

Chapter 4

Utility

Preferences - A Reminder

$\bullet x \succ y: x$ is preferred strictly to y.
$\bullet x \sim y$: x and y are equally preferred.

- $x \succeq y$: x is preferred at least as much as is y.

Preferences - A Reminder

- Completeness: For any two bundles x and y it is always possible to state either that

$$
x \succsim y
$$

or that

$$
y \succsim x .
$$

Preferences - A Reminder

- Reflexivity: Any bundle x is always at least as preferred as itself; i.e.

$$
x \succsim x
$$

Preferences - A Reminder

- Transitivity: If x is at least as preferred as y, and y is at least as preferred as z, then x is at least as preferred as z ; i.e.

$$
x \succsim y \text { and } y \succsim z \Rightarrow x \succsim z .
$$

Utility Functions

- A preference relation that is complete, reflexive, transitive and continuous can be represented by a continuous utility function.
- Continuity means that small changes to a consumption bundle cause only small changes to the preference level.

Utility Functions

- A utility function $U(x)$ represents a preference relation \succsim if and only if:

$$
\begin{aligned}
& x^{\prime} \succ \mathrm{x}^{\prime \prime} \longleftrightarrow \mathrm{U}\left(\mathrm{x}^{\prime}\right)>\mathrm{U}\left(\mathrm{x}^{\prime \prime}\right) \\
& x^{\prime} \prec x^{\prime \prime} \longleftrightarrow U\left(x^{\prime}\right)<U\left(x^{\prime \prime}\right) \\
& x^{\prime} \sim x ">U\left(x^{\prime}\right)=U\left(x^{\prime \prime}\right) \text {. }
\end{aligned}
$$

Utility Functions

- Utility is an ordinal (i.e. ordering) concept.
- E.g. if $U(x)=6$ and $U(y)=2$ then bundle x is strictly preferred to bundle y. But x is not preferred three times as much as is y.

Utility Functions \& Indiff. Curves

- Consider the bundles (4,1), $(2,3)$ and (2,2).
- Suppose $(2,3) \succ(4,1) \sim(2,2)$.
- Assign to these bundles any numbers that preserve the preference ordering; e.g. $\mathrm{U}(2,3)=6>\mathrm{U}(4,1)=\mathrm{U}(2,2)=4$.
- Call these numbers utility levels.

Utility Functions \& Indiff. Curves

- An indifference curve contains equally preferred bundles.
- Equal preference \Rightarrow same utility level.
- Therefore, all bundles in an indifference curve have the same utility level.

Utility Functions \& Indiff. Curves

- So the bundles $(4,1)$ and $(2,2)$ are in the indiff. curve with utility level $U \equiv 4$
- But the bundle $(2,3)$ is in the indiff. curve with utility level $\mathrm{U} \equiv 6$.
- On an indifference curve diagram, this preference information looks as follows:

Utility Functions \& Indiff. Curves

Utility Functions \& Indiff. Curves

- Another way to visualize this same information is to plot the utility level on a vertical axis.

Utility Functions \& Indiff. Curves

3D plot of consumption \& utility levels for 3 bundles

Utility Functions \& Indiff. Curves

- This 3D visualization of preferences can be made more informative by adding into it the two indifference curves.

Utility Functions \& Indiff. Curves

Utility Functions \& Indiff. Curves

- Comparing more bundles will create a larger collection of all indifference curves and a better description of the consumer's preferences.

Utility Functions \& Indiff. Curves

Utility Functions \& Indiff. Curves

- As before, this can be visualized in 3D by plotting each indifference curve at the height of its utility index.

Utility Functions \& Indiff. Curves

Utility Functions \& Indiff. Curves

- Comparing all possible consumption bundles gives the complete collection of the consumer' s indifference curves, each with its assigned utility level.
- This complete collection of indifference curves completely represents the consumer's preferences.

Utility Functions \& Indiff. Curves

Utility Functions \& Indiff. Curves

- The collection of all indifference curves for a given preference relation is an
- An indifference map is equivalent to a utility function; each is the other.

Utility Functions

- There is no unique utility function representation of a preference relation.
- Suppose $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ represents a preference relation.
- Again consider the bundles $(4,1)$, $(2,3)$ and $(2,2)$.

Utility Functions

$-U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, so
$U(2,3)=6>U(4,1)=U(2,2)=4 ;$
that is, $(2,3) \succ(4,1) \sim(2,2)$.

