passes the compatibility check, the agent advances as follows.
One, it updates its local state to record the bindings of the received message in the corresponding
relation. Two, it creates an event for those local state updates. Simultaneously, it removes the
received message from the channel.

22

Receive
λ[i, ag , p⃗←↩ p] ∈ Zi,ag λ[x, y, p⃗K , p⃗I , p⃗O, p⃗N] ∈ Λ(P) C(L, p⃗K , p⃗←↩ p)

⟨L,C, T,ProcMsg⟩,Zi,ag −→ ⟨L′, C ′, T,SelEv⟩,Z′
i,ag

where :
L′ = L+ λ[[i, ag , p⃗←↩ p]]
C ′
E = (CE ∪ {+⟨λ[[i, ag , p⃗←↩ p]],⊤⟩}
Z ′ = Z \ {λ[[i, ag , p⃗←↩ p]]}

If a message fails the compatibility check, for convenience, we “discard” it by leaving it in the
channel. Because channels are unordered sets of messages, leaving a message in a channel does not
block other messages in the channel from reception.

We dispense with Jason’s selection (SM) and social acceptability (SocAcc) functions—see its
Tell rule (p. 244). The receiver doesn’t select or reorder incoming messages. Section 6.5 describes
the benefits accruing to our approach due to its avoiding the selection and social acceptability
functions.

6. Contrasting Argus with Communication in a Plain BDI Approach

Argus modifies a plain BDI approach by introducing communication protocols as explained
above. Now we compare Argus with a plain BDI approach to make the case for the benefit of a
careful treatment of agent communication protocols in the engineering of multiagent systems.

As explained above, we use Jason as the exemplar BDI approach with which to compare Argus.
Jason’s communication language is KQML [22] and Jason’s operations are based on a blackboard
architecture, as in tuplespaces [29]. These design choices prove to be limiting, as we explain below.

6.1. Summary of Jason’s Operational Semantics for Communications
To effectively compare Argus with a traditional BDI approach with respect to communication,

it helps to bring out and explain the key part of Jason’s operational semantics. Section 5.1 provides
essential information to understand the rest of this subsection.

There are only two rules in the Jason semantics relevant to sending messages: one for Ask (and
variants) and one for all the other illocutionary forces. Below is the rule called ExecActSndAsk
from Vieira et al. [24, p. 241].

ExecActSndAsk
Tι = i[head← .send(rid, ilf , cnt);h] ilf ∈ {AskIf ,AskAll ,AskHow}

⟨ag , C,M, T,ExecInt⟩ −→ ⟨ag , C ′,M ′, T,ProcMsg⟩

where :

M ′
Out = MOut ∪ {⟨mid , id, ilf , cnt⟩}
M ′

SI = MSI ∪ {(mid , i[head← h])},
with mid a new message identifier;

C ′
I = (CI \ {Tι})

In the above rule, the current intention is a plan to send a message of one of the Ask messages
followed by a plan h to work on the response. The rule puts the message in the outbox. It removes
the current intention from the circumstance but places the latter part of the suspended current
intention by setting up a trigger so that when a response message arrives (of a matching mid) it

23

would execute the residual plan h when that response arrives. ProcMsg is the step to process the
response messages that would arrive.

Below is the rule called ExecActSnd from Vieira et al. [24, p. 242], for sending messages of
other illocutionary forces besides Ask . This rule is simpler than the one above because it doesn’t
wait for a response. Therefore, the next step is not ProcMsg as above, but ClrInt.

ExecActSnd
Tι = i[head← .send(rid, ilf , cnt);h] ilf ̸∈ {AskIf ,AskAll ,AskHow}

⟨ag , C,M, T,ExecInt⟩ −→ ⟨ag , C ′,M ′, T,ClrInt⟩

where :
M ′

Out = MOut ∪ {⟨mid , id, ilf , cnt⟩}
with mid a new message identifier;

C ′
I = (CI \ {Tι}) ∪ {i[head← h]}

Below is the rule called Tell from Vieira et al. [24, p. 244], for receiving a Tell message. This
rule assumes a function SM to decide which message in MIn to consider based on the priority
assigned by a programmer. The rule also assumes a function SocAcc, which applies social reasoning
to determine which action to take given the “social acceptability” of the message.

Tell

SM (MIn) = ⟨mid , id,Tell , Bs⟩
(mid , i) ̸∈MSI for any intention i SocAcc(id,Tell , Bs)

⟨ag , C,M, T,ProcMsg⟩ −→ ⟨ag , C ′,M ′, T,SelEv⟩

where :

M ′
In = MIn \ {⟨mid , id,Tell , Bs⟩}

for each b ∈ Bs:
ag′bs = agbs + b[id]
C ′
E = CE ∪ {⟨+b[id],⊤⟩}

Below is Jason’s MsgExchg rule (p. 242) that describes how the configuration of a multiagent
system progresses given how the configurations of the agents in the system progress when one of
the agents sends a message to another agent.

MsgExchg
⟨mid , idj , ilf , cnt⟩ ∈Mi,Out

{ag id1 . . . ag i . . . ag idj . . . ag idn , env} −→ {ag id1 . . . ag
′
i . . . ag

′
idj

. . . ag idn , env}

where :
M ′

i,Out = Mi,Out \ {⟨mid , idj , ilf , cnt⟩ ∈Mi,Out}
M ′

j,In = Mj,In ∪ {⟨mid , idi, ilf , cnt⟩ ∈Mj,In}

Below is Jason’s NoMsg rule (p. 249) that describes that an agent may proceed from its
ProcMsg step when no message is present in its inbox.

NoMsg
MIn = { }

⟨ag , C,M, T,ProcMsg⟩ −→ ⟨ag , C,M, T,SelEv⟩

24

6.2. Fixed Message Types and Meanings
KQML features a predetermined set of message types. A fixed set of message types (and

associated meanings) is unnecessarily limiting because meaning arises from the application domain.
There is no way that the designers of KQML (or any language) could anticipate all possible meanings
[30, Singh’s essay, pp. 15–16]. For example, a price supplied for an item may have these meanings:
(1) offer to sell at that price, as in e-commerce; (2) report of a recent transaction, as in stock
markets; (3) current bid; (4) predicted price for a security, as in an analyst’s report. In practice,
therefore, programmers simply use the Tell primitive as a transport wrapper and hope the meaning
is clear from the payload. That is, the message type carries no practical information. Hence, there
is no support for programmers to express the meanings of relevance to the application. Vanderveken
[31, ch. 6] discusses 70 English assertives, 32 commissives, 56 directives, 85 declaratives, and 28
expressives. What KQML did was take an ad hoc variation of one categorization of speech acts
and adopt one construct per category.

Argus dispenses with KQML primitives, such as Ask and Tell , which are central to Jason’s com-
munication model. Instead, Argus simply provides a generic primitive to emit whatever application-
specific messages are specified in the protocol. A message can be understood in illocutionary [23, 32]
terms as follows. The ⌜in⌝ parameters in a message together with the ⌜key⌝ parameters can be un-
derstood as forming an informative and the ⌜out⌝ parameters together with the ⌜key⌝ parameters
can be understood as forming a declarative.

In general, the application meaning of a message can be made explicit via representations such
as those based on commitments and other norms [33, 34]. For example, an offer message may be
modeled as creating a practical commitment and a prediction message may be modeled as creating
a dialectical commitment [35]. Although such representations are out of scope for this paper,
application-specific communications provide the basis for capturing them, in contrast to KQML
primitives such as Tell .

An important point is that the BSPL semantics provides precise computational interpretations
for the parameter adornments (⌜in⌝, ⌜out⌝, and ⌜nil⌝). These interpretations are supported and
enforced by the Argus architecture and are not left up to the decision making of an agent. In
contrast, BSPL has nothing to say about commitments or other norms. Thus, how agents process
the meanings of the messages they exchange is captured in some other way, e.g., in higher-level
protocols, which are not within the scope of the present paper.

6.3. Request-Response Communication
When a Jason agent sends some variant of the Ask message type using the ExecActSndAsk

rule, the Jason reasoning cycle transitions from ExecInt (where the message emission occurs) to
ProcMsg (where the agent processes an incoming message, in this case, the reply) before continuing
with that intention. That is, an intention is suspended upon sending the message until a matching
reply arrives. In essence, this represents a BDI encoding of remote-procedure calls, a pattern from
client-server computing that is well-known to be inapplicable where autonomous agents interact.

Argus does not use the ExecActSndAsk rule, instead replacing all message emissions with
the single Emit rule, which is asynchronous—i.e., it does not wait for a reply. Thus, the Argus
reasoning cycle always goes from ExecInt to ClrInt during emission.

Clearly, there could be cases where an agent must wait until it receives some information: pro-
tocols provide a simple way to express such dependencies and Argus supports enacting them. The
design limitation is that Jason enshrines the two-party request-response pattern in its semantics

25

whereas real-life communications are not always so constrained. For example, three-party interac-
tions are common (as Listing 4 shows, in our running example, Professor sends a message to
Student, who sends a response to TA). Jason’s selection of the two-party request-response pattern
as special may have been motivated by adherence to KQML rather than any fundamental principle.

Figure 4 shows the reasoning cycle for an Argus agent, which is identical to Jason’s reasoning
cycle except for the removal of the path between ExecInt and ProcMsg (which is still drawn, but as
a dashed line to highlight which transition was removed).

6.4. Correlation by Syntactic Identifiers
Argus’ programming model takes advantage of keys in BSPL to correlate information, as List-

ing 7 illustrates. The order in which the rubric and response for a given question are received is
unimportant because they are guarded and matched based on the enactment keys, TID and QID.
Crucially, the keys come from the application domain and, therefore, are semantic in nature. From
the point of view of implementation, Argus benefits from the logic programming model underlying
Jason, which can accommodate semantic identifiers.

By contrast, Jason’s communication model lacks semantic identifiers. This means that identifiers
and correlation must be implemented in agents in ad hoc ways, leading to tight coupling between
agents [15]. An identifier mid as used in ExecActSndAsk and other rules is defined as a message
identifier but is used as a conversation identifier, i.e., for correlation, since it is reused by a response
message. Such identifiers are “syntactic” because they are unrelated to the application domain.

Chopra and Singh [36] classify the use of such identifiers as a semantic antipattern because by
artificially compartmentalizing elements of the application state, such identifiers block necessary
semantic inference. Drawing upon Chopra and Singh’s example, commitment reasoning, which is
at a higher level than Jason’s conversations, would not work on a store of messages in Jason. By
contrast, commitment reasoning works naturally on top of the local state [18, 15]. One might insert
semantic keys in the payload of a Jason (i.e., KQML) message. Whereas, in general, inserting
semantic keys would be an improvement, it would mean we would have two standards of keys and
still no support from the architecture.

Further, a single identifier such as mid is inadequate for modeling subconversations [15]. In
terms of our running example, every challenge in a test may be thought of as a subconversation.

