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Abstract
An interaction protocol specifies how the member
agents of a decentralized multiagent system may
communicate to satisfy their respective stakehold-
ers’ requirements. We focus on information pro-
tocols, which are fully declarative specifications of
interaction and support asynchronous communica-
tion. We offer Mambo, an approach for protocol
design. Mambo identifies common patterns of re-
quirements, provides a notation to express them,
and a verification procedure. Mambo incorporates
heuristics to generate small internal representations
for efficiency. Experimental results demonstrate
Mambo’s effectiveness on practical protocols.

1 Introduction
Interaction has been recognized as a crucial construct in mul-
tiagent systems since the field’s inception [Boissier et al.,
2023]. Practical approaches address various aspects of inter-
action [Casadei et al., 2021]. A protocol captures the inter-
actions between the agents in a multiagent system (MAS).
Specifically, it guides the development of a system whose
member agents communicate via messaging based on pro-
tocols. Thus, the quality of a multiaent system and its effec-
tiveness in meeting stakeholder requirements depend on the
quality of the protocol on which it is based. It is crucial the
protocol be flexible: ideally, it should constrain the agents
just enough (so they coordinate properly) but no more than
necessary (so they can exercise their autonomy), both aspects
essential to achieving what stakeholders require.

As an example, consider a protocol Sale (formalized
shortly) that involves the roles of buyer, seller, bank, and
shipper and supports exchanging payment for goods. What
makes Sale—or any protocol—correct? Safety means that
no enactment of Sale violates integrity. Liveness means that
any enactment can complete, i.e., if the agents want it to. In
addition, Sale should satisfy stakeholder requirements. For
example, the stakeholders may require that if payment hap-
pens but items are not delivered, then a refund is issued. Or,
if payment happens, it precedes delivery.

The kind of multiagent system we have in mind is decen-
tralized, meaning there is no reliance on a central decision
maker or store of global state. Its member agents may be

instantiated on the same or different machines—we don’t re-
quire or forbid either—and its correctness should not be af-
fected by such variations. Ideally, an agent waits for another
only if it relies on information to be obtained from the other
or if it is beneficial for it to wait. Thus, to achieve decentral-
ization, we cannot rely on synchronous or order-preserving
communication channels.

Information protocols avoid the limitations of traditional
protocol representations [Chopra et al., 2020] by not demand-
ing shared state or order-preserving communication. Com-
bining a flexible semantics over asynchrony leads to a pro-
tocol having a large number of enactments: potentially, ex-
ponential in its size. For example, Sale has 639 enactments,
which are too many to verify manually.

We introduce Mambo, an approach for verifying informa-
tion protocols against requirements specified as path queries.
We (i) introduce a language to encode requirements; al-
though the language is simple, we highlight its effectiveness
in capturing interesting requirements patterns for protocols;
(ii) show how to verify these requirements in a semantic
tableau generated from a protocol, and (iii) for purposes of
efficiency, show how to generate a small model (tableau) that
maintains coverage for verifying a given requirement.

Mambo’s novelty lies in that it is the first general-purpose
verification approach for information protocols. Its signif-
icance lies in that information protocols is a paradigm of
growing importance [Chopra and Christie, 2023] in engineer-
ing multiagent systems using programming models geared
to different approaches for implementing agents [Christie
et al., 2023; Christie et al., 2022; Baldoni et al., 2025;
Chopra et al., 2025]. More fundamentally, Mambo’s signif-
icance lies in the fact that it helps modularize the engineer-
ing of multiagent systems by simplifying the engineering of
member agents given a correct protocol.

Organization. Section 2 describes the related work on pro-
tocols. Section 3 introduces information protocols and our
language for expressing protocol requirements. Section 4
presents a variety of requirement patterns. Section 5 shows
how to construct a tableau for a protocol and how to verify
requirements with it. Section 6 shows how to construct an
equivalent smaller tableau by exploiting the structure of the
requirement being verified. Section 7 describes our imple-
mentation and presents performance results. Section 8 makes
some methodological observations and discusses future work.



2 Related Work: Interaction Protocols

Commitments capture the meaning of an interaction [Yolum,
2007] and thus express multiagent requirements [Chopra et
al., 2014]. Fornara and Colombetti [2003] define interac-
tion protocols via UML sequence diagrams but give sound-
ness conditions that depend on the meanings of speech acts;
Yolum [2007] formalizes properties related to liveness, con-
sistency, and robustness of commitment protocols; Günay
et al. [2015] dynamically generate protocols given com-
mitments and goals; Kalia and Singh [2015] generate com-
mitment protocols from interaction scenarios; Chopra et
al. [2014] give rules for refining requirements into com-
mitments. These works address requirements, but not op-
erational challenges, such as those due to decentralization
(distributed knowledge and asynchronous communication).
Winikoff [2007] describes some difficulties in implementing
commitment-based interactions in asynchronous settings, es-
pecially those involving more than two agents.

