## A paired experiment

#### Objective

How effective is a chemical treatment in increasing the abrasion resistance of rubber?

#### The experimental design

- ten test-pieces cut from a sheet of rubber;
- each piece cut in half
  - one half of each piece chosen at random to receive treatment
  - other half of each piece does not receive treatment
- abrasion resistance measured for each of the 20 half-pieces.

## A schematic of the experimental design



### Resulting data

| Piece   | Untreated | Treated |
|---------|-----------|---------|
| 1       | 12.1      | 14.7    |
| 2       | 10.9      | 14.0    |
| 3       | 13.1      | 12.9    |
| 4       | 14.5      | 16.2    |
| 5       | 9.6       | 10.2    |
| 6       | 11.2      | 12.4    |
| 7       | 9.8       | 12.0    |
| 8       | 13.7      | 14.8    |
| 9       | 12.0      | 11.8    |
| 10      | 9.1       | 9.7     |
|         |           |         |
| Average | 11.6      | 12.9    |

## Graphical presentation of the data



### Discussion

- Why 10 test-pieces?
- Why cut them in half?
- Why randomise choice of which half to treat?
- What conclusions can we draw?
- What conclusions might we have drawn if we had chosen 10 out of 20 specimens at random to receive the chemical treatment?









## Analysing the pairwise differences

Observed pairwise differences

Summary statistics

$$\mathsf{n} = 10 \quad \bar{\mathsf{d}} = 1.27 \quad \mathsf{SD} = 1.1265 \quad \mathsf{SE} = \mathsf{SD}/\sqrt{\mathsf{n}} = 0.3562$$