6.5. Hidden Dependencies via External Functions
Jason’s selection SM and social acceptability SocAcc are hidden functions in the sense that

neither SM nor SocAcc is based on the state of the receiving agent, as captured by its beliefs. SM is
a function of the inbox of the agent. Thus, it presumably has access to the messages in the inbox.
Each incoming message is given by a four-tuple ⟨mid , id , ilf , cnt⟩, where mid is a message identifier,
id identifies the sending agent, ilf is the illocutionary force of the message (e.g., Tell), and cnt is
its content (such as assertions being) [24, p. 241]. SocAcc is a function of the body of a message,
i.e., everything except its message identifier, mid . Since they are not based on the receiving agent’s
state, it’s unclear how these functions can reasonably be computed. It appears they are hardcoded,
if used at all.

SM and SocAcc go against the BDI paradigm. Relying on them means that the receiver’s
beliefs do not reflect its information about the world because some of the state is hidden in the
outcomes of these functions. In essence, the receiving agent’s behavior is not characterized by its
beliefs and intentions. SM and SocAcc also go against interaction orientation by capturing part of

26

the interaction while being internal to an agent. These functions thus form hidden dependencies
between agents by coupling their internals so that the multiagent system progresses as desired.

In general, as a physical system, the agent knows [37] that a message has arrived because the
agent has performed computations based on it. Omitting the knowledge of a message from the
agent’s beliefs is not only an exercise in self-deception but also enables antipatterns in multiagent
architecture [15]. In addition, external functions such as SM and SocAcc exacerbate complexity
for the programmer since the agent’s control state is split between these functions and the agent’s
intentions. The two representations must be constantly reconciled.

An Argus agent also processes messages available for reception—as encoded in the Receive
rule—before making them part of the agent’s belief base (specifically, its local state). However,
whereas Jason’s SM and SocAcc are intended to capture an agent’s decision making, the processing
in the Receive encodes protocol semantics, not an agent’s decision making.

6.6. Tackling Prioritization and Social Acceptability in Argus
We emphasize that prioritization and social acceptability are valuable capabilities for an agent.

For example, a merchant may prioritize shipping goods based on its inventory and may offer dis-
counts or credits to customers of long standing. With Argus, priorities and social relationships are
readily captured using beliefs and plans, as Listing 13 demonstrates. Notably, Bordini and Hübner
[10][p. 244] indeed note the possibility of capturing social constraints using practical reasoning as
an alternative to SocAcc.

Listing 13: Prioritizing TA in Argus.

1 s t uden t (" s1 " , 3) . // ID , y ea r
2 s t uden t (" s2 " , 4) .
3
4 r e v e r s e ([] , Z , Z) :− t r u e .
5 r e v e r s e ([H|T] , Z , Acc) :− r e v e r s e (T , Z , [H| Acc]) .
6
7 +re spon s e (MasID , Student , TA, TID , QID , Quest ion , Answer)
8 : r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n) <−
9 +ta sk (MasID , TID , QID , Answer , S o l u t i o n) .

10
11 +r u b r i c (MasID , P r o f e s s o r , TA, TID , QID , S o l u t i o n)
12 : r e s pon s e (MasID , Student , TA, TID , QID , Quest ion , Answer) <−
13 +ta sk (MasID , TID , QID , Answer , S o l u t i o n) .
14
15 +ta sk (MasID , TID , QID , Answer , S o l u t i o n)
16 : . count (t a s k (_, _, _, _, _) , C) & C = 6
17 <− ! p r i o r i t i z e (P) ;
18 ! work (P) .
19
20 +! work (P) <−
21 f o r (. member ([Year , TID , QID] , P)) {
22 t a s k (MasID , TID , QID , Ans , So l) ;
23 ! g rade (MasID , TID , QID , Ans , So l) ;
24 } .
25
26 +!map_year ([[TID , QID] | []] , P) : s t uden t (TID , Year) <−
27 P = [[Year , TID , QID]] .

27

28 +!map_year ([[TID , QID] | T] , P) : s t uden t (TID , Year) <−
29 ! map_year (T , P2) ;
30 P = [[Year , TID , QID] | P2] .
31
32 +! p r i o r i t i z e (P) <−
33 . f i n d a l l ([TID , QID] , t a s k (MasID , TID , QID , Ans , So l) , L) ;
34 ! map_year (L , L2) ;
35 . s o r t (L2 , L3) ;
36 r e v e r s e (L3 , P , []) .
37
38 +! grade (MasID , TID , QID , Answer , S o l u t i o n) <−
39 i f (Answer == So l u t i o n) {
40 . p r i n t (TID , QID , Answer , " matches " , S o l u t i o n) ;
41 Grade = 1 ;
42 } e l s e {
43 . p r i n t (TID , QID , Answer , " does not match " , S o l u t i o n) ;
44 Grade = 0 ;
45 }
46 . p r i n t (" Grade : " , Grade) ;
47 . emit (r e s u l t (MasID , TA, P ro f e s s o r , TID , QID , Answer , So l u t i on , Grade)) .

In Listing 13, the TA does not directly initiate a goal for grading results but instead creates
tasks that can be prioritized. Timofey waits until he has six available tasks before starting his work
(elided in the abridged version), so he can prioritize them using social constraints, namely student
seniority. Timofey prioritizes senior students (who may need to graduate or register for classes
earlier) by sorting the tasks according to the students’ years in college.

6.7. Synchronization via Shared Artifacts
Jason adopts the idea of a blackboard architecture for coordinating cooperative problem solvers

[38, 39]. Jason’s MsgExchg rule (p. 242) assumes synchronization since a message appears in the
sender and receiver’s configurations simultaneously.

Carriero and Gelernter [29, 40] describe tuplespaces, an approach for coordinating distributed
computation where agents read from and write on a shared space (i.e., a blackboard) to exchange
information. CArtAgO [41], which envisages Jason agents interacting through shared artifacts in
the environment, supports tuplespaces as a particular type of coordination artifact.

The main idea behind tuplespaces is separating coordination from computation—a major step
forward at the time. Common operations on tuplespaces include in(t), which blocks until it can take
a matching tuple (removing it from the tuplespace), rd which is like in but copies the tuple instead
of removing it, and out, which writes a tuple to the tuplespace. These operators create information
dependencies similar to the ⌜in⌝ and ⌜out⌝ parameter adornments of BSPL: an in cannot return
until the corresponding out completes. Although similar, there are significant conceptual differences,
most crucially that tuplespaces leave the relationships between operations on tuples up to the agent
implementations. Thus, an agent programmer must implement the correct sequence of tuplespace
operations without programming model support. Further, the programmers of different agents must
agree on their implementations for purposes of interoperability, thus compromising loose coupling.
BSPL avoids these problems by explicitly modeling parameter relationships in the message schemas
in protocols, which Argus exploits in a programming model that supports implementing agents.

Also, tuplespaces require an agent to select information to read for processing. As Section 6.5
explains, this approach places decision-making outside of the cognitive model of the agent.

28

Our semantics incorporates asynchrony in a shared-nothing setting (avoiding synchronization
primitives) [42] that enables agents to proceed in a maximally decoupled manner, constrained only
by the causal dependencies between the messages they send one another.

We note that some implementations of tuplespaces support nonblocking versions of in and rd ;
regardless, the points we make above remain valid.

6.8. Comparing the Programming Models
Jason doesn’t support communication protocols. Vieira et al. [24] state that “communication

structures” can be captured as plans (p. 253). However, plans are placed within agents. It is well
known that plans are not protocols, which are about interaction [3]. Moreover, adding protocols
to Jason is nontrivial because Jason’s design suffers from crucial limitations, which we described
above.

The use of protocols at the heart of a programming model in Argus facilitates the implementation
of agents by encoding the protocol-specific reasoning in the generated code and the protocol adapter,
enabling programmers to focus on the agent’s decision making. The generated code provides clear
points for plugging in the decision making and guides the implementation of agents so that they
attempt to emit only legal (enabled) messages. The agent’s adapter enforces all protocol constraints,
ensuring that its emissions and receptions accord with its local state. The adapter is crucial for
catching errors in agent implementations. In this manner, the generated code and the adapter
support correctness as well.

Argus supports interoperability and loose coupling. Therefore, beyond agreeing on the protocol
and developing agents to enact the respective roles in the protocol, the programmers do not need
to coordinate their design choices. The agents may be contributed by multiple programmers in
different organizations.

There is a small caveat though. The Argus adapter sends and received JSON-encoded messages
over UDP and materializes them as beliefs. As long as agents use the Argus adapter, interoperability
is guaranteed. However, if agents want to use different BSPL adapters, then standardizing on the
message encoding and transport becomes necessary. Such standardization would indeed be valuable.

In Argus, messages arrive nondeterministically, including when a response is expected to a
previous query. Moreover, Argus doesn’t have any use for suspended intentions to deal with requests
in progress because the local state is captured entirely in the parameter bindings. The internals of
an agent can function arbitrarily.

7. Case Study: HL7

We highlight the benefits of Argus by modeling a healthcare scenario specified by HL7, a health
standards body, as a UML activity diagram [43] (reproduced as Figure 9 in the Appendix). The
scenario describes the process for creating a lab order—that is, for a health care provider to request
collection of (or collect themselves) a sample from the patient and then perform lab work on the
sample. The scenario is flexible because there are three ways that samples could be collected. Thus,
there could be multiple ways to report that work is completed depending on the needs of the agents.
Our model involves four agents: Patient, Provider, Collector, and Laboratory. We elide
the interactions between these roles and their computer systems (which the original UML includes)
because we focus on interactions between autonomous parties. For the present study, we modeled
the scenario as an information protocol based on the formalization of Christie et al. [44] with some
corrections and simplifications. Listing 14 shows this protocol.

29

The main interaction is the CreateOrder protocol, which begins with Patient submitting a
complaint to Provider, who then communicates the need for lab work to Laboratory. The
interaction then branches into three possible protocols for sample collection: (1) the provider can
collect the sample themselves, (2) the provider can instruct the subject to visit the lab, who performs
the collection, (3) or the provider can instruct the subject to get an appointment with a third party
specialist who performs the collection.

Once the lab work has been performed, the lab communicates the results to the provider, either
directly or by notifying them that they are available for querying.

We have written a protocol adapting the workflow, focusing on the communication and flow
of information. Some of the other actions, such as transporting samples, are also adapted as
messages; these could be interpreted as notifications about the sample transfer instead of sending
digital samples only.

Listing 14: The main interaction flow of the HL7 Create Laboratory Order standard expressed in BSPL.