Tooling for operational protocols is valuable. Rooney et
al. [2004] propose a graphical editor for protocols expressed
as sequence diagrams in Agent UML (AUML) [Huget and
Odell, 2004]. Winikoff et al. [2018] defines a hierarchical
state-machine notation and model for information protocols
that captures state transitions graphically. These works offer
no support for verification. MAS engineering methodologies,
e.g., Prometheus [Padgham and Winikoff, 2005] and Bliss
[Singh, 2014], offer informal guidance for engineering pro-
tocols. Ferrando et al. [2019] provide a valuable analysis of
protocol enactability in decentralized settings under increas-
ingly strong message ordering assumptions. Information pro-
tocols are enactable under the weakest possible assumption,
no message ordering, thus making verification nontrivial.

Mazouzi et al.’s [2002] approach to protocol verification
brings forth key themes, including the use of formal meth-
ods and evaluation of various correctness properties. Though
this work is strong for its era, Mambo differs from it in im-
portant respects: (1) Mambo provides a formal specification
language for the requirements to be verified. (2) Mambo
works on fully declarative information protocols, whose se-
mantics is natively asynchronous, whereas they assume the
restrictive sequence diagram notation of AUML. They sup-
port asynchronous messages but not order-free channels, as
we do. (3) Mambo incorporates heuristics based on the struc-
ture underlying an information protocol to carry out heavy
partial order reduction whereas they do not support such re-
ductions, which would make their work intractable.

Singh [2012] and Singh and Christie [2021] are formal ap-
proaches for verifying information protocols based on satis-
fiability (SAT) solvers and semantic tableaux, respectively.
The latter, Tango, is much faster than the former on account
of its partial order reduction. Both approaches are limited to
Boolean properties of a protocol, especially safety and live-
ness. Mambo is closer in spirit to Tango in adopting semantic
tableaux. However, it goes beyond previous approaches by
supporting a temporal specification language and heuristics
to enable incremental tableau construction while progressing
a query representation.

3 Background
We now introduce information protocols and our language for
expressing stakeholder requirements.

3.1 Information Protocols
The Blindingly Simple Protocol Language (BSPL) [Singh,
2011a] is a language for specifying information protocols,
i.e., protocols based on causality and integrity constraints
based on the information exchanged. BSPL captures asyn-
chrony and flexibility better than traditional approaches
[Chopra et al., 2020]. An information protocol is a bag of
messages, each of which specifies a sender, a receiver, a mes-
sage name, and parameters. Listing 1 gives a protocol Sale
in BSPL. Message offer’s sender and receiver are SELLER
and BUYER, respectively, and its parameters are ID, item, and
price. A protocol enactment (a set of correlated messages) is
identified by the bindings of the specified ⌜key⌝ parameters.
Parameter ID constitutes Sale’s key.

The parameter adornments ⌜in⌝ , ⌜out⌝ , and ⌜nil⌝ capture
information causality (dependencies) and determine the mes-
sages that are enabled for emission by an agent relative to an
enactment. Specifically, a message is enabled if each ⌜in⌝
parameter (its binding) is known from (exists in) the agent’s
local state (set of sent and received messages), and no ⌜out⌝
or ⌜nil⌝ parameter is known. Because all of offer’s parame-
ters are ⌜out⌝ , it is enabled for SELLER at the start of the en-
actment. Message rescind (pulling back the offer) is enabled
for SELLER provided it has already sent or received messages
that make the parameters ID, item, and price known and leave
bail, payinfo, and instruction unknown.

To send an enabled message, the agent fleshes out the mes-
sage by generating bindings for only its ⌜out⌝ parameters via
its internal logic. For example, to send offer, SELLER must
generate bindings for all its parameters; to send rescind, it
must generate a binding for bail but not for payinfo or instruc-
tion. The internal logic may differ across agents and not be
revealed to others. The emission of a message records it in
the local state, making the bindings of its ⌜out⌝ parameters
known. An agent may receive a message whenever it arrives.
The received message is recorded in the local state, making
the bindings of its parameters known to the agent.

Information protocols support multiple agents sending or
receiving messages concurrently. Given the causal seman-
tics, any concurrent enactment is equivalent to a sequential
one in which the send (‘!’) and receive (‘?’) events at dif-
ferent agents are interleaved, the only restriction being that
the reception of a message follows its emission. A possible
enactment of Sale is ⟨Seller!offer, Buyer?offer, Buyer!reject,
Seller?reject⟩, ignoring message parameters.

3.2 Query Language
We express protocol requirements in Precedence, a propo-
sitional logic with one temporal operator indicating occurs
(sometime) before. We adopt Singh’s [2012] formalization.

