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A simple geostatistical problem
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Measurements Yi at locations xi
in a spatial region A

Unobserved spatially continuous
phenomenon S(x)

What can we say about the
realisation of S(x) throughout A?



Schematic
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Geostatistical problems more generally

Design: how to choose locations xi at which to collect
measurements

Estimation: how to investigate relationships with covariates
when measurements are spatially correlated

Prediction: how to map (expected value of) outcome
throughout the study-region



Origins of geostatistics ... mining in South Africa

Krige (1951)



From South Africa to Fontainebleau... classical
geostatistics

Matheron (1963)



Meanwhile in Sweden...the Royal College of
Forestry, Stockholm

Matérn (1960)



Into the statistical mainstream

Watson (1972) Ripley (1981) Cressie (1991)



Model-based geostatistics: the application of general
principles of statistical modelling and inference to
geostatistical problems (Diggle, Moyeed and Tawn, 1998)
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S: an unobserved process
Y : data relevant to S

Hierarchical formulation

[S,Y ] = [S][Y |S]⇒ [T |Y ]

Parameter estimation: Monte Carlo
maximum likelihood



Prediction

“The answer to any prediction problem is a probability distribution”
Peter McCullagh

S = state of nature
Y = all relevant data
T = F(S) = target for prediction

Model: [S,Y ] = [S][Y |S]
Prediction: [S,Y ]⇒ [S|Y ]⇒ [T |Y ]

Parameter uncertainty? [T |Y ] =
∫

[T |Y ; θ̂][θ̂|Y ]d θ̂



Environmental monitoring in Galicia, northern Spain

5.0 5.5 6.0 6.5

46
.5

47
.0

47
.5

48
.0

48
.5

1997 sample
2000 sample

1997 sampling
concentrated towards
northern Galicia

potential for selection
bias?



Preferential sampling

locations X signal S measurements Y

Conventional model:

[X, S,Y ] = [S][X][Y |S] (1)

Preferential sampling model:

[X, S,Y ] = [S][X|S][Y |S,X] (2)

Key point for inference: even if [Y |S,X] in (2) and [Y |S] in (1)
are algebraically the same, the term [X|S] in (2) cannot be ignored
for inference about [S,Y ], because of the shared dependence on
the unobserved process S



Preferential sampling model

[X, S,Y ] = [S][X|S][Y |S,X]

[S] = stationary Gaussian process

[X|S] = inhomogenous Poisson process with intensity

λ(x) = exp{α+ βS(x)}

[Y |S,X] = N{µ+ S(x), τ 2} (independent Gaussian)

Likelihood inference: Importance sampler for direct Monte Carlo
evaluation of likelihood

Diggle, Menezes and Su (2010)



Environmental monitoring in Galicia
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Modelling strategy

2000 sampling is
non-preferential

1997 sampling may be
preferential

some parameters in
common between 1997
and 2000?



Likelihood ratio testing

Model-fits for log-transformed lead concentrations

1997 preferential? parameterisation log L(θ̂)
no free parameters −96.79

common covariance structure 100.62

yes free parameters −82.95
common covariance structure −86.04



Spatial prediction of lead concentrations

Common scale runs from −0.756 (red) to 8.358 (white)
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For better global health



Why use model-based geostatistics?

absence of registry data ⇒ modelling assumptions can
compensate for sparseness of data

limited resources for field-work ⇒ statistical efficiency is
paramount

classical survey sampling methods are generally inefficient
when data are spatially correlated (Matérn, 1960)

borrowing strength : prevalence data at any one location
predicts prevalence at nearby locations
(aka “the first law of geography”)

⇒ operational performance of classical methods can be
matched (or bettered) using smaller sample size



Prevalence surveys
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Aim: map variation in
prevalence throughout
designated region to
inform treatment
strategy

how many samples?

where to take them?

how to analyse the data?