1 Crea teOrde r {
2 r o l e s Pa t i en t , P rov i de r , C o l l e c t o r , Labo ra to r y
3 pa ramete r s out ID key , out compla in t , out r e p o r t
4 p r i v a t e o rde r , c o l l e c t i o n , specimen , u n s u i t a b l e , r e c e i v e d , r e s u l t s ,

r e s u l t s −id , co−l o c a t i o n , contact , query , r eque s t , o rde r−query , o rde r−
r e s pon s e

5
6 Pa t i e n t 7→ Pro v i d e r : Complain [out ID , out comp la i n t]
7 Pro v i d e r 7→ Labo ra to r y : Ente rReques t [i n ID , i n compla in t , out o r d e r]
8
9 Pro v i d e r 7→ Labo ra to r y : Sh ip [i n ID , i n o rde r , out c o l l e c t i o n , out

spec imen]
10 Pro v i d e r 7→ Co l l e c t o r : NonP r o v i d e rCo l l e c t [i n ID , i n o rde r , out c o l l e c t i o n

, out co− l o c a t i o n]
11 Pro v i d e r 7→ Pa t i e n t : NeedAppointment [i n ID , i n o rde r , out c o l l e c t i o n , out

con t a c t]
12
13 Pa t i e n t 7→ Co l l e c t o r : Schedu l e [i n ID , i n contact , out co−l o c a t i o n , n i l

spec imen]
14 Co l l e c t o r 7→ Pro v i d e r : OrderQuery [i n ID , i n co−l o c a t i o n , n i l o rde r , out

o rde r−query]
15 Pro v i d e r 7→ Co l l e c t o r : OrderResponse [i n ID , i n o rde r−query , i n o rde r , out

o rde r−r e s pon s e]
16 Co l l e c t o r 7→ Labo ra to r y : Co l l e c tSpec imen [i n ID , i n o rde r , i n co−l o c a t i o n

, out spec imen]
17
18 Labo ra to r y 7→ Co l l e c t o r : N o t i f yUn s u i t a b l e [i n ID , i n o rde r , i n specimen ,

out u n s u i t a b l e]
19 Labo ra to r y 7→ Co l l e c t o r : No t i f yR e c e i v e d [i n ID , i n o rde r , i n specimen , out

r e c e i v e d]
20
21 Labo ra to r y 7→ Pro v i d e r : R e s u l t s [i n ID , i n o rde r , i n specimen , out r e s u l t s

]
22 Labo ra to r y 7→ Pro v i d e r : R e s u l t s A v a i l a b l e [i n ID , i n o rde r , i n specimen ,

out r e s u l t s −i d]
23

30

24 Pro v i d e r 7→ Labo ra to r y : Query [i n ID , i n r e s u l t s −id , out query]
25 Labo ra to r y 7→ Pro v i d e r : SendResu l t s [i n ID , i n r e s u l t s −id , i n query , out

r e s u l t s]
26
27 Pro v i d e r 7→ Pa t i e n t : A l l R e c e i v e d [i n ID , i n r e s u l t s , out r e p o r t]
28 }

The above listing gives the complete specification of the interaction. In this collection of actions,
Patient sends a complaint to Provider. Based on this complaint, Provider creates an order for
laboratory work and sends it to Laboratory. Then, one of the three methods for sample collection
are performed: the provider can collect the specimen, or they can delegate collection to Collector,
to be performed either immediately or at a later scheduled appointment. After the collection has
been performed, Laboratory may respond in several ways, notifying that they’ve received the
samples, possibly flagging them as unsuitable and requiring another collection, and returning results
either directly or via notification for retrieval. When all the work has been completed, Provider
sends the final results to Patient. Figures 5–7 demonstrate protocol enactments corresponding to
the three collection methods.

patient provider laboratory

Complain

EnterRequest
Ship

ResultsAvaila
ble

Query

SendResults

AllReceived

Figure 5: Possible Provider Collection enactment, with querying for results.

7.1. Role Skeletons
Our tooling generates the agent skeletons from the protocol. Specifically, Listings 15 and 16

respectively state the skeletons for roles Patient and Provider. The skeletons clearly indicate
where programmers need to plug in internal reasoning. In the absence of the protocol, as is currently
the case with Jason, a programmer would have no basis for structuring agents as such and would
have to figure out the entire agent design from scratch. (Generated skeletons for all roles are
available in the online code repository. In the light of Jason’s syntactic conventions, in the generated
code, Uppercase and CamelCase message names are automatically converted to lowercase names
with ‘_’ between component names and lowercase parameter names are automatically converted
into Uppercase names.)

31

patient provider collector laboratory

Complain

EnterRequest
NonProviderCollect

OrderQuery

OrderResponse

CollectSpecimen

NotifyReceive
d

Results

AllReceived

Figure 6: Possible Nonprovider Collection enactment.

patient provider collector laboratory

Complain

EnterRequest
NeedAppoint

ment

Schedule

OrderQuery

OrderResponse

CollectSpecimen

NotifyReceive
d

Results

AllReceived

Figure 7: Possible Scheduled Collection enactment.

32

Listing 15: Agent skeletons for role Patient automatically generated from the protocol of Listing 14.

1 +! send_complain
2 <− // i n s e r t code to compute Complain out pa ramete r s [’ ID ’ , ’ compla in t

’] h e r e
3 . emit (compla in (MasID , Pat i en t , P rov i d e r , ID , Compla int)) .
4
5 +need_appointment (MasID , P rov i d e r , Pa t i en t , ID , Order , C o l l e c t i o n , Contact

)
6 <− // i n s e r t code to compute Schedu l e out pa ramete r s [’ co− l o c a t i o n ’]

h e r e
7 . emit (s c h edu l e (MasID , Pat i en t , C o l l e c t o r , ID , Contact , CoLocat ion)) .

Listing 16: Agent skeleton for role Provider automatically generated from the protocol of Listing 14.

1 +compla in (MasID , Pat i en t , P rov i d e r , ID , Compla int)
2 <− // i n s e r t code to compute Ente rReques t out pa ramete r s [’ o rde r ’] h e r e
3 . emit (en t e r_r eque s t (MasID , P rov i d e r , Labora to ry , ID , Complaint , Order

)) .
4
5 +ent e r_reque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
6 : not non_prov i d e r_co l l e c t (MasID , P rov i de r , C o l l e c t o r , ID , Order ,

C o l l e c t i o n , CoLocat ion) & not need_appointment (MasID , P rov i d e r , Pa t i en t
, ID , Order , C o l l e c t i o n , Contact) & not r e s u l t s (MasID , Labora to ry ,
P rov i d e r , ID , Order , Specimen , R e s u l t s) & not r e s u l t s _ a v a i l a b l e (MasID ,
Labora to ry , P rov i de r , ID , Order , Specimen , R e s u l t s I d)

7 <− // i n s e r t code to compute Sh ip out pa ramete r s [’ c o l l e c t i o n ’ , ’
spec imen ’] he r e

8 . emit (s h i p (MasID , P rov i d e r , Labora to ry , ID , Order , C o l l e c t i o n ,
Specimen)) .

9
10 +ent e r_reque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
11 : not s h i p (MasID , P rov i de r , Labora to ry , ID , Order , C o l l e c t i o n , Specimen)

& not need_appointment (MasID , P rov i de r , Pa t i en t , ID , Order , C o l l e c t i o n
, Contact) & not order_query (MasID , Co l l e c t o r , P rov i d e r , ID , CoLocat ion
, OrderQuery)

12 <− // i n s e r t code to compute NonP ro v i d e rCo l l e c t out pa ramete r s [’ co−
l o c a t i o n ’ , ’ c o l l e c t i o n ’] h e r e

13 . emit (non_prov i d e r_co l l e c t (MasID , P rov i d e r , C o l l e c t o r , ID , Order ,
C o l l e c t i o n , CoLocat ion)) .

14
15 +ent e r_reque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
16 : not s h i p (MasID , P rov i de r , Labora to ry , ID , Order , C o l l e c t i o n , Specimen)

& not non_prov i d e r_co l l e c t (MasID , P rov i d e r , C o l l e c t o r , ID , Order ,
C o l l e c t i o n , CoLocat ion)

17 <− // i n s e r t code to compute NeedAppointment out pa ramete r s [’ c o l l e c t i o n
’ , ’ contact ’] h e r e

18 . emit (need_appointment (MasID , P rov i de r , Pa t i en t , ID , Order ,
C o l l e c t i o n , Contact)) .

19
20 +order_query (MasID , C o l l e c t o r , P rov i de r , ID , CoLocat ion , OrderQuery)
21 : e n t e r_r eque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
22 <− ! send_order_response (MasID , P rov i de r , C o l l e c t o r , ID , OrderQuery ,

33

Order) .
23
24 +ent e r_reque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
25 : o rder_query (MasID , C o l l e c t o r , P rov i de r , ID , CoLocat ion , OrderQuery)
26 <− ! send_order_response (MasID , P rov i de r , C o l l e c t o r , ID , OrderQuery ,

Order) .
27
28 +! send_order_response (MasID , P rov i d e r , C o l l e c t o r , ID , OrderQuery , Order)
29 <− // i n s e r t code to compute OrderResponse out pa ramete r s [’ o r d e r−

r e sponse ’] h e r e
30 . emit (o rde r_re sponse (MasID , P rov i de r , C o l l e c t o r , ID , OrderQuery ,

Order , OrderResponse)) .
31
32 +r e s u l t s _ a v a i l a b l e (MasID , Labora to ry , P rov i d e r , ID , Order , Specimen ,

R e s u l t s I d)
33 <− // i n s e r t code to compute Query out pa ramete r s [’ query ’] h e r e
34 . emit (query (MasID , P rov i d e r , Labora to ry , ID , R e s u l t s I d , Query)) .
35
36 +r e s u l t s (MasID , Labora to ry , P rov i de r , ID , Order , Specimen , R e s u l t s)
37 <− // i n s e r t code to compute A l l R e c e i v e d out pa ramete r s [’ r e po r t ’] h e r e
38 . emit (a l l _ r e c e i v e d (MasID , P rov i d e r , Pa t i en t , ID , Re su l t s , Report)) .
39
40 +send_r e s u l t s (MasID , Labora to ry , P rov i de r , ID , R e s u l t s I d , Query , R e s u l t s)
41 <− // i n s e r t code to compute A l l R e c e i v e d out pa ramete r s [’ r e po r t ’] h e r e
42 . emit (a l l _ r e c e i v e d (MasID , P rov i d e r , Pa t i en t , ID , Re su l t s , Report)) .

7.2. Agents
Patient-1 is an agent that implements role Patient by fleshing out the skeleton in Listing 15.

Listing 17: Patient-1, an agent playing role Patient.

1 ! send_complain .
2 +! send_complain
3 <− MAS = "main " ;
4 ID = 1 ;
5 Compla int = "My toe hu r t s . " ;
6 . p r i n t (" Compla in ing : " , Compla int) ;
7 . emit (compla in (MAS, Pat i en t , P rov i d e r , ID , Compla int)) .
8
9 +need_appointment (MasID , P rov i d e r , Pa t i en t , ID , Order , C o l l e c t i o n , Contact

)
10 <− CoLocat ion = " l ab 4 " ;
11 . emit (s c h edu l e (MasID , Pat i en t , C o l l e c t o r , ID , Contact , CoLocat ion ,

Specimen)) .
12
13 +a l l_ r e c e i v e d (MasID , P rov i d e r , Pa t i en t , ID , Re su l t s , Report)
14 <− . p r i n t (Report) .

As shown above, completing the agent specification is as simple as binding the identified out
parameters. This can be as simple as setting them to a constant, or could involve more complex
logic that selects the values based on the bindings of other parameters. The Argus protocol adapter
automatically manages the beliefs corresponding to message observations, triggering these goals

34

when their message is received. The skeleton generator applies heuristics to decide when it is likely
or possible to emit the messages, as shown above.