Utility Functions

$\bullet U\left(x_{1}, x_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2} \longrightarrow(2,3) \succ(4,1) \sim(2,2)$. - Define V = U^{2}.

Utility Functions

$\bullet \mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2} \longrightarrow(2,3) \succ(4,1) \sim(2,2)$.

- Define V = U^{2}.
- Then $V\left(x_{1}, x_{2}\right)=x_{1}{ }^{2} x_{2}{ }^{2}$ and $V(2,3)=36>V(4,1)=V(2,2)=16$ so again $(2,3) \succ(4,1) \sim(2,2)$.
- V preserves the same order as U and so represents the same preferences.

Utility Functions

$-\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2} \longrightarrow(2,3) \succ(4,1) \sim(2,2)$.

- Define W = 2U + 10 .

Utility Functions

$\bullet U\left(x_{1}, x_{2}\right)=x_{1} x_{2} \longrightarrow(2,3) \succ(4,1) \sim(2,2)$.

- Define W = 2U + 10 .
- Then $W\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}+10$ so $W(2,3)=22>W(4,1)=W(2,2)=18$. Again, $(2,3) \succ(4,1) \sim(2,2)$.
- W preserves the same order as U and V and so represents the same preferences.

Utility Functions

- If
$-U$ is a utility function that represents a preference relation \succsim and
- f is a strictly increasing function,
- then $V=f(U)$ is also a utility function representing \succsim.

Goods, Bads and Neutrals

- A good is a commodity unit which increases utility (gives a more preferred bundle).
- A bad is a commodity unit which decreases utility (gives a less preferred bundle).
- A neutral is a commodity unit which does not change utility (gives an equally preferred bundle).

Goods, Bads and Neutrals

Utility

Around x ' units, a little extra water is a neutral.

Some Other Utility Functions and Their Indifference Curves

- Instead of $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ consider

$$
V\left(x_{1}, x_{2}\right)=x_{1}+x_{2}
$$

What do the indifference curves for this "perfect substitution" utility function look like?

Perfect Substitution Indifference Curves

Perfect Substitution Indifference

 Curves

Some Other Utility Functions and Their Indifference Curves

- Instead of $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ or $\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}+\mathrm{x}_{2}$, consider

$$
W\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\} .
$$

What do the indifference curves for this "perfect complementarity" utility function look like?

Perfect Complementarity

 Indifference Curves

Perfect Complementarity

 Indifference Curves

All are right-angled with vertices on a ray from the origin.

Some Other Utility Functions and Their Indifference Curves

- A utility function of the form

$$
U\left(x_{1}, x_{2}\right)=f\left(x_{1}\right)+x_{2}
$$

is linear in just x_{2} and is called

- E.g. $\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=2 \mathrm{x}_{1}{ }^{1 / 2}+\mathrm{x}_{2}$.

Quasi-linear Indifference Curves

$\quad \begin{aligned} & \text { Each curve is a vertically } \\ & \text { copy of the others. }\end{aligned}$

Some Other Utility Functions and Their Indifference Curves

- Any utility function of the form

$$
U\left(x_{1}, x_{2}\right)=x_{1}{ }^{a} x_{2}{ }^{b}
$$

with $\mathrm{a}>\mathbf{0}$ and $\mathrm{b}>\mathbf{0}$ is called a Douglas utility function.
-E.g. $\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}{ }^{1 / 2} \mathrm{x}_{2}{ }^{1 / 2}(\mathrm{a}=\mathrm{b}=1 / 2)$

$$
V\left(x_{1}, x_{2}\right)=x_{1} x_{2}{ }^{3} \quad(a=1, b=3)
$$

Cobb-Douglas Indifference $x_{2} \quad$ Curves

All curves are hyperbolic, asymptoting to, but never touching any axis.
X_{1}

Marginal Utilities

- Marginal means "incremental".
- The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes; i.e.

