

Chapter 4

Utility

- $x \succ y$: x is preferred strictly to y.
- ♦ x ~ y: x and y are equally preferred.
- ★ x ≻ y: x is preferred at least as much as is y.

 Completeness: For any two bundles x and y it is always possible to state either that

or that

Reflexivity: Any bundle x is always at least as preferred as itself; *i.e.*

 $\mathbf{x} \succeq \mathbf{x}$.

Transitivity: If x is at least as preferred as y, and y is at least as preferred as z, then x is at least as preferred as z; *i.e.*

$$\mathbf{x} \succeq \mathbf{y}$$
 and $\mathbf{y} \succeq \mathbf{z} \implies \mathbf{x} \succeq \mathbf{z}$.

Utility Functions

- A preference relation that is complete, reflexive, transitive and continuous can be represented by a continuous utility function.
- Continuity means that small changes to a consumption bundle cause only small changes to the preference level.

Utility Functions

A utility function U(x) represents a preference relation ∑ if and only if:

$$x' \succ x''$$
 $(x') \ge U(x'')$ $x' \prec x''$ $(x') \le U(x'')$ $x' \sim x''$ $(x') = U(x'')$

Utility Functions

- Utility is an ordinal (i.e. ordering) concept.
- E.g. if U(x) = 6 and U(y) = 2 then bundle x is strictly preferred to bundle y. But x is not preferred three times as much as is y.

- Consider the bundles (4,1), (2,3) and (2,2).
- ◆ Suppose (2,3) ≻ (4,1) ~ (2,2).
- Assign to these bundles any numbers that preserve the preference ordering;
 e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4.
- Call these numbers utility levels.

- An indifference curve contains equally preferred bundles.
- Equal preference \Rightarrow same utility level.
- Therefore, all bundles in an indifference curve have the same utility level.

- So the bundles (4,1) and (2,2) are in the indiff. curve with utility level $U \equiv 4$
- But the bundle (2,3) is in the indiff. curve with utility level $U \equiv 6$.
- On an indifference curve diagram, this preference information looks as follows:

 Another way to visualize this same information is to plot the utility level on a vertical axis.

Utility Functions & Indiff. Curves 3D plot of consumption & utility levels for 3 bundles

 This 3D visualization of preferences can be made more informative by adding into it the two indifference curves.

 Comparing more bundles will create a larger collection of all indifference curves and a better description of the consumer's preferences.

 As before, this can be visualized in 3D by plotting each indifference curve at the height of its utility index.

- Comparing all possible consumption bundles gives the complete collection of the consumer's indifference curves, each with its assigned utility level.
- This complete collection of indifference curves completely represents the consumer's preferences.

Utility Functions & Indiff. Curves

Utility Functions & Indiff. Curves

- The collection of all indifference curves for a given preference relation is an indifference map.
- An indifference map is equivalent to a utility function; each is the other.

- There is no unique utility function representation of a preference relation.
- Suppose U(x₁,x₂) = x₁x₂ represents a preference relation.
- Again consider the bundles (4,1),
 (2,3) and (2,2).

•
$$U(x_1, x_2) = x_1 x_2$$
, so

$$U(2,3) = 6 > U(4,1) = U(2,2) = 4;$$

that is, $(2,3) \succ (4,1) \sim (2,2)$.

♦ U(x₁,x₂) = x₁x₂ (2,3) > (4,1) ~ (2,2). ♦ Define V = U².

- ◆ U(x_1, x_2) = x_1x_2 (2,3) > (4,1) ~ (2,2).
- Define $V = U^2$.
- ◆ Then V(x₁,x₂) = x₁²x₂² and V(2,3) = 36 > V(4,1) = V(2,2) = 16 so again (2,3) > (4,1) ~ (2,2).
- V preserves the same order as U and so represents the same preferences.

♦ U(x₁,x₂) = x₁x₂ (2,3) > (4,1) ~ (2,2). ♦ Define W = 2U + 10.

- ◆ U(x_1, x_2) = x_1x_2 (2,3) > (4,1) ~ (2,2).
- ◆ Define W = 2U + 10.
- ◆ Then W(x₁,x₂) = 2x₁x₂+10 so W(2,3) = 22 > W(4,1) = W(2,2) = 18. Again, (2,3) > (4,1) ~ (2,2).
- W preserves the same order as U and V and so represents the same preferences.

♦ If

- U is a utility function that represents a preference relation ≿ and
- f is a strictly increasing function,
- then V = f(U) is also a utility function representing ≿.

Goods, Bads and Neutrals

- A good is a commodity unit which increases utility (gives a more preferred bundle).
- A bad is a commodity unit which decreases utility (gives a less preferred bundle).
- A neutral is a commodity unit which does not change utility (gives an equally preferred bundle).

