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Geostatistical design



Geostatistical design

» Non-adaptive

1. choose complete set of measurement locations,
X={xi€eA:i=1,..,n}

2. collect measurement data Y

» Adaptive

1. choose initial set of measurement locations,
X = {Xi EA:i= 1,...,b}
2. collect initial measurement data Y,

3. analyse initial data and use results to inform choice of
Xy = {Xi ceA:i= b+1,...,2b}

4. continue until design is complete

In adaptive design, b is called the batch size



Naive design folklore

» Spatial correlation decreases with increasing distance.
» Therefore, close pairs of points are wasteful.

» Therefore, spatially regular designs are a good thing.



Less naive design folklore

» Spatial correlation decreases with increasing distance.

» Therefore, close pairs of points are wasteful if you know the
correct model.

» But in practice you need to estimate unknown model
parameters.

» And to estimate model parameters, you need your design to
include a range of small inter-point distances.

» Therefore, spatially regular designs should be tempered by the
inclusion of some close pairs of points.



Examples of lattice-based designs

A) Lattice plus close pairs design B) Lattice plus in—fill design
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Limitations of lattice-based designs

» in some applications, available sampling locations are
pre-specified, eg farms or villages

» absence of a probability sampling framework



Lattice-free spatially regular sampling designs

Sample at random subject to a minimum distance constraint




Lattice-free spatially regular sampling designs

Sample at random subject to a minimum distance constraint
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Lattice-free spatially regular sampling designs

Sample at random subject to a minimum distance constraint
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Lattice-free spatially regular sampling designs

Sample at random subject to a minimum distance constraint
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Lattice-free spatially regular sampling designs
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Sample at random subject to a minimum distance constraint
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Lattice-free spatially regular sampling designs

Sample at random subject to a minimum distance constraint
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Spatially regular sampling from a pre-specified set of
locations

» again achieve spatial regularity by sampling at random subject
to a minimum distance constraint
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» Tempering spatial regularity with close pairs still a good idea
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R code for regular sampling designs
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discrete.sample<-function(xy.all,n,delta,k=0) {

#

# Arguments

# xy.all: set of potential sample locations

# n: size of required sample

# delta: minimum distance between any two locations in
preliminary sample

# k: number of close pairs (must be between O and n/2)
##

# Result

# array of dimension n by 2 containing the final sampled
locations

#



Example: sampling in a regular plus close pairs design
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set.seed(16713); N<-500; par(pty="s",mfrow=c(1,2))
xy<-cbind (runif (N) ,runif (N))

#

# generate spatially random sample of 50 locations

#

plot(xyl[,1],xy[,2],pch=19,cex=0.25,xlab="Easting",
ylab="Northing",cex.lab=1,cex.axis=1,cex.main=1)
xy.sample<-xy[sample(1:dim(xy) [1],50,replace=FALSE),]
points(xy.samplel[,1],xy.sample[,2],pch=19,col="red")
#

# generate spatially regular sample with 10 close pairs
#

plot(xy[,1],xy[,2],pch=19,cex=0.25,xlab="Easting",
ylab="Northing",cex.lab=1,cex.axis=1,cex.main=1)
xy.sample<-discrete.sample(xy,50,0.1,10)
points(xy.sample[,1],xy.sample[,2],pch=19,col="red")



A class of adaptive designs

Singleton adaptive

» Suppose we have measurements Y| at a set of locations X}
and we are allowed to choose one additional location x

» Calculate the predictive variance of S(x),
PV(x) = Var(S(x)|Yo),
add the available location x with the biggest value of PV(x)

Batch adaptive

» Now suppose we are allowed to choose b additional locations x
» Add b available locations with biggest values of PV(x)?

> A bad idea...typically gives tight cluster of additional locations

v

To avoid this, we again impose a minimum distance constraint
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Non-adaptive (NAGD) vs minimum distance batch
adaptive (AGD) sampling
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» ng = 30 initial locations, n = 100 total locations
» minimum distance 6 = 0.03, batch sizes b =1,5,10

Minimum distance batch sampling:
(Average Prediction Variance)
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Further remarks on geostatistical design

1. Conceptually more complex problems include:
1.1 design when some sub-areas are more interesting than others;
1.2 design for best prediction of non-linear functionals of S(-);
1.3 spatio-temporal: predicting a moving target

2. Theoretically optimal designs may not be practicable

3. A more realistic goal is to suggest constructions for good,
general-purpose designs.
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