The atoms of Precedence are events. Below, e and f are
events. If e is an event, its complement e is also an event.
Precedence treats e and e on par. The term e · f means that
e occurs prior to f . The Boolean operators: ‘∨’ and ‘∧’ have



Listing 1 A BSPL protocol for conducting ebusiness.
1: S a l e {
2: r o l e s Buyer , S e l l e r , Bank , S h i p p e r
3: p a r a m e t e r s o u t ID key , o u t i tem , o u t

p r i c e , o u t outcome
4: p r i v a t e a d d r e s s , d e c i s i o n , p a y i n f o ,

i n s t r u c t i o n , au thcode , cho ice ,
acc , b a i l

5:

6: S e l l e r 7→ Buyer : o f f e r [ o u t ID key , o u t
i tem , o u t p r i c e ]

7: Buyer 7→ S e l l e r : a c c e p t [ i n ID key , i n
i tem , i n p r i c e , o u t a d d r e s s , o u t
acc , o u t d e c i s i o n ]

8: Buyer 7→ S e l l e r : r e j e c t [ i n ID key , i n
i tem , i n p r i c e , o u t d e c i s i o n , o u t

outcome ]
9:

10: S e l l e r 7→ Buyer : r e s c i n d [ i n ID key , i n
i tem , i n p r i c e , o u t b a i l , n i l

p a y i n f o , n i l i n s t r u c t i o n ]
11:

12: Buyer 7→ S e l l e r : r e s c i n d A c k [ i n ID key ,
i n i tem , i n p r i c e , i n b a i l , n i l

au thcode , o u t outcome ]
13:

14: / / Buyer a u t h o r i z e s Bank i f n o t
r e s c i n d e d

15: Buyer 7→ Bank : pay [ i n ID key , i n p r i c e
, n i l b a i l , i n acc , o u t a u t h c o d e ]

16: Bank 7→ S e l l e r : t r a n s f e r [ i n ID key ,
i n p r i c e , i n au thcode , o u t
p a y i n f o ]

17:

18: / / S e l l e r e i t h e r i n s t r u c t s S h i p p e r t o
s h i p or bank t o r e f u n d

19: S e l l e r 7→ S h i p p e r : s h i p [ i n ID key , i n
i tem , i n a d d r e s s , i n p a y i n f o , o u t

i n s t r u c t i o n , o u t c h o i c e ]
20:

21: S e l l e r 7→ Bank : r e f u n d [ i n ID key , i n
i tem , i n p a y i n f o , o u t cho i ce , o u t

outcome ]
22: S h i p p e r 7→ Buyer : d e l i v e r [ i n ID key , i n

i tem , i n a d d r e s s , o u t outcome ]
23: }

the usual meanings. The syntax (Figure 1) follows the con-
junctive normal form.

I −→ clause | clause ∧ I
clause −→ term | term ∨ clause

term −→ event | event · event

Figure 1: Verification query language syntax.

The semantics of Precedence is given by runs of events

(instances). Let Γ be a set of events where e ∈ Γ if and
only if e ∈ Γ. A run is a function from the natural numbers
to the power set of Γ, i.e., τ : N 7→ 2Γ. The ith index of
τ , τi = τ(i). The length of τ is the first index i at which
τ(i) = ∅ (after which all indices are empty sets). We say τ is
empty if |τ | = 0. The subrun from i to j of τ is notated τ[i,j].
Its first j − i+ 1 values are extracted from τ and the rest are
empty, i.e., τ[i,j] = ⟨τi, τi+1 . . . τj−i+1 . . . ∅ . . .⟩. On any run,
e or e may not both occur. Events are nonrepeating.

Here, τ |=i E means that τ satisfies E at i or later and τ is
a model of query E if and only if τ |=0 E. E is satisfiable if
and only if it has a model. Below, r and u are formulas.
S1 τ |=i e if and only if (∃j ≥ i : e ∈ τj)
S2 τ |=i r ∨ u if and only if τ |=i r or τ |=i u
S3 τ |=i r ∧ u if and only if τ |=i r and τ |=i u
S4 τ |=i e · f if and only if (∃j ≥ i : τ[i,j] |=0 e and

τ[j+1,|τ |] |=0 f)

The semantics justifies applying De Morgan’s laws and
treating complementation as negation. That is, we can com-
plement a query since it can be reduced to one where only
atoms are complemented: (1) e ≡ e; (2) r ∨ u ≡ r ∧ u;
(3) r ∧ u ≡ r ∨ u; and (4) e · f ≡ e ∨ f ∨ (f · e).

In surface syntax, we accept ‘and’ for ‘∧’; ‘or’ for ‘∨’;
‘before’ for ‘·’; and ‘-’ and ‘no’ for overline (complementa-
tion). (The binding order is complementation > · > ∧ > ∨.)

