Probably the most widely used formula for a confidence interval is

$$ar{x} \pm 2\sqrt{s^2/n}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- x̄ is the sample mean
- s² is the sample variance
- n is the sample size
- 2 is PJD's approximation to 1.96

Strictly, you should use a value c_n which depends on n, but is approximately 2 for reasonably large n, for example:

n	Cn
5	2.78
10	2.26
20	2.09
50	2.01
∞	1.96

Where does the formula for the confidence interval come from?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

This diagram shows how the distribution of the sample mean changes with the sample size:

(ロ > 《 郡 > 《 臣 > 《 臣 > 三 臣 … のへ)

And this diagram shows how the variance of the sample mean changes with the sample size:

イロト イポト イヨト イヨト æ

Conclusions

- sample means are approximately Normally distributed (symmetric, bell-shaped histogram)
- larger samples lead to more precise estimates
- the variance of an estimate is inversely proportional to the sample size, n
- the standard error of an estimate is therefore inversely proportional to \sqrt{n}
- Murphy's law of diminishing returns doubling the sample size does not double the precision of your estimate