Residuals: Anscombe's quartet

Residuals: Anscombe's quartet

Defining residuals

DATA = FITTED VALUE + RESIDUAL

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Anscombe's quartet

- all four data-sets have:
 - the same best-fitting straight line
 - the same residual sum of squares
- but the residuals tell four different stories.

res1	res2	res3	res4
1 -0.740	-1.901	0.389	0.000
2 0.179	-0.761	0.229	-0.111
3 1.239	0.129	0.079	-1.751
4 -1.681	0.759	-0.081	0.909
5 -0.051	1.139	-0.230	-1.241
6 1.309	1.269	-0.390	1.839
7 0.039	1.139	-0.540	-0.421
8 -0.171	0.759	-0.689	1.469
9 1.839	0.129	-0.849	-1.441
10 -1.921	-0.761	3.241	0.709
11 -0.041	-1.901	-1.159	0.039

Why are the four sets of residuals different?

- obvious if you have only one explanatory variable
- less obvious when you have many

Analysing residuals

- check that their average value is (close to) zero
- plot them against fitted values
- plot them against explanatory variables in the model
- plot them against explanatory variables **not** in the model (for example, residuals against time-order)