4 Requirement Patterns
Sale, the protocol in Listing 1, is complex; the purpose of the
present paper is to facilitate verifying whether an information
protocol meets stakeholder requirements. We distinguish two
kinds of requirements. Structural requirements apply to any
protocol. Stakeholder requirements are protocol-specific.

The requirements are expressed using events such as the
occurrence of a message, e.g., offer; a parameter being bound,
e.g., item, and the observation of a message or parameter
binding by an agent, e.g., Seller:offer and Bank:authcode.

4.1 Structural Properties
These protocol-agnostic requirements establish the well-
formedness of a protocol. Failing these patterns often indi-
cates other problems in the conception of a protocol.
Pattern 1 (Liveness). Liveness captures the idea that all en-
actments can progress to completion, i.e., all parameters in
a protocol (except those declared private) (Line 3: in Sale)
must be known. A protocol is live if and only if in every en-
actment, all its completion parameters are known. Desired:
ID ∧ item ∧ price ∧ outcome is true for all enactments.
Pattern 2 (Safety). Safety captures the lack of integrity vio-
lations in a protocol’s enactments. A protocol is safe if and
only if in every enactment, a parameter is bound at most once.
To determine safety, for every pair of messages in which a
common parameter is ⌜out⌝ , we check that at most one of
the messages in the pair occurs in any enactment. Desired:
(refund ∧ deliver) ∨ (rescindAck ∧ refund) ∨ (rescindAck ∧
deliver) ∨ (reject ∧ refund) ∨ (reject ∧ deliver) is false on all
enactments.

Mambo automatically generates queries for Liveness and
Safety from a protocol.



4.2 Stakeholder Requirements
In general, even if a protocol were structurally acceptable, it
could fail to serve its stakeholders’ needs.
Pattern 3 (Desired End). Any Sale enactment must end in
one of the following states: (i) offer is rescinded by SELLER;
(ii) offer is rejected by BUYER; (iii) BUYER and SELLER ex-
change payment for goods; and (iv) BUYER pays but SELLER
refunds. Desired: rescindAck∨ reject∨ transfer ∧ (refund∨
deliver) is true for all enactments.
Pattern 4 (Complementary). Some pairs of semantically “op-
posite” messages, e.g., deliver and reject, must be mutually
exclusive. Desired: deliver∧ reject is false on all enactments.
Pattern 5 (Concede). Sale illustrates an interesting design in-
volving semantically “opposite” messages: SELLER’s rescind
(end) and BUYER’s pay (proceed). Since they can occur con-
currently, a conflict between them would be unsafe. There-
fore, they are expressed such that if BUYER sends pay, the
transaction proceeds (pay is on a path to completion), but
BUYER cannot send pay once it has received rescind. To
ensure liveness, BUYER can send rescindAck once it has re-
ceived rescind to allow completion on the non-pay path. De-
sired: pay · Buyer:rescind ∨ (no rescind ∧ no rescindAck) ∨
rescind · rescindAck is true on all enactments.
Pattern 6 (Late Action). Here, rescind disables accept ; that
is, accept cannot occur after rescind. Desired: no accept ∨
no rescind ∨ accept · Buyer:rescind is true on all enactments.
Pattern 7 (Flexibility). Suppose accept means a commitment
from BUYER to SELLER that if deliver occurs, then transfer
will occur. In conjunction with Pattern 9, this pattern ensures
a flexible exchange of payment and goods. Desired: accept ·
deliver ∧ deliver · transfer is true on some enactments.
Pattern 8 (Compensation). There may be a compensation
commitment to refund BUYER in case SELLER violates its
offer commitment. Informally, if transfer has occurred,
then either deliver or refund occurs; refund implies trans-
fer; and refund and deliver are mutually exclusive. Desired:
(no transfer ∨ deliver ∨ refund) ∧ (no refund ∨ transfer) ∧
(no refund ∨ no deliver) is true on all enactments.
Pattern 9 (Create-Detach-Discharge). Suppose offer creates
a commitment from SELLER to BUYER that if accept and
transfer both occur (the detach condition), then deliver will
occur (the discharge condition). Given this commitment, at
the operational level, a simple happy path is that the com-
mitment is created, detached, and discharged in that order.
Desired: offer · accept ∧ offer · transfer ∧ accept · deliver ∧
transfer · deliver is true for some enactment.
Pattern 10 (Delegation Guarantee). BUYER relies upon
BANK to pay SELLER via a transfer, i.e., a delegation [Singh,
1999]. Stakeholders may require that pay ensures transfer
and must precede it. Desired: no pay ∧ no transfer ∨ pay ·
transfer is true on all enactments.

4.3 Toward a Catalog of Requirement Patterns
Table 1 shows how our patterns capture various design needs.
It shows how our patterns could form the basis for a catalog of
patterns that a protocol designer could draw upon in eliciting
requirements from stakeholders.