Listing 18: Provider-1, an agent playing the Provider role.

1 +compla in (MasID , Pat i en t , P rov i d e r , ID , Compla int)
2 <− Order = " Order 0001" ;
3 . emit (en t e r_r eque s t (MasID , P rov i d e r , Labora to ry , ID , Complaint , Order

)) .
4
5 +ent e r_reque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
6 : not s h i p (MasID , P rov i de r , Labora to ry , ID , Order , C o l l e c t i o n , Specimen)

& not need_appointment (MasID , P rov i de r , Pa t i en t , ID , Order , C o l l e c t i o n
, Contact) & not order_query (MasID , Co l l e c t o r , P rov i d e r , ID , CoLocat ion
, OrderQuery)

7 <− . r a n d i n t (1 , 3 , Method) ;
8 i f (Method == 1) {
9 C o l l e c t i o n = " p r o v i d e r " ;

10 Specimen = " Specimen 0000" ;
11 . emit (s h i p (MasID , P rov i de r , Labora to ry , ID , Order , C o l l e c t i o n ,

Specimen)) ;
12 } ;
13 i f (Method == 2) {
14 C o l l e c t i o n = "non−p r o v i d e r " ;
15 CoLocat ion = "on− s i t e " ;
16 . emit (non_prov i d e r_co l l e c t (MasID , P rov i d e r , C o l l e c t o r , ID , Order ,

C o l l e c t i o n , CoLocat ion)) ;
17 } ;
18 i f (Method == 3) {
19 C o l l e c t i o n = " appo intment " ;
20 Contact = " Labo ra to r y " ;
21 . emit (need_appointment (MasID , P rov i d e r , Pa t i en t , ID , Order ,

C o l l e c t i o n , Contact)) ;
22 } .
23
24 +order_query (MasID , C o l l e c t o r , P rov i de r , ID , CoLocat ion , OrderQuery)
25 : e n t e r_r eque s t (MasID , P rov i de r , Labora to ry , ID , Complaint , Order)
26 <− OrderResponse = " responded " ;
27 . emit (o rde r_re sponse (MasID , P rov i de r , C o l l e c t o r , ID , OrderQuery ,

Order , OrderResponse)) .
28
29 +r e s u l t s _ a v a i l a b l e (MasID , Labora to ry , P rov i d e r , ID , Order , Specimen ,

R e s u l t s I d)
30 <− Query = " get r e s u l t s " ;
31 . emit (query (MasID , P rov i d e r , Labora to ry , ID , R e s u l t s I d , Query)) .
32
33 +r e s u l t s (MasID , Labora to ry , P rov i de r , ID , Order , Specimen , R e s u l t s)
34 <− ! r e p o r t (MasID , P rov i de r , Pa t i en t , ID , R e s u l t s) .
35 +send_r e s u l t s (MasID , Labora to ry , P rov i de r , ID , R e s u l t s I d , Query , R e s u l t s)
36 <− ! r e p o r t (MasID , P rov i de r , Pa t i en t , ID , R e s u l t s) .
37
38 +! r e p o r t (MasID , P rov i d e r , Pa t i en t , ID , R e s u l t s)
39 <− Report = " Nega t i v e " ;

35

40 . emit (a l l _ r e c e i v e d (MasID , P rov i d e r , Pa t i en t , ID , Re su l t s , Report)) .

The completed implementation (Provider-1) in Listing 18 shows several common patterns. First,
multiple branches are folded into one goal, selected by appropriate conditional logic. Second, some
of the branches that result in emitting the same message are refactored to trigger a common goal
that handles that emission, reducing redundancy.

7.3. Eexcution Trace
Listing 19 shows an enactment generated upon launching the implemented agents in a shell.

Listing 19: Enactment Trace

1 Pat i en t −1 Compla in ing : My toe hu r t s .
2 2024 −06 −18 17:01:25 , 365 (Pat i en t −1) : Sent : Complain (ID=1.0 , comp la i n t=’My

toe hu r t s . ’) { system=’main ’ }
3 2024 −06 −18 17:01:25 , 366 (P rov i d e r −1) : Rece i v ed : Complain (ID=1.0 ,

comp la i n t=’My toe hu r t s . ’) { system=’main ’ , r e c e i v e d=date t ime . da t e t ime
(2 0 24 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 6 6 037) }

4 2024 −06 −18 17:01:25 , 367 (P rov i d e r −1) : Sent : Ente rReques t (ID=1.0 ,
comp la i n t=’My toe hu r t s . ’ , o r d e r =’Order 0001 ’) { system=’main ’ }

5 2024 −06 −18 17:01:25 , 368 (Labora to ry −1) : Rece i v ed : Ente rReques t (ID=1.0 ,
comp la i n t=’My toe hu r t s . ’ , o r d e r =’Order 0001 ’) { system=’main ’ , r e c e i v e d=
date t ime . da t e t ime (2 024 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 6 8093) }

6 2024 −06 −18 17:01:25 , 368 (P rov i d e r −1) : Sent : Sh ip (ID=1.0 , o r d e r =’Order
0 001 ’ , c o l l e c t i o n =’ p r o v i d e r ’ , spec imen=’Specimen 0000 ’) { system=’main ’ }

7 2024 −06 −18 17:01:25 , 369 (Labora to ry −1) : Rece i v ed : Sh ip (ID=1.0 , o r d e r =’
Order 0 001 ’ , c o l l e c t i o n =’ p r o v i d e r ’ , spec imen=’Specimen 0000 ’) { system=’
main ’ , r e c e i v e d=date t ime . da te t ime (2 0 24 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 6 9573) }

8 Labora to ry −1 4
9 2024 −06 −18 17:01:25 , 370 (Labora to ry −1) : Sent : No t i f yR e c e i v e d (ID=1.0 ,

o r d e r =’Order 0 001 ’ , spec imen=’Specimen 0000 ’ , r e c e i v e d =’ r e c e i v e d ’) {
system=’main ’ }

10 2024 −06 −18 17:01:25 , 371 (Labora to ry −1) : Sent : R e s u l t s (ID=1.0 , o r d e r =’
Order 0 001 ’ , spec imen=’Specimen 0000 ’ , r e s u l t s =’ nega t i v e ’) { system=’main
’ }

11 2024 −06 −18 17:01:25 , 371 (Co l l e c t o r −1) : Rece i v ed : No t i f yR e c e i v e d (ID=1.0 ,
o r d e r =’Order 0 001 ’ , spec imen=’Specimen 0000 ’ , r e c e i v e d =’ r e c e i v e d ’) {
system=’main ’ , r e c e i v e d=date t ime . da t e t ime
(2 0 24 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 7 1 099) }

12 2024 −06 −18 17:01:25 , 371 (P rov i d e r −1) : Rece i v ed : R e s u l t s (ID=1.0 , o r d e r =’
Order 0 001 ’ , spec imen=’Specimen 0000 ’ , r e s u l t s =’ nega t i v e ’) { system=’main
’ , r e c e i v e d=date t ime . da te t ime (2 0 24 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 7 1511) }

13 2024 −06 −18 17:01:25 , 372 (P rov i d e r −1) : Sent : A l l R e c e i v e d (ID=1.0 , r e s u l t s =’
nega t i v e ’ , r e p o r t =’Negat ive ’) { system=’main ’ }

14 2024 −06 −18 17:01:25 , 372 (Pat i en t −1) : Rece i v ed : A l l R e c e i v e d (ID=1.0 ,
r e s u l t s =’ nega t i v e ’ , r e p o r t =’Negat ive ’) { system=’main ’ ,

15 r e c e i v e d=date t ime . da t e t ime (2 024 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 7 2754) }
16 Pat i en t −1 Nega t i v e

7.4. Pure Jason Implementation
In contrast with the above automatically-generated skeletons and their implementations, we

have also implemented a Jason version of the MAS directly from HL7 specifications, that is, without

36

the benefit of the Argus protocol-based approach.

Listing 20: Agent Patient-2 in Jason that captures same functionality as the Argus Patient-1 (Listing 17).

1 comp la i n t (1 , " stomach pa in ") .
2 comp la i n t (2 , " in somn ia ") .
3 comp la i n t (3 , " f e v e r ") .
4 comp la i n t (4 , " s k i n l e s i o n ") .
5
6 ! r e g i s t e r .
7 +! r e g i s t e r <− . d f_ r e g i s t e r (p a t i e n t) .
8
9 ! s t a r t .

10
11 +! s t a r t <−
12 . d f_search (p r o v i d e r , P r o v i d e r) ;
13 f o r (comp la i n t (ID , Symptom)) {
14 // 1 . 1 Pa t i e n t P r e s e n t s w i th Compla int
15 . send (P rov i d e r , t e l l , c omp la i n t (ID , Pat i en t , Symptom)) ;
16 . p r i n t (" Complained to " , P rov i de r , " : " , Symptom) ;
17 } .
18
19 +complete (ID) <−
20 . p r i n t (" A l l o r d e r s complete f o r comp la i n t " , ID) .
21
22 // 4 . 1 Pa t i e n t C a l l s f o r Spec C o l l e c t Appt .
23 +schedu le_appo intment (ID) <−
24 . d f_search (ph l ebo tom i s t , Ph) ;
25 . my_name(Pa t i e n t)
26 . send (Ph , ach i e ve , c o l l e c t (ID , Pa t i e n t)) ;
27 . p r i n t (" Ca l l e d ph l e bo t om i s t f o r appo intment about " , ID) .

Listing 20 gives the agent code for role Patient in CreateOrder, including simplified internal
logic and decision-making. The patient searches for an agent playing Provider, and sends their
complaints (multiple, to simulate several interactions) to that agent. The patient also listens for a
complete event and has a goal for scheduling appointments when necessary.

Among the differences between the Jason implementation and the Argus version given in List-
ing 17 is the way that the recipients are identified and handled. Where Jason relies extensively on
the Directory Facilitator (df) to register and search for agents, the Argus adapter explicitly tracks
roles and their bindings under a MAS, identified via MasID in these listings. Thus, the Jason
program constantly has to look up the next recipient, which may become problematic if there is
more than one agent available to play each role—there is no guarantee that all of the messages from
the same enactment will go to the same agent.

Listing 21: Agent Provider-2 in Jason.

1 ! r e g i s t e r .
2 +! r e g i s t e r <− . d f_ r e g i s t e r (p r o v i d e r) .
3
4 // 2 . 1 P r o v i d e r E va l u a t e s Compla int
5 +comp la i n t (ID , Pat i en t , Symptom) [s ou r c e (Pa t i e n t)] <−
6 . random (R) ;
7 // 2 . 2 Lab D i a gno s t i c Te s t i ng Needed?