$$
M U_{i}=\frac{\partial U}{\partial x_{i}}
$$

Marginal Utilities

- E.g. if $U\left(x_{1}, x_{2}\right)=x_{1}{ }^{1 / 2} x_{2}{ }^{2}$ then

Marginal Utilities

- E.g. if $U\left(x_{1}, x_{2}\right)=x_{1}{ }^{1 / 2} x_{2}{ }^{2}$ then

Marginal Utilities

- E.g. if $U\left(x_{1}, x_{2}\right)=x_{1}{ }^{1 / 2} x_{2}{ }^{2}$ then

Marginal Utilities

- E.g. if $U\left(x_{1}, x_{2}\right)=x_{1}^{1 / 2} x_{2}^{2}$ then

Marginal Utilities

- So, if $U\left(x_{1}, x_{2}\right)=x_{1}{ }^{1 / 2} x_{2}{ }^{2}$ then

Marginal Utilities and Marginal Rates-of-Substitution

- The general equation for an indifference curve is
$\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \equiv \mathrm{k}$, a constant.
Totally differentiating this identity gives

$$
\frac{\partial U}{\partial x_{1}} d x_{1}+\frac{\partial U}{\partial x_{2}} d x_{2}=0
$$

Marginal Utilities and Marginal Rates-of-Substitution

$$
\frac{\partial U}{\partial x_{1}} d x_{1}+\frac{\partial U}{\partial x_{2}} d x_{2}=0
$$

rearranged is

$$
\frac{\partial U}{\partial x_{2}} d x_{2}=-\frac{\partial U}{\partial x_{1}} d x_{1}
$$

Marginal Utilities and Marginal Rates-of-Substitution

And $\frac{\partial U}{\partial x_{2}} d x_{2}=-\frac{\partial U}{\partial x_{1}} d x_{1}$
rearranged is

$$
\frac{d x_{2}}{d x_{1}}=-\frac{\partial U / \partial x_{1}}{\partial U / \partial x_{2}} .
$$

This is the MRS.

Marg. Utilities \& Marg. Rates-ofSubstitution; An example

- Suppose $\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2}$. Then

$$
\frac{\partial U}{\partial x_{1}}=(1)\left(x_{2}\right)=x_{2}
$$

$$
\frac{\partial U}{\partial x_{2}}=\left(x_{1}\right)(1)=x_{1}
$$

so $\quad M R S=\frac{d x_{2}}{d x_{1}}=-\frac{\partial U / \partial x_{1}}{\partial U / \partial x_{2}}=-\frac{x_{2}}{x_{1}}$.

Marg. Utilities \& Marg. Rates-ofSubstitution; An example

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

- A quasi-linear utility function is of the form $U\left(x_{1}, x_{2}\right)=f\left(x_{1}\right)+x_{2}$. $\frac{\partial U}{\partial x_{1}}=f^{\prime}\left(x_{1}\right) \quad \frac{\partial U}{\partial x_{2}}=1$

$$
\text { so } M R S=\frac{d x_{2}}{d x_{1}}=-\frac{\partial U / \partial x_{1}}{\partial U / \partial x_{2}}=-f^{\prime}\left(x_{1}\right) .
$$

Marg. Rates-of-Substitution for

 Quasi-linear Utility Functions- MRS = - $\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)$ does not depend upon x_{2} so the slope of indifference curves for a quasi-linear utility function is constant along any line for which x_{1} is constant. What does that make the indifference map for a quasilinear utility function look like?

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

Each curve is a vertically shifted copy of the others.

MRS is a
constant along any line for which x_{1} is constant.

Monotonic Transformations \&

 Marginal Rates-of-Substitution- Applying a monotonic transformation to a utility function representing a preference relation simply creates another utility function representing the same preference relation.
- What happens to marginal rates-ofsubstitution when a monotonic transformation is applied?

Monotonic Transformations \&

Marginal Rates-of-Substitution

- For $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ the MRS $=-x_{2} / x_{1}$.
- Create $\mathrm{V}=\mathrm{U}^{2}$; i.e. $\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}{ }^{2} \mathrm{x}_{2}{ }^{2}$. What is the MRS for V ?

$$
M R S=-\frac{\partial V / \partial x_{1}}{\partial V / \partial x_{2}}=-\frac{2 x_{1} x_{2}^{2}}{2 x_{1}^{2} x_{2}}=-\frac{x_{2}}{x_{1}}
$$

which is the same as the MRS for U.

Monotonic Transformations \&
Marginal Rates-of-Substitution

- More generally, if $V=f(U)$ where f is a strictly increasing function, then

$$
\begin{aligned}
\text { MRS } & =-\frac{\partial V / \partial x_{1}}{\partial V / \partial x_{2}}=-\frac{f^{\prime}(U) \times \partial U / \partial x_{1}}{f^{\prime}(U) \times \partial U / \partial x_{2}} \\
& =-\frac{\partial U / \partial x_{1}}{\partial U / \partial x_{2}} .
\end{aligned}
$$

So MRS is unchanged by a positive monotonic transformation.