Criterion Relevant Patterns
Progress Liveness means the protocol doesn’t prevent

the agents from completing the interaction
Integrity Safety means the protocol doesn’t allow in-

tegrity violations
Goal state Desired End captures a stakeholder’s goals
Operation Complementary, Concede, and Late Action

avoid or deal with conflicting actions
Contract Flexibility gives options and Compensation

captures semantic recovery from a violation
Trust Create-Detach-Discharge and Delegation

Guarantee indicate caution in interacting

Table 1: Our patterns address important protocol design criteria.

5 Formalization Background
We adopt Singh and Christie’s [2021] tableau framework. A
configuration corresponds to a state during the enactment of
a protocol. Each protocol enactment goes through a series
of configurations where the transition respects causality and
no role emits a message that would locally cause integrity
violation. Initially, no observations have occurred and each
role knows all and only the ⌜in⌝ parameters of the protocol.

A semantic tableau [D’Agostino et al., 1999; Fitting, 1999]
is a proof tree. Here, the nodes of the tree are configurations.
The inference rules determine how one node leads to another
node. Thus, each path—sequence of nodes beginning from
the root—of a tableau is a protocol enactment. We adopt
propositional logic with its usual rules. Below, m is a mes-
sage schema x 7→ y : m[p⃗I , p⃗O, p⃗N ], where p⃗I , p⃗O, p⃗N are
sets of its parameters respectively adorned ⌜in⌝ , ⌜out⌝ , and
⌜nil⌝ . The modalities Kx and Ux capture that role x knows
or does not know parameter bindings, and Lx that x observes
the emission or reception of a message.

5.1 Knowledge and Observations
What is known to each role grows monotonically because pa-
rameter bindings are immutable, and the emission and recep-
tion of each message add to a role’s knowledge.

Lxm means role x has observed message m. In BSPL,
the only observations are local, i.e., emissions or receptions.
Chaining back a role’s observations to the root gives us its
history in reverse. This is crucial in relating nodes to history
vectors and tableaux to sets of history vectors [Singh, 2012].
The Kxp assertions in a tableau node together characterize a
protocol configuration. Ux expresses which bindings are (so
far) unknown to x. Each transition involves an observation
and the associated increase in the knowledge of the observing
role. The BSPL treatment of ⌜out⌝ and ⌜nil⌝ parameters
at emission relies upon their bindings being unknown. To
capture this increase in knowledge, we delete Uxp assertions
simultaneously with when we infer Kxp assertions.

Figure 2 summarizes the core BSPL semantics [Singh
and Christie, 2021]. SND says that an instance of x 7→
y : m[p⃗I , p⃗O, p⃗N ] is enabled for emission by x if and only
if x knows p⃗I but does not know p⃗O or p⃗N . Concomitantly,
the sender produces and comes to know the bindings for p⃗O,
and the message enters the communication channel from its



SND
Kxp⃗I Uxp⃗O Uxp⃗N

Lx(x 7→ y : m[p⃗I , p⃗O, p⃗N ]) Kxp⃗O ���Uxp⃗O

RCV
Lx(r = x 7→ y : m[p⃗I , p⃗O, p⃗N ])

Lyr Kyp⃗I Kyp⃗O ���Uyp⃗I �
��Uyp⃗O

Figure 2: Message emission and reception in BSPL [Singh and
Christie, 2021].

sender to its receiver. RCV states that a message from x to
y is enabled for reception by y if and only if x has observed
sending that message. Concomitantly, y comes to know the
bindings for p⃗I and p⃗O.

5.2 Verifying Correctness Properties
The properties of interest concern paths unfolding as speci-
fied and reaching a specified configuration. We assert a prop-
erty at the root of the tableau. A path ends when no more
observations are enabled. A consistent path that ends pro-
vides an example of the property at the root. A path that hits
a contradiction is closed; a tableau closes if all its paths close,
which indicates the property is inconsistent and thus its nega-
tion is proved. The foregoing argument works because each
path of a tableau, as generated from the SEND and RECEIVE
rules above, respects the causal structure of BSPL and local
consistency when a role sends a message.

5.3 How Messages Relate in a Protocol
Table 2 summarizes direct enablement and disablement rela-
tionships between observations based on what parameters oc-
cur in them [Singh and Christie, 2021]. It is possible syntac-
tically to have a protocol with two messages that both enable
and disable each other.

⌜in⌝p ∈ b ⌜out⌝p ∈ b ⌜nil⌝p ∈ b

⌜in⌝p ∈ a x?a ⊢ y!b x?a ⊣ y!b x?a ⊣ y!b
⌜out⌝p ∈ a x?!a ⊢ y!b x?!a ⊣ y!b x?!a ⊣ y!b
⌜nil⌝p ∈ a – – –

Table 2: Direct enablement or disablement by a of b. The inter-
robang, as in x ?! a, indicates that x may either emit or receive a; b
is always an emission. Here, p ∈ m indicates parameter p occurs in
message schema m; x and y may be the same or different roles.