37

8 i f (R > 0.1) { // 90 pe r c en t chance o f d e c i d i n g to run l a b t e s t
9 // 3 . 1 P r o v i d e r En t e r s Request i n t o POS

10 +reque s t_ t e s t (ID , Pat i en t , Symptom) ;
11 } e l s e {
12 . p r i n t ("No t e s t needed f o r " , Symptom) ;
13 } .
14
15 +reque s t_ t e s t (ID , Pat i en t , Symptom) <−
16 . p r i n t (" Reque s t i ng t e s t f o r " , Symptom) ;
17 . random (Who) ;
18 i f (Who <= 0.3) {
19 ! p r o v i d e r_ c o l l e c t (ID , Pat i en t , Symptom) ;
20 } e l i f (0 . 3 <= Who & Who <= 0.6) {
21 ! appo intment (ID , Pa t i e n t) ;
22 } e l s e {
23 ! non_prov i d e r_co l l e c t (ID , Pa t i e n t) ;
24 } .
25
26 // 2 . 2 [s i c] P r o v i d e r C o l l e c t s Specimen
27 +! p r o v i d e r_ c o l l e c t (ID , Pat i en t , Symptom) <−
28 . p r i n t (" P r o v i d e r c o l l e c t i n g sample f o r ca s e " , ID) ;
29 . d f_search (lab , Labo ra to r y) ;
30
31 // 2 . 3 Specimen Labe l ed and Shipped to Labo ra to r y
32 . send (Labora to ry , t e l l , spec imen (ID , " spec imen ")) ;
33 // 3 . 4 Push E l e c t r o n i c C o n n e c t i v i t y to Lab?
34 // 3 . 5 Send Labo ra to r y Order to Labo ra to r y
35 . send (Labora to ry , t e l l , l ab_orde r (ID , Pat i en t , Symptom)) ;
36 . p r i n t (" Sent l ab_orde r " , ID) .
37
38 +! appointment (ID , Pa t i e n t) <−
39 . p r i n t (" Schedu l i n g appo intment f o r p a t i e n t " , ID) ;
40 . send (Pat i en t , t e l l , s chedu le_appo intment (ID)) .
41
42 +! non_prov i d e r_co l l e c t (ID , Pa t i e n t) <−
43 . d f_search (ph l ebo tom i s t , Ph) ;
44 . p r i n t (" D i r e c t i n g ph l e bo t om i s t to c o l l e c t spec iment from p a t i e n t " , ID) ;
45 . send (Ph , ach i e ve , c o l l e c t (ID , Pa t i e n t)) .
46
47 // 3 . 6 Respond to Lab Order Query
48 +! send_lab_order (ID) [s ou r c e (Reques to r)] : comp la i n t (ID , Pat i en t , Symptom)

<−
49 . send (Requestor , t e l l , l ab_orde r (ID , Pat i en t , Symptom)) ;
50 . p r i n t (" Responded to Lab Order Query " , ID) .
51
52 +r e s u l t s _ a v a i l a b l e (ID) [s ou r c e (Labo ra to r y)] <−
53 // 2 . 5 Rece i v e n o t i f i c a t i o n
54 . p r i n t (" Rece i v ed n o t i f i c a t i o n tha t r e s u l t s a r e a v a i l a b l e f o r o r d e r " , ID

) ;
55 // 2 . 6 Query R e s u l t s
56 . send (Labora to ry , a ch i e ve , q u e r y_ r e s u l t s (ID)) ;

38

57 . p r i n t (" Quer i ed r e s u l t s f o r " , ID) .
58
59 +r e s u l t s (ID , Content) <−
60 . p r i n t (" Rece i v ed r e s u l t s f o r " , ID , " : " , Content) .

The agent of Listing 21 is the most complex agent since it handles patient complaints, chooses
which collection method to use, manages the collection, sends the lab order to the laboratory, and
processes the final results.

While implementing these agents, we took note of the errors that we ran into. Table 3 summa-
rizes these errors and their frequency in our initial implementation attempts.

Table 3: Bugs found during code development.

Programming Error Count

Naming inconsistencies 4
Incorrect parameter ordering or count 4
Incorrect syntax for adding beliefs 1

These errors are generally typos or incomplete design changes that were not immediately obvious
due to the distributed nature of the software; the producers and consumers of the information were
separate programs, specified in separate files.

Except for the one syntax mistake, we consider that most of these bugs should be reduced or
eliminated by the use of specification-driven tooling, such as Argus. The specification (BSPL in our
case) keeps all of the names and schemas in a single place that can be checked for consistency, and
then used to generate skeletons for implementation. Unfortunately, simple scaffolding only helps
the initial implementation; after a design change, the developers must either modify the skeletons
in place or regenerate them and migrate the entire implementation. Future tooling could minimize
the cost of migration, but such tooling is out of scope for this project.

Protocols are conceptual objects, and agents must reason about them regardless of how they
are implemented. Argus captures this reasoning via its code generation and adapter. Without
Argus, Jason programmers must reason still about them, but without the kind of support that
Argus provides.

8. Implementation

We have implemented the Argus communication model and AgentSpeak extensions using the
Python-AgentSpeak implementation [45] of Jason. Our implementation is a library providing an
adapter class that encapsulates both the protocol adapter and the Jason agent behavior, loading a
protocol specified in BSPL and agent behavior specified in AgentSpeak.

Figure 8 shows the Argus architecture. This architecture integrates and extends two existing
architectures for building agents: BDI and protocol adapters. BDI agents have plans specified by
their programming, a reasoner component that executes the plans, and a belief base that stores
and enables queries for structured knowledge. Protocol adapters add interaction protocol support
to an agent, using a protocol specification, a local store that records observed messages, a checker
component that validates incoming/outgoing messages against the protocol specification, and an
emitter and receiver that provide the network interface for message transmission.

39

Belief Base AgentSpeak Interpreter

Internal State

(Argus)
Local State

Reasoning
Functionality

(Argus)
Checking Functionality

Agent Plans

Argus Checker

Communication
Protocol

Emitter Receiver

query,
update

query

plans

plans

query,
update

message
schemas

messagesmessages

Figure 8: The Argus architecture implemented in a BDI agent. The Argus adapter validates incoming and outgoing
messages against the protocol and updates the local state. Plans expressed as traditional BDI artifacts are interpreted
by the BDI engine. Argus blends into the BDI architecture because the Argus local state is reflected as a set of
beliefs, as are already available to the BDI reasoner in the BDI architecture.

Most Argus components are inherited from these prior architectures and their implementations
are unchanged. These components are drawn as gray boxes. The extended components are high-
lighted with a red border: the Interpreter and Belief Base. The extended Interpreter component
encompasses both the existing AgentSpeak reasoner and the protocol adapter’s message check-
ing. Because asynchronous messages can be received anytime, the integration enables the protocol
checker to trigger AgentSpeak goals for handling message observations.

The Belief Base is extended by merging the Local State information about which messages have
been observed. Because Argus inherits from existing implementations, the observed messages are
stored twice: first as message objects in the protocol adapter’s local state, where they are used
by the protocol checker, and then copied as a belief in the AgentSpeak belief base. Thus, Argus
extends the belief base with information about message observations.

Concretely, an agent is implemented as a Python module containing an instance of the adapter
object, configured with the role it is to play and the IP addresses of the other agents.

Listing 22: Agent setup for Argus.

1 from argus impor t Adapter
2 from c o n f i g u r a t i o n impor t con f i g , g rad ing , P r o f e s s o r
3 adap t e r = Adapter (P r o f e s s o r , g rad ing , c on f i g , name="Pnin ")
4 adap t e r . l o ad_as l (" pn in . a s l ")
5
6 i f __name__ == "__main__" :
7 p r i n t (" S t a r t i n g ␣Pnin . . . ")
8 adap t e r . s t a r t ()

The adapter has an asynchronous update loop that interleaves the processing of messages with
the steps of the Jason reasoner. By default, the Python-AgentSpeak reasoner runs until it has
exhausted all its intentions and then halts. We added a signal which resumes the reasoner when a
new message is received.

40

9. Discussion

Although some existing research combines BDI-style agent reasoning with normative abstrac-
tions such as commitments [46, 47], agent programming languages have generally not kept up with
advances in modeling communications. Argus addresses this gap by proposing a programming
model that combines protocols with Jason’s BDI-style agent programming abstractions. The spe-
cific form of protocols that we adopt here—information protocols—are fully declarative and match
the representations on which rules, such as in Jason, may be stated. Through our choice of Jason
as an exemplar of BDI-style programming abstractions, this paper indicates how protocols may be
combined with other BDI architectures [48].

Improvements to Argus. Currently, an agent can play at most one role. This is a limitation not
of BSPL, but of Argus. More than one agent cannot play a role; however, there can be many
multiagent systems, which can simulate the effect of more than one agent per role, as demonstrated
in the Grading scenario, where each student is in a separate MAS. Our approach works with BSPL,
which is limited to one agent per role. Splee [49] addresses this limitation of BSPL with the concept
of set roles, where a set of agents may play a role.

Argus guides programmers in implementing protocol-compliant agents. Using the adapter is an
indispensable part of the programming model. Due to implementation errors, however, it remains
possible for an agent to instruct the adapter to attempt an action that violates the protocol.
Currently, these attempts are detected by the adapter, which silently abandons them. Although
this ensures compliance, a better approach would be to log and signal the failure to the agent’s
internal reasoning. Moreover, even if an agent is itself compliant, other agents may not be.
Therefore, an agent could receive noncompliant messages. In such cases, Argus will again catch
the error at runtime but silently discard the offending messages. The adapter could be extended
to tag such messages as corrupted and notify the agent. The agent could, for example, use that
information to update its estimate of the trustworthiness of the other agents.

In general, there is the problem of dealing with malicious agents in open systems. It is worth
extending the adapter with support for signed messages and other measures for validation. However,
even robust technical architectures such as those based on blockchain cannot guarantee correctness
and perhaps shouldn’t try to do so [50]. The problem is fundamentally sociotechnical; to address
it effectively presupposes social components for effective governance [51].

Protocol-Based Programming Models. Several works address programming models based on role
skeletons derived from protocols [52, 53, 54]. Typically, in these works, the protocol is specified via
something like a UML sequence diagram, and role skeletons are expressed via rules or state machines
that can be fleshed out with internal reasoning to realize an agent. However, in these approaches,
there is no formal model of the protocol and its messages. As such, these approaches don’t support
the kind of fine-grained reasoning about information we can use to (1) help the programmer via a
programming model and (2) check each message for whether it (or its sender) respects the protocol
semantics. Moreover, the protocols in these approaches are neither fully declarative nor supportive
of asynchronous, order-insensitive communication channels.

Social Meaning. Communication meaning guides action by agents. For purposes of open MAS,
social meaning approaches based on norms represent a compelling alternative to approaches such
as KQML. Architecturally, the norms would be layered over protocols. Whereas a protocol specifies
the basic communicative acts and inviolable operational constraints on their occurrence, norms

41

capture how violable expectations between agents progress with the performance of those acts [17].
Recent efforts [55, 56] have begun to address programming with commitments in a BDI framework.

