Monopoly

Monopoly: Why?

- Natural monopoly (increasing returns to scale), e.g. (parts of) utility companies?
- Artificial monopoly
 - -a patent; e.g. a new drug
 - sole ownership of a resource; e.g. a toll bridge
 - -formation of a cartel; e.g. OPEC

Monopoly: Assumptions

- Many buyers
- Only one seller i.e. not a price-taker
- (Homogeneous product)
- Perfect information
- Restricted entry (and possibly exit)

Monopoly: Features

- The monopolist's demand curve is the (downward sloping) market demand curve
- The monopolist can alter the market price by adjusting its output level.

Monopoly: Market Behaviour

Suppose that the monopolist seeks to maximize economic profit

$$\Pi(y) = p(y)y - c(y)$$

$$\Pi = TR - TC$$

What output level y* maximizes profit?

Monopoly: Market Behaviour

At the profit-maximizing output level, the slopes of the revenue and total cost curves are equal, i.e.

 $MR(y^*) = MC(y^*)$

Marginal Revenue: Example

p = a - by (inverse demand curve)

TR = py (total revenue)

 $TR = ay - by^2$

Therefore,

MR(y) = a - 2by < a - by = p for y > 0

Monopoly: Market Behaviour

The aim is to maximise profits MC = MR

$$MR = p + y \frac{\partial p}{\partial y} < p$$

MR lies inside/below the demand curve

Note: Contrast with perfect competition (MR = P)

- Firm = Market
- Short run equilibrium diagram = long run equilibrium diagram (apart from shape of cost curves)
- At q_m: p_m > AC therefore you have excess (abnormal, supernormal) profits
- Short run losses are also possible

Monopoly: Elasticity

$$\Delta TR = p\Delta y + y\Delta p$$

WHY? Increasing output by ∆y will have two effects on profits

- 1) When the monopoly sells more output, its revenue increase by $p\Delta y$
- 2) The monopolist receives a lower price for all of its output

Monopoly: Elasticity $\Delta TR = p\Delta y + y\Delta p$

Rearranging we get the change in revenue when output changes i.e. MR

$$MR = \frac{\Delta TR}{\Delta y} = p + \frac{\Delta p}{\Delta y} y$$

$$MR = \frac{\Delta TR}{\Delta y} = p \left(1 + \frac{y \Delta p}{p \Delta y} \right)$$

Monopoly: Elasticity

Monopoly: Elasticity

Recall MR = MC, therefore,

$$MR = \frac{\Delta R}{\Delta y} = p \left(1 + \frac{1}{\varepsilon} \right) = MC > 0$$

Therefore, in the case of monopoly, $\varepsilon < -1$, i.e. $|\varepsilon| \ge 1$. The monopolist produces on the elastic part of the demand curve.

Application: Tax Incidence in Monopoly

Application: Tax Incidence in Monopoly

Claim

When you have a linear demand curve, a constant marginal cost curve and a tax is introduced, price to consumers increases by "only" 50% of the tax, i.e. "only" 50% of the tax is passed on to consumers

Application: Tax Incidence in Monopoly Output decision is as before, i.e.

Application: Tax Incidence in Monopoly
Price is also the
same as beforeP $P_{bt} = price before tax$
is introduced.

Application: Tax Incidence in Monopoly

Application: Tax Incidence in Monopoly

Step 1: Define the linear (inverse) demand curve

$$P = a - bY$$

Step 2: Assume marginal costs are constant

$$MC = C$$

Step 3: Profit is equal to total revenue minus total cost

$$\Pi = TR - TC$$

Step 4: Rewrite the profit equation as $\Pi = PY - CY$ Step 5 : Replace price with P=a-bY $\Pi = (a - bY)Y - CY$

Profit is now a function of output only

Step 6: Simplify

$$\Pi = Ya - bY^2 - CY$$

Step 7: Maximise profits by differentiating profit with respect to output and setting equal to zero

$$\prod_{\{Y\}} = a - 2bY - C = 0$$

Step 8: Solve for the profit maximising level of output (Y_{bt})

$$-2bY = C - a$$

$$Y_{bt} = \frac{a-C}{2b}$$

Step 9: Solve for the price (P_{bt}**) by substituting** Y_{bt} **into the (inverse) demand function**

$$Y_{bt} = \frac{a-C}{2b}$$

Recall that P = a - bY therefore $P_{bt} = a - b \left(\frac{a - C}{2b} \right)$

Step 10: Simplify

$$P_{bt} = a - b \left(\frac{a - C}{2b} \right)$$

$$P_{bt} = a + \left(\frac{-ba + bC}{2b}\right)$$

$$P_{bt} = a + \left(\frac{-a+C}{2}\right)$$

$$P_{bt} = a + \left(\frac{-a}{2} + \frac{C}{2}\right)$$
$$P_{bt} = a + \left(-\frac{1}{2}a + \frac{C}{2}\right)$$
$$1 = C$$

 $r_{bt} = -a + -2$

$$P_{bt} = \frac{a+C}{2}$$

Step 11: Replace C = MC with C = MC + t (one could repeat all of the above algebra if unconvinced)

$$P_{bt} = \frac{a+C}{2}$$

$$P_{at} = \frac{a+C+t}{2}$$

Price before tax

So price after the tax P_{at} increases by t/2