6 Mambo Formalization
A naively generated tableau faces a combinatorial explosion
because it encodes each possible interleaving of events sepa-
rately. We generate a small tableau that covers all possibilities
implicitly via heuristics that reflect the causality and integrity
constraints of a protocol and our query language.

Specifically, we combine interleavings that are equivalent
in that they exhibit the same causal relationships and pro-
vide the same options for integrity preservation and viola-
tion. (1) If one message is a necessary enabler of another,

the tableau would unfold in the correct order and the wrong
interleaving is impossible. (2) If two messages may inter-
fere (e.g., one message may disable another), we must include
both possibilities in the tableau. We need to recognize such
interleavings even if one of the messages is not presently en-
abled and make sure we do not prematurely eliminate viable
paths from the tableau. (3) If the truth of a query depends on
the interleavings, we must include a representative for each
interleaving in the tableau. (4) If two messages are causally
independent and don’t interfere, we can retain one of the in-
terleavings and generate a path for it.

We refine Singh and Christie’s [2021] tangles with con-
struct. Observation a tangles with observation c, if and only
if (1) a directly disables c or (2) a directly disables a mes-
sage b where b enables c. Two observations are incompatible
if and only if at least one is an emission and tangles with the
other. Like Tango, the rest of the construction builds an undi-
rected graph of incompatible observations and computes an
approximate vertex cover to find sets of compatible observa-
tions. Each such set corresponds to a logically distinct path
that effectively stands in for each permutation of these ob-
servations. A key difference from Tango is that this graph is
computed at each tableau node in light of the current reduced
query, which is also reduced at each step as events occur.

7 Implementation and Results
Our implementation is an extension of Tango, and proceeds
as follows: (1) Create a tree representation of the requirement
query. (2) Use the parameters of each clause in the query to
construct a conflict graph of parameters whose order of occur-
rence in an enactment matters. (3) Construct an incompatibil-
ity graph from the protocol, reflecting conflicts due to param-
eter adornments as well as the query. (4) Expand a tableau,
with incompatible events placed on different paths. (5) Filter
the paths based on the query: paths where the query resolves
to true or false terminate and the remaining paths are retained
for further expansion (in the previous step).

Tango doesn’t support flexible queries. And, for the prop-
erties that it handles—safety and liveness—Tango doesn’t
close paths early if the property is satisfied. By contrast,
Mambo incorporates the query in each step of the tableau ex-
pansion, especially in the incompatibility graph generation
(significant for queries that contain ‘before’ relationships).
And, it applies query-specific optimizations and returns paths
as soon as a query resolves to true or false—termed “short-
circuiting” below.

7.1 Incremental Query Reduction
We model a property based on when it first becomes true on
a path, as follows: (1) None: the property is indeterminate;
(2) False: the property is violated; (3) ∞: the event occurs
eventually; and (4) n ∈ N+: the property is true upon the nth
event. We evaluate a query tree as described next.

Occurs The leaf nodes of a query, checking when an event
occurs. These nodes return the event’s index in the en-
actment if it has occurred, otherwise None.

Or Returns the minimum of two integers, or otherwise
prefers ∞ over None over False.



And Prefers False over None over the maximum of its ar-
guments (including ∞).

Not Returns ∞ if its argument is False or None, and
False if its argument is ∞ or an int.

Before Returns the first argument that is not an int, the sec-
ond argument if they are ordered, else False.

7.2 Optimizations and Heuristics
We implement three important optimization heuristics:

Pruning Stop extending a path once the query resolves to a
definite int or False, since further simulation would
not change the result.

Residuation Save the results of a query subtree as soon
as they resolve to a definite int or False, avoiding
reevaluation on that path of the tableau. Other paths are
not affected.

Incremental Occurs nodes don’t scan the entire path, but
look at the newest event for relevant information and
save the results using residuation.

7.3 Experimental Setup
We evaluated Mambo’s performance using a framework that
generates every combination of the setup parameters, includ-
ing protocol, query, method, and iteration ID (so the experi-
ment runs a specific number of times).

We use Tango as a baseline since it is the best prior method
for verifying information protocols. We used the latest ver-
sion (taken from its public repository) of the Tango imple-
mentation and protocol specifications, so that all of the meth-
ods are run on the same hardware over the same protocols.

We created a second baseline, dubbed Tango+, as a hy-
brid of Tango and Mambo. Tango+ generates all maximal en-
actments, minus partial order reduction, using the traditional
Tango method, then filters them using the Mambo query sys-
tem without any of the optimizations enabled. Thus, Tango+
is expected to have a nearly worst-case performance, since
it does not do any short-circuiting. The exceptions are cases
where the protocol is trivially safe. Mambo constructs a query
for potential conflicts, and a lack thereof proves safety be-
fore checking any enactments. Since Tango+ uses Mambo’s
queries, it also short-circuits on trivially safe protocols.