JaCaMo. JaCaMo [57] is a powerful framework for programming multiagent systems that brings
together Jason and CArtAgO. (Recall the discussion of CArtAgO in Section 6.7.) JaCaMo models
the environment via CArtAgO-based shared artifacts that agents may invoke operations on and use
to coordinate their interactions, in a style reminiscent of Web services. JaCaMo currently does not
support protocol-based communication, although Boissier et al. [57, footnote on p. 748] acknowledge
its importance. Argus addresses this gap by improving the communicative foundation of Jason.
Baldoni et al. [58] show how to extend and apply JaCaMo for reasoning about commitments.
Argus could help place such approaches in decentralized multiagent systems, especially in light of
new results demonstrating how to enact commitments over protocols [18, 56].

The environment. Modeling the environment of a multiagent system (e.g., shared resources) is cru-
cial to systematically coordinating agents in a multiagent system [59, 60]. In Argus, in accordance
with decentralization, the requisite attributes of the environment would be captured in an informa-
tion protocol [15]. In fact, the motivation behind information protocols is to capture the application
domain, including the relevant resources and decision making by users. Returning to our example,
parameters such as Question, Answer, and so on, may be thought of as shared resources in the do-
main. Some applications of multiagent systems may refer to physical incidents and resources in the
environment, which may themselves be stateful. For example, in an emergency response applica-
tion, we might see a fire (with states raging, dying, out, and so on) and a fire alarm (off, armed,
triggered, and so on). However, the states of such physical entities would have to be modeled in
the information exchanged via a protocol. For example, upon noticing a fire in her building and
that the fire alarm had not gone off, a resident could send a message to emergency services that a
fire has erupted without triggering the fire alarm. Naturally, it is the communicated information
that counts toward the state of the multiagent system. An interesting problem is how to resolve
discrepancies between the physical state and the state of the multiagent system [61].

An agent can act upon information from diverse sources in its environment. What information
should we capture in a protocol and what should be left to agents’ internal states? The following
informal rule answers the question and helps the engineering of modular, loosely coupled multiagent
systems. If a source of some relevant information is interactive, then the information should be
modeled via parameters in the protocol. If the source is not interactive, it just affects some agent’s
internal state. The agent may decide to put it into a protocol enactment by binding it to parameters
in the protocol.

Session types. Session types [62] specify a protocol from a global perspective in terms of the emis-
sions and receptions on channels between agents, with choice operators to indicate which agent
drives the interaction at any point in time. As such, the meaning of a message in a session type
derives from its position in the sequence of transmissions, in contrast with BSPL and information
protocols, where the meaning of a message (its parameters and their relationships) determines when
the emission of that message is enabled. Thus, session types are susceptible to several of the same
criticisms we raised against previous BDI communication models in Section 6: specifically, the lack
of semantic correlation and selective reception. Chopra et al. [15] presents a substantial critique of
session types.

42

Although session types may be a reasonable model for existing BDI agent implementations,
Argus shows how information-based communication models can be a good fit for the logic program-
ming style of BDI agents, better support agent autonomy, and reduce coupling.

Data-driven approaches. Information protocols provide abstractions that fit well with other data-
driven approaches for interaction and business process modeling [63, 64]. These approaches typically
enhance workflows with operations on databases and support high-level abstractions for specifying
an agent’s internal reasoning. Argus, by providing a connection with Jason, can further help relate
data-driven and rule-based BDI approaches. Conceivably, the more flexible parts of agents—those
dealing with interaction—could be generated in Jason (as we do in this paper), whereas the rules
corresponding to the internal reasoning could be generated from a data-driven specification.

Microservices and the Internet of Things (IoT). Both are popular industry paradigms that empha-
size decentralization. In the microservices paradigm [65], the ideal is that the system is constituted
from autonomous microservices that interact via asynchronous messaging. Such a system concep-
tion is essentially multiagent. Today, however, the design of microservices is not based on protocols.
BSPL and Argus demonstrate how a microservices-based system could be modeled in terms of pro-
tocols and implemented accordingly. Khadse et al. [66] represents a start in this direction. The
IoT often features decentralized applications that feature extreme asynchrony: a sensor could come
alive, fire off a transmission, and go to sleep. We have initiated exploration of this direction via a
Node-RED implementation of BSPL [16].

Rule-based programming and testing. Protocols and protocol-based programming, as Argus sup-
ports, lead to greater decoupling between agents and between an agent and a protocol. In addition,
protocols help modelers and programmers avoid ad hoc functions, such as SM , that operate outside
of the BDI structure. Further, the generated code facilitates an agent programmer’s primary task
by providing clear points for plugging in an agent’s internal reasoning. The concomitant increased
clarity in code structure and reduced programmer effort can help address the difficult task of testing
BDI programs [67] by focusing testing on the internal reasoning of agents. In rule-based program-
ming, errors involving pattern matching are potentially easy to make and hard to find. For example,
any difference in parameter ordering would bind parameters to the wrong values, and missing or
extra parameters would silently prevent the plan from matching at all. Code generation even of
agent skeletons, as we demonstrate here, helps alleviate these problems.

Going further, ideally, the programming model should make it clear—via some form of typing—
the parameters of an enabled message that an agent’s plan needs to bind. Another future direction
we are considering is generalizing to an enablement-based programming model to handle sets of
possible messages. A benefit would be that an agent could optimize its interactions if it could
evaluate a set of alternatives in one shot.

Uncertainty. A general problem though is how to model uncertainty in the information (and beliefs)
being generated by enacting protocols and what that means for protocol enactment. For example,
the resident may claim a fire with 80% certainty. Would that enable the emergency services to
dispatch a firefighting team? Uncertainty is widely considered important in cognitive reasoning.
Yao et al. [68] study the problem of intention selection under the uncertainty of beliefs. Techniques
from this body of work could possibly be adapted for protocols.

43

Multiagent Organizations. A strength of several agent-oriented approaches is their focus on model-
ing multiagent systems via organizational notions. Ferber and Gutknecht [69] structure an organi-
zation into roles and groups based on the idea that only agents within a group may communicate.
Hübner et al. [70] define organizational goals and agents commit to missions that promote those
goals. Moreover, obligations and permissions are attached to the roles that agents adopt. Cossentino
et al. [71] define organizations of agents via tasks, individual goals, and collective goals. Whereas
this paper does not deal with organizational notions, they are crucial for enabling programming at
a higher level of abstraction.

10. Conclusions and Future Directions

This paper has demonstrated that communication protocols based on information flow can be
combined with a BDI approach in a way that highlights the benefits of protocols without compro-
mising the benefits of BDI programming. The paper has also shown the net benefits of decoupling
agents in multiagent systems and, through the avoidance of hidden functions, the development of
purer BDI agents than is possible traditionally.

Figure 4 shows the Argus operations of Emit and Receive placed with the Jason reasoning
cycle. In essence, with the exception of Jason’s transition from ExecInt to ProcMsg, which is removed
in Argus, all other transitions are kept. The ExecInt to ClrInt and ProcMsg to SelEv transitions
are changed to accommodate the BSPL semantics, as explained below. We did not find theorems
about the soundness and completeness of the operational semantics of Jason. Therefore, we content
ourselves with the hint of an informal argument here. Assuming Jason’s semantics is sound and
complete, we would be able to decide for each agent whether it would eventually return to its
initial (and final) “state,” i.e., the ProcMsg step. In addition, let’s suppose the BSPL protocol
being implemented is safe and live (these properties, respectively, being the interactional analogs
of soundness and completeness) [14, 8]. Then, the agents in a multiagent system based on Argus
would repeatedly return to their respective ProcMsg steps. We defer the formulation of the requisite
notions of soundness and completeness and their establishment to future research.

The ideas advanced in this paper set the stage for further research. An important direction
concerns the development of new programming models that take better advantage of protocols
and BDI representations to improve the modularity and maintainability of implementations of
agents in multiagent systems. A related challenge concerns support for application-level fault
tolerance: initial work uses interaction protocols to derive agent expectations that indicate failures
when unmet [72], but uses an ad hoc policy language for specifying recovery policies; a BDI-based
approach, building on Orpheus [55] or Azorus [56], might offer improved flexibility and simplify
establishing consistency. Extending the Argus programming model to support exploiting group-
oriented communication abstractions provided by platforms such as Janus [73] is also an interesting
direction.

The architectural style underlying BSPL, called Local State Transfer (LoST), has been compared
to the REST architectural style for Web services [27]. LoST is indeed RESTful in spirit but goes
beyond REST in that LoST (due to BSPL) promotes decentralized architectures, whereas REST is
client-server. HATEOAS, a REST constraint, promotes a view of Web services as state machines,
where resource representations returned by a service determine the operations that can be invoked
on it next. Conceptually, an Argus agent (following LoST) does something similar: Its local state, as
maintained by the adapter, determines which among the set of enabled actions it can perform next.
Kiko [25] and Azorus [56] make the notion of enabled actions explicit in their programming models.

44

Since most applications today run on the Web, it would be interesting to explore how decentralized
applications based on interaction protocols could be realized on top of the Web. Fluid [74] takes a
step in that direction.

Our model of how much the parties trust each other can influence MAS design, for example, by
introducing mediators, audits, and so on [75, 76]. Work on identifying and applying trust-promoting
organizational patterns to protocols would be valuable. However, it is worth keeping in mind that no
MAS design can obviate trust. Agents may always engage in untrustworthy behaviors by violating
protocols. Even protocol-compliant agents may violate the relevant norms. Argus helps engineer
protocol-compliant agents, but it makes no assumption that the agents are trustworthy. Work on
estimating trust based on actual enactments with the aim of more judicious decision making would
also be valuable.

The purpose behind Lamport’s influential idea of potential causality (as captured in the happens
before relation) is to infer an ordering of events in a distributed system [77]. By contrast, one of our
guiding principles (as exemplified by BSPL) is that any event ordering or occurrence requirement
falls out from the specification of causality in protocols and physical causality (sends before receives).
Our approach captures true causality between events and enables a causal analysis of protocols
[8, 78, 79], which helps make verification tractable in many cases. New types of causal analysis
with additional benefits would be a direction with rich dividends.

We need automated tools for porting legacy Jason implementations to Argus. These tools
could assist humans in abstracting out protocols, assuming agent implementations are available.
These tools could also help us repurpose Jason’s plans for Argus by replacing each use of a KQML
performative, including Ask and its variants, with corresponding messages or protocols.

In principle, an agent’s local state is ever-growing, which obviously has costs and efficiency
implications. As in real life, the way to address such concerns is by introducing methods for
archiving old state (as captured by some heuristic) to low-cost storage. Based on the assumption
that old state would be rarely needed, this would save costs and make querying the agent’s “working”
state more efficient. Identifying patterns of archival policies and supporting them in an agent
programming model would be another interesting direction.

11. Reproducibility

The entire Argus codebase and all examples are available online at https://gitlab.com/masr/
bspl, where the Argus AgentSpeak components have been merged into the protocol adapter. The
grading scenario is available there in the scenarios/grading directory.

Acknowledgments

Thanks to the NSF (grant IIS-1908374) and EPSRC (grant EP/N027965/1) for partial support.

References

[1] A. K. Chopra, M. P. Singh, From social machines to social protocols: Software engineering foundations for
sociotechnical systems, in: Proceedings of the 25th International World Wide Web Conference, ACM, Montréal,
2016, pp. 903–914. doi:10.1145/2872427.2883018.

