$\mathbf{Y} = \alpha + \beta \mathbf{x}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Or equivalently:

- $E[Y] = \alpha + \beta x$
- Y $\sim N(\mu, \sigma^2)$

The generalisation:

- $h(E[Y]) = \alpha + \beta x$ (link function)
- $\mathbf{Y} \sim f(\mu, ...)$ (error distribution)

- $h(E[Y]) = \alpha + \beta x$ (Link function)
- $Y \sim f(\mu, ...)$ (error distribution)
- choice of link function makes linear dependence on explanatory variables more plausible
- choice of error distribution adds flexibility
- puts a very wide range of statistical methods under a common framework

 encourages open thinking (problem-driven rather than recipe-driven)

Linear model

$$E[Y_i] = \alpha + \beta x_i = \mu_i$$
 $Var(Y) = \sigma^2$

Generalised linear model

$$\mathbf{E}[\mathbf{Y}_{i}] = \mathbf{h}^{-1}(\alpha + \beta \mathbf{x}_{i}) = \mu_{i} \qquad \operatorname{Var}(\mathbf{Y}) = \mathbf{v}(\mu_{i})$$

Residuals and standardised residuals

	Linear	Generalised linear
residual	${f y_{i}}-\hat{\mu}_{i}$	${\sf y}_{\sf i} - \hat{\mu}_{\sf i}$
standardised residual	$({f y}_{f i}-\hat{\mu}_{f i})/\hat{\sigma}$	$(y_i - \hat{\mu}_i)/\sqrt{v(\hat{\mu}_i)}$

The statistical modelling cycle

- identify the question
- design the study
- collect the data
- build the model
 - exploration
 - Ø fitting
 - o diagnostic checking
 - repeat (a) to (c) as necessary

(4回) (日) (日) (日) (1000)

answer the question

Examples of generalised linear models: open-ended count response

Poisson log-linear

$$\mathsf{log}(\mu) = lpha + eta \mathsf{x} \qquad \mathsf{Y} \sim \mathsf{Poiss}(\mu)$$

• Extra-Poisson square-root linear

$$\sqrt{\mu} = \alpha + \beta x$$
 $\operatorname{Var}(\mathbf{Y}) = \phi \times \mu$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

Examples of generalised linear models: binary response

Logistic

$$\log\{\mu/(1-\mu)\} = \alpha + \beta \mathsf{x} \qquad \mu = \mathsf{P}(\mathsf{Y} = 1)$$

Complementary log-log

$$\log\{-\log(\mu)\} = \alpha + \beta x$$
 $\mu = P(Y = 1)$

х