Our experiments were performed on an AMD Ryzen 7
6800U with 16GB of RAM.

7.4 Results
To compare against prior results, we performed one experi-
ment verifying only safety and liveness for those protocols
analyzed by Tango [Singh and Christie, 2021]. This evalu-
ation is limited to liveness and safety verification since the
baselines are limited to these properties.

In addition, we computed Cohen’s [1988] d statistic for ef-
fect size, which is defined as the difference of means divided
by the sum of standard deviations. We obtained strong effect
sizes relative to Tango, with the worst case being 1.4 and the
best being 29.5. The results are more varied with Tango+,
which mostly performs worse than Tango, except where the
protocol is trivially safe, and beats Mambo in one case. De-
tails are in the appendix.

Protocol Property Mambo Tango Tango+
Block-Contra liveness 9.509 13.466 13.392
− safety 9.100 10.081 13.157
CreateOrder liveness 51.255 55 601.023
− safety 352.241 573.181 591.965
Independent liveness 9.183 9.983 10.264
− safety 7.244 10.181 7.259
NetBill liveness 90.383 150.492 147.127
− safety 130.463 147.179 150.924
PO Pay. . . Ship liveness 15.576 27.884 27.463
− safety 10.475 27.529 10.230
Sale liveness 34.038 50.251 48.056
− safety 43.971 48.369 51.718

Table 3: Mean times over 10 runs for safety and liveness checking
in ms. The appendix provides standard deviations and effect sizes.

Next, we evaluate Mambo’s efficiency with respect to the
requirement patterns described in this paper. For practical
purposes, it helps to include a semantic check for the brevity
or minimality of a protocol. A deadwood message in a proto-
col is one that is not observed on any enactment. That is, mes-
sage m is deadwood if and only if the corresponding event m
is unsatisfiable. Deadwood is not implemented as a query.
Instead, Mambo generates the possible enactments and sub-
tracts their events from the set of messages in the protocol;
any messages remaining are deadwood.

Table 4 shows that Mambo is able to verify each re-
quirement in under 40ms. As Table 4 shows, Sale does
not meet some of the requirements. Flexibility is not met
because the protocol entertains no enactment in which de-
liver happens before transfer. For Concede, the Mambo
tooling produces a counterexample; specifically, the enact-
ment ⟨Seller!offer, Buyer?offer, Buyer!reject, Seller?reject,
Seller!rescind, Buyer?rescind⟩. We could regiment the pro-
tocol further to try to prevent the Concede counterexample.
Specifically, we could introduce ⌜in⌝ outcome in rescind so
that the reception of reject disables the emission of rescind.
Doing so, however, will not prevent the enactment where
these messages are sent concurrently. In this particular case,
one could take the alternative view that the counterexample
represents a harmless case because the “outcome” of the in-
teraction (rejection of offer) is not in doubt. Trying to avoid
such cases makes the protocol overly complex for no gain in
the quality of the multiagent system produced.

If stakeholders consider Flexibility important and want to
ensure that transfer can happen after deliver (but must happen
if deliver does), ship can be modified so that it does not de-
pend on payinfo, and instead has a ⌜nil⌝ bail to prevent ship-
ping and rescinding in the same enactment.

8 Discussion
It is important to support the engineering of protocols to pro-
duce decentralized multiagent systems. Information proto-
cols offer a fine-grained view of coordination between agent
and enable flexible, asynchronous operationalization. This
flexibility is the reason it can be hard to imagine all the oper-
ational possibilities afforded by a protocol.



Query on Sale Desired Met Mean Std
Live All paths Yes 31.785 0.286
Safe All paths Yes 43.623 0.540
Desired End All paths Yes 20.931 0.202
Complementary No path Yes 25.821 0.301
Concede All paths No 20.216 0.255
Late Action All paths Yes 17.083 0.147
Flexibility Some paths No 23.825 0.222
Compensation All paths Yes 35.467 0.943
Create-Detach-Discharge Some paths Yes 26.797 0.406
Delegation Guarantee All paths Yes 14.248 0.117
Deadwood No messages Yes 26.480 0.343

Table 4: Mean times and standard deviations over 10 runs of eval-
uating various requirements on Sale. All times are in ms. Here,
Desired refers to whether we expect (require) the query to be satis-
fied on All, Some, or No enactments. Met states whether that desire
was met. The appendix presents additional statistics.