[2] M. N. Huhns, N. Jacobs, T. Ksiezyk, W.-M. Shen, M. P. Singh, P. E. Cannata, Integrating enterprise information
models in Carnot, in: Proceedings of the International Conference on Intelligent and Cooperative Information
Systems (ICICIS), IEEE, Rotterdam, 1993, pp. 32–42. doi:10.1109/ICICIS.1993.291772.

45

[3] M. P. Singh, Agent communication languages: Rethinking the principles, IEEE Computer 31 (1998) 40–47.
doi:10.1109/2.735849.

[4] M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, M. P. Singh, Choice, interoperability, and con-
formance in interaction protocols and service choreographies, in: Proceedings of the 8th International Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS), IFAAMAS, Budapest, 2009, pp. 843–850.
doi:10.5555/1558109.1558129.

[5] M. Winikoff, W. Liu, J. Harland, Enhancing commitment machines, in: Proceedings of the 2nd International
Workshop on Declarative Agent Languages and Technologies (DALT), volume 3476 of Lecture Notes in Artificial
Intelligence, Springer, Berlin, 2005, pp. 198–220. doi:10.1007/11493402_12.

[6] A. K. Chopra, M. P. Singh, Contextualizing commitment protocols, in: Proceedings of the 5th International
Joint Conference on Autonomous Agents and Multiagent Systems, ACM Press, Hakodate, Japan, 2006, pp.
1345–1352. doi:10.1145/1160633.1160884.

[7] A. U. Mallya, M. P. Singh, An algebra for commitment protocols, Journal of Autonomous Agents and Multi-
Agent Systems (JAAMAS) 14 (2007) 143–163. doi:10.1007/s10458-006-7232-1.

[8] M. P. Singh, S. H. Christie V, Tango: Declarative semantics for multiagent communication protocols, in:
Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI), IJCAI, Online, 2021,
pp. 391–397. doi:10.24963/ijcai.2021/55.

[9] P. Yolum, Design time analysis of multiagent protocols, Data and Knowledge Engineering 63 (2007) 137–154.
doi:10.1016/j.datak.2006.12.001.

[10] R. H. Bordini, J. F. Hübner, Semantics for the Jason variant of AgentSpeak (plan failure and some internal
actions), in: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI), volume 215 of
Frontiers in Artificial Intelligence and Applications, IOS Press, Lisbon, 2010, pp. 635–640. doi:10.3233/978-1-
60750-606-5-635.

[11] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos: An agent-oriented software devel-
opment methodology, Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 8 (2004) 203–236.
doi:10.1023/B:AGNT.0000018806.20944.ef.

[12] J. Harland, D. N. Morley, J. Thangarajah, N. Yorke-Smith, Aborting, suspending, and resuming goals and
plans in BDI agents, Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 31 (2017) 288–331.
doi:10.1007/s10458-015-9322-4.

[13] M. P. Singh, Information-driven interaction-oriented programming: BSPL, the Blindingly Simple Protocol
Language, in: Proceedings of the 10th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), IFAAMAS, Taipei, 2011, pp. 491–498. doi:10.5555/2031678.2031687.

[14] M. P. Singh, Semantics and verification of information-based protocols, in: Proceedings of the 11th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), IFAAMAS, Valencia, Spain, 2012, pp.
1149–1156. doi:10.5555/2343776.2343861.

[15] A. K. Chopra, S. H. Christie V, M. P. Singh, An evaluation of communication protocol languages for engineering
multiagent systems, Journal of Artificial Intelligence Research (JAIR) 69 (2020) 1351–1393. doi:10.1613/jair.
1.12212.

[16] S. H. Christie V, D. Smirnova, A. K. Chopra, M. P. Singh, Protocols over Things: A decentralized programming
model for the Internet of Things, IEEE Computer 53 (2020) 60–68. doi:10.1109/MC.2020.3023887.

[17] T. C. King, A. Günay, A. K. Chopra, M. P. Singh, Tosca: Operationalizing commitments over information
protocols, in: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), IJCAI,
Melbourne, 2017, pp. 256–264. doi:10.24963/ijcai.2017/37.

[18] M. P. Singh, A. K. Chopra, Clouseau: Generating communication protocols from commitments, in: Proceedings
of the 34th Conference on Artificial Intelligence (AAAI), AAAI Press, New York, 2020, pp. 7244–7252. doi:10.
1609/aaai.v34i05.6215.

[19] M. Dastani, 2APL: A practical agent programming language, Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS) 16 (2008) 214–248. doi:10.1007/s10458-008-9036-y.

[20] M. Dastani, M. B. van Riemsdijk, J.-J. C. Meyer, Programming multi-agent systems in 3APL, in: R. H. Bordini,
M. Dastani, J. Dix, A. El Fallah Seghrouchni (Eds.), Multi-Agent Programming: Languages, Platforms and
Applications, volume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, Springer,
Boston, 2005, pp. 39–67. doi:10.1007/b137449.

[21] K. V. Hindriks, J. Dix, GOAL: A multi-agent programming language applied to an exploration game, in:
O. Shehory, A. Sturm (Eds.), Agent-Oriented Software Engineering – Reflections on Architectures, Methodolo-
gies, Languages, and Frameworks, Springer, Berlin, 2014, pp. 235–258. doi:10.1007/978-3-642-54432-3_12.

[22] H. Chalupsky, T. Finin, R. Fritzson, D. McKay, S. Shapiro, G. Wiederhold, An Overview of KQML: A Knowledge

46

Query and Manipulation Language, TR, University of Maryland Computer Science Department, Baltimore,
1992.

[23] J. L. Austin, How to Do Things with Words, Clarendon Press, Oxford, 1962.
[24] R. Vieira, Á. F. Moreira, M. J. Wooldridge, R. H. Bordini, On the formal semantics of speech-act based

communication in an agent-oriented programming language, Journal of Artificial Intelligence Research (JAIR)
29 (2007) 221–267. doi:10.1613/jair.2221.

[25] S. H. Christie V, M. P. Singh, A. K. Chopra, Kiko: Programming agents to enact interaction protocols, in:
Proceedings of the 22nd International Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
IFAAMAS, London, 2023, pp. 1154–1163. doi:10.5555/3545946.3598758.

[26] A. Günay, A. K. Chopra, Stellar: A programming model for developing protocol-compliant agents, in: Proceed-
ings of the 6th International Workshop on Engineering Multi-Agent Systems (EMAS), volume 11375 of Lecture
Notes in Computer Science, Springer, Stockholm, 2018, pp. 117–136. doi:10.1007/978-3-030-25693-7_7.

[27] M. P. Singh, LoST: Local State Transfer—An architectural style for the distributed enactment of business
protocols, in: Proceedings of the 9th IEEE International Conference on Web Services (ICWS), IEEE Computer
Society, Washington, DC, 2011, pp. 57–64. doi:10.1109/ICWS.2011.48.

[28] G. D. Plotkin, A structural approach to operational semantics, The Journal of Logic and Algebraic Programming
60–61 (2004) 17–139. doi:10.1016/j.jlap.2004.05.001.

[29] N. Carriero, D. Gelernter, Linda in context, Communications of the ACM (CACM) 32 (1989) 444–458.
doi:10.1145/63334.63337.

[30] A. K. Chopra, A. Artikis, J. Bentahar, M. Colombetti, F. Dignum, N. Fornara, A. J. I. Jones, M. P. Singh,
P. Yolum, Research directions in agent communication, ACM Transactions on Intelligent Systems and Tech-
nology (TIST) 42 (2013) 20:1–20:23. doi:10.1145/2438653.2438655.

[31] D. Vanderveken, Meaning and Speech Acts, Volume 1: Principles of Language Use, Cambridge University Press,
Cambridge, United Kingdom, 1990.

[32] M. P. Singh, A social semantics for agent communication languages, in: Proceedings of the 1999 IJCAI Workshop
on Agent Communication Languages, number 1916 in Lecture Notes in Artificial Intelligence, Springer, Berlin,
2000, pp. 31–45. doi:10.1007/10722777_3.

[33] A. Artikis, M. J. Sergot, J. V. Pitt, Specifying norm-governed computational societies, ACM Transactions on
Computational Logic 10 (2009) 1:1–1:42. doi:10.1145/1459010.1459011.

[34] A. K. Chopra, M. P. Singh, Custard: Computing norm states over information stores, in: Proceedings of
the 15th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), IFAAMAS,
Singapore, 2016, pp. 1096–1105. doi:10.5555/2936924.2937085.

[35] M. P. Singh, Semantical considerations on dialectical and practical commitments, in: Proceedings of the 23rd
Conference on Artificial Intelligence (AAAI), AAAI Press, Chicago, 2008, pp. 176–181. URL: https://cdn.aaai.
org/AAAI/2008/AAAI08-028.pdf/.

[36] A. K. Chopra, M. P. Singh, Specifying and applying commitment-based business patterns, in: Proceedings
of the 10th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), IFAAMAS,
Taipei, 2011, pp. 475–482. doi:10.5555/2031678.2031685.

[37] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, Mas-
sachusetts, 1995.

[38] D. R. Reddy, L. D. Erman, R. D. Fenneli, R. B. Neely, The Hearsay speech understanding system: An example
of the recognition process, in: Proceedings of the 3rd International Joint Conference on Artificial Intelligence,
William Kaufmann, Stanford, California, 1973, pp. 185–193. URL: http://ijcai.org/Proceedings/73/Papers/021.
pdf.

[39] L. D. Erman, F. Hayes-Roth, V. R. Lesser, R. Reddy, The Hearsay-II speech-understanding system: Integrating
knowledge to resolve uncertainty, ACM Computing Surveys 12 (1980) 213–253. doi:10.1145/356810.356816.

[40] N. Carriero, D. Gelernter, Coordination languages and their significance, Communications of the ACM (CACM)
35 (1992) 97–107. doi:10.1145/129630.376083.

[41] A. Ricci, M. Piunti, M. Viroli, A. Omicini, Environment programming in CArtAgO, in: R. H. Bordini,
M. Dastani, J. Dix, A. E. F. Seghrouchni (Eds.), Multi-Agent Programming, Languages, Tools and Applications,
Springer, Dordrecht, Netherlands, 2009, pp. 259–288. doi:10.1007/978-0-387-89299-3_8.

[42] M. van Steen, A. S. Tanenbaum, A brief introduction to distributed systems, Computing 98 (2016) 967–1009.
doi:10.1007/s00607-016-0508-7.

[43] HL7, Laboratory Order Conceptual Specification, Technical Report, Health Level Seven International, Ann Ar-
bor, Michigan, 2013. URL: http://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification,
accessed 2023-11-24.

47

[44] S. H. Christie V, A. K. Chopra, M. P. Singh, Compositional correctness in multiagent interactions, in: Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
IFAAMAS, Stockholm, 2018, pp. 1159–1167. doi:10.5555/3237383.3237868.

[45] N. Fiekas, Jason-style AgentSpeak for Python, 2021. URL: https://github.com/niklasf/python-agentspeak,
https://github.com/niklasf/python-agentspeak. Accessed: 2021-08-31.