Goods, Bads and Neutrals

Some Other Utility Functions and Their Indifference Curves

• Instead of $U(x_1, x_2) = x_1 x_2$ consider

$$V(x_1, x_2) = x_1 + x_2.$$

What do the indifference curves for this "perfect substitution" utility function look like?

Perfect Substitution Indifference Curves

Perfect Substitution Indifference Curves X_2 $X_1 + X_2 = 5$ 13 9 $- \mathbf{x}_1 + \mathbf{x}_2 = 13$ 5 $V(x_1, x_2) = x_1 + x_2$. 5 9 13 **X**₁ All are linear and parallel.

Some Other Utility Functions and Their Indifference Curves

Instead of U(x₁,x₂) = x₁x₂ or V(x₁,x₂) = x₁ + x₂, consider

 $W(x_1, x_2) = min\{x_1, x_2\}.$

What do the indifference curves for this "perfect complementarity" utility function look like?

Some Other Utility Functions and Their Indifference Curves

A utility function of the form

$$U(x_1, x_2) = f(x_1) + x_2$$

is linear in just x₂ and is called quasilinear.

• E.g.
$$U(x_1,x_2) = 2x_1^{1/2} + x_2$$
.

Quasi-linear Indifference Curves

X₁

X₂ Each curve is a vertically shifted copy of the others.

Some Other Utility Functions and Their Indifference Curves

Any utility function of the form

$$U(x_1, x_2) = x_1^a x_2^b$$

with a > 0 and b > 0 is called a Cobb-Douglas utility function.

♦ E.g.
$$U(x_1, x_2) = x_1^{1/2} x_2^{1/2}$$
 (a = b = 1/2)
 $V(x_1, x_2) = x_1 x_2^3$ (a = 1, b = 3)

- Marginal means "incremental".
- The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes; *i.e.*

$$MU_i = \frac{\partial U}{\partial x_i}$$

• *E.g.* if $U(x_1, x_2) = x_1^{1/2} x_2^2$ then

$$MU_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2} x_1^{-1/2} x_2^2$$

Marginal Utilities • E.g. if $U(x_1, x_2) = x_1^{1/2} x_2^2$ then

$$MU_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2} x_1^{-1/2} x_2^2$$

• *E.g.* if $U(x_1, x_2) = x_1^{1/2} x_2^2$ then

$$MU_2 = \frac{\partial U}{\partial x_2} = 2x_1^{1/2}x_2$$

• *E.g.* if $U(x_1, x_2) = x_1^{1/2} x_2^2$ then

$$MU_2 = \frac{\partial U}{\partial x_2} = 2 \frac{x_1^{1/2}}{x_1^2} x_2$$

• So, if $U(x_1, x_2) = x_1^{1/2} x_2^2$ then

 $MU_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2} x_1^{-1/2} x_2^2$ $MU_2 = \frac{\partial U}{\partial x_2} = 2x_1^{1/2} x_2$

Marginal Utilities and Marginal Rates-of-Substitution

The general equation for an indifference curve is
 U(x₁,x₂) ≡ k, a constant.
 Totally differentiating this identity gives

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

Marginal Utilities and Marginal Rates-of-Substitution

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

rearranged is

$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

Marginal Utilities and Marginal Rates-of-Substitution

rearranged is $\frac{dx_2}{dx_1} = -\frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}}.$ This is the MRS.

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

A quasi-linear utility function is of the form U(x₁,x₂) = f(x₁) + x₂.

$$\frac{\partial U}{\partial x_1} = f'(x_1) \qquad \qquad \frac{\partial U}{\partial x_2} = 1$$

so
$$MRS = \frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2} = -f'(x_1).$$

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

MRS = - f'(x₁) does not depend upon x₂ so the slope of indifference curves for a quasi-linear utility function is constant along any line for which x₁ is constant. What does that make the indifference map for a quasilinear utility function look like?

Monotonic Transformations & Marginal Rates-of-Substitution

- Applying a monotonic transformation to a utility function representing a preference relation simply creates another utility function representing the same preference relation.
- What happens to marginal rates-ofsubstitution when a monotonic transformation is applied?
Monotonic Transformations & Marginal Rates-of-Substitution

• For $U(x_1, x_2) = x_1x_2$ the MRS = - x_2/x_1 .

• Create V = U²; *i.e.* V(x₁,x₂) = x₁²x₂². What is the MRS for V? $MRS = -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{2x_1x_2^2}{2x_1^2x_2} = -\frac{x_2}{x_1}$

which is the same as the MRS for U.

Monotonic Transformations & Marginal Rates-of-Substitution

- More generally, if V = f(U) where f is a strictly increasing function, then
- $MRS = -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{f'(U) \times \partial U / \partial x_1}{f'(U) \times \partial U / \partial x_2}$ $= -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}.$

So MRS is unchanged by a positive monotonic transformation.