Traditionally, protocols are presented as finished work
based on their designers’ intuitions. Instead, we advocate
the systematic engineering of protocols as crucial software
artifacts in the sense of Osterweil [2008]. That is, pro-
tocol design would take place hand-in-hand with the itera-
tive process of acquiring and refining stakeholder require-
ments [Telang and Singh, 2012]. Unlike in traditional agent-
oriented software engineering [Cernuzzi and Zambonelli,
2004; Bresciani et al., 2004] that produce sequence diagrams,
in our conception, designers would craft information proto-
cols to achieve flexibility and rigor [Winikoff et al., 2018;
Singh, 2014].

Requirements in Mambo capture the constraints on the in-
formation (messages or parameters) exchanged and are thus
more abstract and simpler than protocols. That is, the re-
quirements are easier to formulate and provide a conceptual
basis for evaluating protocols. Like in traditional systems,
safety and liveness are prerequisites to proper implementation
and have analogs in traditional approaches. Some require-
ments take a stakeholder’s perspective. For example, a seller
who doesn’t trust a buyer may wish to ensure its agents will
be able to delay delivery until payment or rescind an offer.
Some requirements go beyond traditional systems. For ex-
ample, specifying protocols that satisfy the Concede pattern
is impossible in alternative protocol specification approaches
[Chopra et al., 2020]. The flexible nature of information pro-
tocols is key to supporting novel requirement patterns. A use-
ful direction would be to build a catalog of such patterns.

For brevity, we elide the discussion of syntactic checks,
which despite being simple to understand and efficient to ap-
ply, can help avert design flaws. For example, a protocol that
has an ⌜out⌝ parameter but no message with that parameter
as ⌜out⌝ cannot be live. A private parameter that is ⌜in⌝ on
some messages but never ⌜out⌝ indicates a redundant proto-
col in that those messages are clearly deadwood. And, one
that is ⌜out⌝ but not ⌜nil⌝ or ⌜in⌝ can be trivially removed.

Languages for specifying workflows based on proposi-
tional temporal logics [Attie et al., 1993; Montali et al., 2010]
are potential alternatives to Precedence. Precedence is event-
oriented, which lends itself well to our setting: events natu-
rally model message emission and reception and parameter

binding. Moreover, Precedence is simpler with only one tem-
poral operator before, which captures event order more natu-
rally than the alternative approaches, which are based on until
and produce unwieldy formulas even for simple requirements
[Attie et al., 1993]. Also, Precedence eschews the next-time
operator, which is ill-defined in decentralized systems.

Mambo brings up interesting directions for future work.
One, we might combine its representations with protocol ver-
ification tools for other paradigms. In particular, we posit
that our query language is well-suited to efficient online eval-
uation and would facilitate synthesis with runtime verifica-
tion [Ancona et al., 2021] and monitoring [Dastani et al.,
2018]. Likewise, for tools for meaning-based representa-
tions [Yolum, 2007; Günay et al., 2015; Dastani et al., 2017],
we can investigate automatically generating Mambo queries
from commitments and goals [Harland et al., 2017].

Two, we need techniques for verifying protocol-based
agents to modularly verify a multiagent system by verify-
ing them separately once the protocol is verified. Doing so
would combat the potential high cost of system verification.
An effective approach should tackle the fact that an agent
would participate in multiple systems; e.g., an agent may play
BUYER in Sale and a PATIENT in a healthcare protocol, e.g.,
to buy prescribed drugs.

Three, instead of verifying protocols, we could synthe-
size protocols from specifications in a higher-level language.
Langshaw [Singh et al., 2024] is such a language. Its novel
idea is separating the specification of communicative acts
and the coordination required between them. Coordination
is specified via abstractions for conflicting actions and pri-
oritized saysos of roles over parameters in the communica-
tive acts. Langshaw specifications are more compact than the
protocols synthesized from them. Mambo suggests an alter-
native approach for specifying coordination requirements: as
formulas in Precedence. That is, it would be interesting to ex-
plore protocol synthesis given a specification of communica-
tive acts and a set of requirements. Comparing the resulting
approach with Langshaw would help develop intuitions about
higher-level languages.

Four, agentic models combine generative AI with infor-
mation and abilities to sense and act, e.g., via web services.
Generative AI can help overcome the knowledge engineering
bottleneck in building flexible agents. Current agentic frame-
works compose agents via workflows [LangGraph, 2024;
Dibia et al., 2024]. However, a major and long-recognized
shortcoming of workflows is their rigidity [Chrysanthis and
Ramamritham, 1994; Singh and Huhns, 1994], which lim-
its agent autonomy and responsiveness to exceptions [Singh,
2011a; Singh, 2012; Singh, 2011b]. Thus powerful agents
built with generative AI can be stymied by the inability to
act flexibly. Mambo enables engineering MAS based on cor-
rect, flexible protocols. An important direction would be to
investigate how flexible protocol-based interaction could be
applied within agentic models in lieu of workflows.

9 Reproducibility
The appendix and all software, including the protocols men-
tioned, are available at https://gitlab.com/masr/mambo.

https://gitlab.com/masr/mambo
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