[46] A. Günay, M. Winikoff, P. Yolum, Dynamically generated commitment protocols in open systems, Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 29 (2015) 192–229. doi:10.1007/s10458-014-9251-7.

[47] F. Meneguzzi, M. C. Magnaguagno, M. P. Singh, P. R. Telang, N. Yorke-Smith, Goco: Planning expressive
commitment protocols, Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 32 (2018) 459–502.
doi:10.1007/s10458-018-9385-0.

[48] L. de Silva, F. Meneguzzi, B. Logan, BDI agent architectures: A survey, in: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI), IJCAI, Online, 2020, pp. 4914–4921. doi:10.24963/ijcai.
2020/684.

[49] A. K. Chopra, S. H. Christie V, M. P. Singh, Splee: A declarative information-based language for multia-
gent interaction protocols, in: Proceedings of the 16th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), IFAAMAS, São Paulo, 2017, pp. 1054–1063. doi:10.5555/3091125.3091274.

[50] M. P. Singh, A. K. Chopra, Computational governance and violable contracts for blockchain applications, IEEE
Computer 53 (2020) 53–62. doi:10.1109/MC.2019.2947372.

[51] M. P. Singh, Cybersecurity as an application domain for multiagent systems, in: Proceedings of the 14th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), IFAAMAS, Istanbul,
2015, pp. 1207–1212. doi:10.5555/2772879.2773304, Blue Sky Ideas Track.

[52] C. Rooney, R. W. Collier, G. M. P. O’Hare, VIPER: A VIsual protocol editoR, in: Proceedings of the 6th
International Conference on Coordination Models and Languages COORDINATION, volume 2949 of Lecture
Notes in Computer Science, Springer, Pisa, 2004, pp. 279–293. doi:10.1007/978-3-540-24634-3_21.

[53] N. Desai, A. U. Mallya, A. K. Chopra, M. P. Singh, Interaction protocols as design abstractions for business
processes, IEEE Transactions on Software Engineering 31 (2005) 1015–1027. doi:10.1109/TSE.2005.140.

[54] F. Bergenti, E. Iotti, S. Monica, A. Poggi, Agent-oriented model-driven development for JADE with the
JADEL programming language, Computer Languages, Systems & Structures 50 (2017) 142–158. doi:10.1016/
j.cl.2017.06.001.

[55] M. Baldoni, S. H. Christie V, M. P. Singh, A. K. Chopra, Orpheus: Engineering multiagent systems via
communicating agents, in: Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI), AAAI,
Philadelphia, 2025, pp. 23135–23143. doi:10.1609/aaai.v39i22.34478.

[56] A. K. Chopra, M. Baldoni, S. H. Christie V, M. P. Singh, Azorus: Commitments over protocols for BDI
agents, in: Proceedings of the 24th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), IFAAMAS, Detroit, 2025, pp. 490–499. doi:10.5555/3709347.3743564.

[57] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, Dimensions in programming multi-agent systems, Knowledge
Engineering Review (KER) 34 (2019) e2. doi:10.1017/S026988891800005X.

[58] M. Baldoni, C. Baroglio, F. Capuzzimati, R. Micalizio, Commitment-based agent interaction in JaCaMo+,
Fundamenta Informaticae 159 (2018) 1–33. doi:10.3233/FI-2018-1656.

[59] D. Weyns, A. Omicini, J. Odell, Environment as a first class abstraction in multiagent systems, Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 14 (2007) 5–30. doi:10.1007/s10458-006-0012-0.

[60] A. Ricci, A. Ciortea, S. Mayer, O. Boissier, R. H. Bordini, J. F. Hübner, Engineering scalable distributed
environments and organizations for MAS, in: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), IFAAMAS, Montréal, 2019, pp. 790–798. doi:10.5555/3306127.
3331770.

[61] T. Leesatapornwongsa, A. Sengupta, M. S. Ardekani, G. Petri, C. A. Stuardo, Transactuations: Where
transactions meet the physical world, ACM Transactions on Computer Systems 36 (2020) 13:1–13:31.
doi:10.1145/3380907.

[62] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, Journal of the ACM 63 (2016)
9:1–9:67. doi:10.1145/2827695.

[63] R. De Masellis, C. D. Francescomarino, C. Ghidini, M. Montali, S. Tessaris, Add data into business process
verification: Bridging the gap between theory and practice, in: Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, San Francisco, 2017, pp. 1091–1099.

[64] M. Montali, D. Calvanese, G. D. Giacomo, Verification of data-aware commitment-based multiagent system, in:
Proceedings of the 13th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
IFAAMAS/ACM, Paris, 2014, pp. 157–164. doi:10.5555/2615731.2615759.

48

[65] Microsoft, Microservice architecture style, https://docs.microsoft.com/en-us/azure/architecture/guide/
architecture-styles/microservices, 2019. Accessed: 16 Jun 2021.

[66] A. K. Khadse, S. H. Christie V, A. K. Chopra, M. P. Singh, Protocol-based engineering of microservices, in:
Proceedings of the 11th International Workshop on Engineering Multi-Agent Systems (EMAS), number 14378
in Lecture Notes in Artificial Intelligence, London, 2023, pp. 61–77. doi:10.1007/978-3-031-48539-8_4.

[67] M. Winikoff, S. Cranefield, On the testability of BDI agent systems, Journal of Artificial Intelligence Research
(JAIR) 51 (2014) 71–131. doi:10.1613/jair.4458.

[68] Y. Yao, N. Alechina, B. Logan, J. Thangarajah, Intention progression using quantitative summary information,
in: Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
ACM, London, 2021, pp. 1416–1424. doi:10.5555/3463952.3464115.

[69] J. Ferber, O. Gutknecht, A meta-model for the analysis and design of organizations in multi-agent systems, in:
Proceedings of the Third International Conference on Multiagent Systems, IEEE, 1998, pp. 128–135.

[70] J. F. Hübner, J. S. Sichman, O. Boissier, Developing organised multiagent systems using the moise+ model: Pro-
gramming issues at the system and agent levels, International Journal of Agent-Oriented Software Engineering
1 (2007) 370–395. doi:10.1504/IJAOSE.2007.016266.

[71] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam, ASPECS: an agent-oriented software process for
engineering complex systems, Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 20 (2010)
260–304. doi:10.1007/s10458-009-9099-4.

[72] S. H. Christie V, A. K. Chopra, M. P. Singh, Mandrake: Multiagent systems as a basis for programming
fault-tolerant decentralized applications, Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)
36 (2022) 16:1–16:30. doi:10.1007/s10458-021-09540-8.

[73] S. Galland, S. Rodriguez, N. Gaud, Run-time environment for the SARL agent-programming language: The
example of the Janus platform, Future Generation Computer Systems 107 (2020) 1105–1115. doi:10.1016/j.
future.2017.10.020.

[74] A. K. Chopra, M. P. Singh, Fluid: Social norms–based multiagent systems on the web, in: Pre-proceedings of
the 13th International Workshop on Engineering Multi-Agent Systems (EMAS), Detroit, 2025, pp. 1–18.

[75] E. Paja, A. K. Chopra, P. Giorgini, Trust-based specification of sociotechnical systems, Data & Knowledge
Engineering 87 (2013) 339–353. doi:10.1016/j.datak.2012.12.005.

[76] A. K. Chopra, N. Oren, S. Modgil, N. Desai, S. Miles, M. Luck, M. P. Singh, Analyzing contract robustness
through a model of commitments, in: Proceedings of the 11th International Workshop on Agent Oriented
Software Engineering (AOSE 2010), number 6788 in Lecture Notes in Computer Science, Springer, Toronto,
2011, pp. 17–36. doi:10.1007/978-3-642-22636-6_2.

[77] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communications of the ACM
(CACM) 21 (1978) 558–565. doi:10.1145/359545.359563.

[78] M. P. Singh, S. H. Christie V, A. K. Chopra, Langshaw: Declarative interaction protocols based on sayso and
conflict, in: Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI), IJCAI,
Jeju, Korea, 2024, pp. 202–210. doi:10.24963/ijcai.2024/23.

[79] A. K. Chopra, S. H. Christie V, M. P. Singh, Requirement patterns for multiagent interaction protocols, in:
Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI), IJCAI, Montréal, 2025.

49

Appendix

Listing 23: An alternative grading protocol that allows Professor to declare the end of a test (meaning that there
will be no more challenges) and Student to resign from a test (meaning that there will be no more responses).

1 More−Regimented−Grad ing {
2 r o l e s P r o f e s s o r , Student , TA
3 pa ramete r s out TID key , out Report
4 p r i v a t e QID , Quest ion , So l u t i on , Answer , Grade , NumChallenges ,

NumResponses , Done , F i n i s h e d
5
6 P r o f e s s o r 7→ Student : b eg i nTes t [out TID key]
7 P r o f e s s o r 7→ Student : c h a l l e n g e [i n TID key , out QID key , out Quest ion ,

n i l Done , n i l F i n i s h e d]
8 P r o f e s s o r 7→ Student : end [i n TID key , out NumChallenges , out Done]
9

10 P r o f e s s o r 7→ TA: r u b r i c [i n TID key , i n QID key , out S o l u t i o n]
11 Student 7→ TA: r e s pon s e [i n TID key , i n QID key , i n Quest ion , out Answer ,

n i l F i n i s h e d]
12 Student 7→ P r o f e s s o r : r e s i g n [i n TID key , out NumResponses , out F i n i s h e d]
13 TA 7→ P r o f e s s o r : r e s u l t [i n TID key , i n QID key , i n Answer , i n So l u t i on ,

out Grade]
14 P r o f e s s o r 7→ Student : pe r fo rmance [i n TID key , out Report]
15 }

Listing 23 gives an alternative grading protocol that enables students to resign from a test and
professors to declare the end of a test. Professor cannot send any more challenges after sending
end or receiving resign because they bind parameters Done and Finished, respectively, that must be
unbound (⌜nil⌝) in challenge. Student is sender of both response and resign. Student cannot
send any more responses after sending resign because resign binds Finished, which must be unbound
to send response. However, Student may receive and respond to a challenge even after receiving
end, illustrating how BSPL elegantly deals with message reordering in the network.

Notice that the parameter line is different compared to Listing 4: It refers to only the test-level,
that is, TID-level parameters. This is necessary to ensure the liveness of the protocol because a test
may terminate with no questions asked (Professor sends end without sending any challenges)
or not all solutions offered (Student sends resign without sending a response to every challenge).
In the former case, there will be no QID binding; in the latter case, there will be no Grade binding.
Professor can send performance anytime after the test begins, generating a binding for Report,
which means there is always a path to completion for protocol enactments, although the normative
expectation will be that the Report accounts for all of the Student’s timely responses. BSPL is
silent on the normative expectations, as on trust and any disputes that may arise (e.g., about
the timeliness of a response); however, it gives an operational substrate for layering on these
considerations.

50

Figure 9: The original Create Lab Order workflow [43]. The workflow is complex and informally specified, which
makes implementation difficult. This workflow is available at
http://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification

51