Geostatistical model for prevalence data

Latent spatially correlated process

S(x) ∼ SGP{0, σ2, ρ(u, v))}

Latent spatially independent random effects

U(x) ∼ iid N(0, ν2)

Linear predictor and link function

d(x) = environmental variables
η(x) = d(x)′β + S(x) + U(x)
p(x) = log[η(x)/{1− η(x)}]

Conditional distribution for positive proportion Yi/ni

Yi |S(·) ∼ Bin{ni , p(xi )} (binomial sampling)



Liberia: onchocerciasis prevalence map
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Mapping uncertainty: probability-of-exceedance

P(prevalence>10%) P(prevalence>20%)
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A simulated example

Area-wide average prevalence = 41.7%
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A simulated example

Area-wide average prevalence = 41.7%
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A simulated example

Area-wide average prevalence = 41.7%
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Survey sampling analysis

41.3± 8.6



A simulated example

Area-wide average prevalence = 41.7%
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Survey sampling analysis

41.3± 8.6

Geostatistical analysis

41.6± 1.4



Where does the extra efficiency come from?

Exploiting spatial correlation

– Data at location x are informative of prevalence at
“neighbouring” locations x′

– Model-fitting process allows data to choose optimal
definition of “neighbouring”

Asking the right question

– Classical approach: how precisely can we estimate
prevalence under repeated realisations?

– Geostatistical approach: how precisely can we predict
prevalence in this particular realisation?



Neglected Tropical Diseases

“A diverse group of communicable diseases that prevail in tropical
and subtropical conditions...”

https://www.who.int/neglected diseases/diseases/en/

“One-sixth of the world’s population, mostly in developing
countries, are infected with one or more of the NTDs.”

Mitra and Mawson, 2017



2030 Sustainable Development Goals

Eradication: permanent reduction of worldwide incidence to zero

Elimination: reduction of incidence in a specified geographic area
to zero

Elimination as a public health problem: reduction of incidence in a
specified geographic area to an agreed level



Lymphatic filariasis in Ghana

Analyse Ghana-wide pre-intervention data on LF prevalence

Simulate geographical distribution of LF at or near elimination
status

Compare two design strategies:

− Current WHO guidelines

− Model-based geostatistics
Fronterre et al, 2020



Sampling scheme: current WHO guidelines

Consider each district as an evaluation unit (EU)

Use tables provided by WHO to calculate for each EU

− number of villages to sample

− number of children to test per village

− critical number of positive test results

Classify each EU as elimination indicated or not indicated
according to observed total number of positives



Elimination target

For each EU

Communities j = 1, ...,N of size nj at locations xj

T =
∑

nj P(xj )∑
nj

Elimination ⇔ T < 0.02

Probabilistic prediction

Draw samples from predictive distribution of T

Choose probability threshold q

Elimination indicated ⇔ Prob(T < 0.02|data) > q



Ghana: baseline LF prevalence at 403 locations
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Ghana LF: spatial correlation structure
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Baseline prevalence maps
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Baseline elimination status maps
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Simulating progression towards elimination

Geostatistical model fitted to pre-intervention data

log[P(x)/{1− P(x)}] = α+ S(x)

Pre-intervention log-odds surface

L(x) = log[P(x)/{1− P(x)}]

Calculate

L0(x) = L(x)− c, P0(x) = exp{L0(x)}/[1 + exp{L0(x)}],

such that population-weighted average of P0(x) is 0.02.



Projected prevalence maps
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Projected elimination status maps
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Evaluation of predictive performance

simulate test results over region of interest

for each EU

− apply current WHO guidelines to simulated data

− apply model-based geostatistics to simulated data

− compare actual and indicated elimination status

construct tables of true/false positive/negative indications

calculate NPV and PPV



ROC curves: positive and negative predictive values

PPV = percent correct positive indications
NPV = percent correct negative indications

Locations sampled: all Locations sampled: 1/5 Locations sampled: 1/10
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Top row: number of schools sampled per district: 30→ 6→ 3
Bottom row: constant total number of children sampled



Meanwhile back in the UK...the arrival of COVID-19



Concluding remarks

Methodology
1 Developed over 20 years, growing number of case-studies
2 Extensions include:

− multiple diagnostics;
− randomised and convenience survey data;
− co-morbidity surveys;
− adaptive design;
− spatio-temporal models
− real-time surveillance for any georeferenced

numerator/denominator data
Software

1 Open-source R package PrevMap
2 Plans to develop interactive user-interface for in-country use

Diggle and Giorgi, 2019


