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Linear geostatistical models



The first law of geography

All things are related, but close things are more strongly related
than distant things

Completely random variation: measurements at different locations
are statistically independent

Spatial variation: measurements at different locations are
statistically dependent, and the strength of this dependence varies
according to their relative locations
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Notation

» Y ={Y;:i=1,...,n} is the measurement data
» X ={x:i=1,...,n} is the sampling design
> A is the region of interest

v

Y* = {Y(x) : x € A} is the measurement process

v

S* = {S(x) : x € A} is the signal process

v

S={S(x):i=1,...,n}

v

T = F(S*) is the target for prediction

v

[S*, Y] = [S*][Y|S*] is the geostatistical model



The linear Gaussian model

Model:
» Stationary Gaussian process S(x) : x € R?
L E[S()] = u
+ Cov{S(x),S(x')} = o?p(|Ix — x'[|)
» Mutually independent Y;|S(:) ~ N(S(x;), 72)
Questions:

» covariates? p — p(x) = d(x)'3

» how to specify the correlation function p(u)?



The Matérn family of correlation functions

p(u) = 2571 (u/$)"Ki(u/9)

» parameters kK > 0 and ¢ > 0

v

K. (+) : modified Bessel function of order
» k = 0.5 gives p(u) = exp{—u/¢}

> Kk — oo gives p(u) = exp{—(u/$)’}

» x and ¢ are not orthogonal:

— helpful re-parametrisation: ¢ — a = 2¢+/k

— but estimation of « is difficult



The Matérn correlation function
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» k < 1 =>5(x) is continuous but non-differentiable
> Kk > c = S(x) is c times differentiable



Matérn simulated realisations
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Parameter estimation using the variogram

What not to do and how to do it

» weighted least squares criterion:

W(6) =D m{V(u) — V(uc; 6)}?

k

where 0 denotes vector of covariance parameters
> arbitrary upper limit for uy

» false analogy with regression modelling of independently
replicated data



Comments on variogram fitting

Different extrapolations at origin give equally good fits
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Comments on variogram fitting (2)

Correlation between variogram points induces
smoothness, giving false impression of precision

Three simulations from the same model.
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Parameter estimation: maximum likelihood

Y ~ MVN(ul, o’R + 721)

» Ris n X n matrix, (i,j)™ element p(u;)

» u; = ||xi — x;||, Euclidean distance between x; and x;

Adding explanatory variables is technically straightforward:
p(x) = d(x)'B

Y ~ MVN(Dg, o°R + 721)
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Gaussian log-likelihood function

Y ~ MVN(DgB, o’R + 721)

> write v? = 72/02, hence 02V = oa?(R + v/?I)
> log-likelihood function is maximised for
B(V) = (D’'V~!D)'D'V~ly
6% =n"'(y — DB)'V~'(y — DJ)
» substitute (B, UAZ) to give reduced maximisation problem

L*(v%, ¢, k) x —0.5{nlog |5?| + log |(R + 2?1)|}

choosing « from a discrete set, e.g. x = 0.5,1.5,2.5
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A philosophical problem and its resolution

> In a linear geostatistical model with explanatory variables,
write u(x) = d(x)’8
» Then, the data are generated by the formula

di = p(xi) + s(xi) + z;
where

> p(x) is a deterministic function of x
> S(x) is a realisation of the stochastic process S(x)

Problem

» without independent replication of the spatial process, how
can you distinguish between p(x) and s(x)?

Resolution
» empirical: use p(x) and s(x) to describe large-scale and
small-scale spatial variation, respectively
» theoretical: use contextual knowledge to transfer variation
from s(x) (unexplained) to p(x) (explained)
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geoR: maximum likelihood estimation

mlfit2<-likfit(elevation,trend="2nd",ini.cov.pars=c(1000,1),
cov.model="matern" ,kappa=2)
mlfit2
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Prediction

The answer to any prediction problem is a probability distribution

Peter McCullagh, FRS

» T = any quantity of scientific interest

» Y = data that can tell us something about T.

The predictive distribution of T is the conditional probability
distribution of T given Y
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Geostatistical prediction

Let S* = {S(x}), ..., S(x§y)} for any set of locations {x},...,xy}
» Y ~ multivariate Normal
» for the Gaussian linear model S*|Y ~ multivariate Normal
» hence simulate samples of S* conditional on Y

» corresponding T* = T(S*) are samples from predictive
distribution of T
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Minimum mean square error prediction

Model
> [S*] = probability distribution of underlying spatial process

» [Y|S*] = probability distribution of data conditional on
underlying spatial process

» Bayes’ theorem then gives us the predictive distribution [S*|Y]
Mean square error

» T =t(Y) is a point predictor

» MSE(T) = E[(T — T)?] is the mean square error
Theorem

1. MSE(T) takes its minimum value when T = E(T|Y).

2. Var(T|Y) estimates the achieved mean square error
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Simple and ordinary kriging

Y ~ MVN(ul, o2V)
V=R+(r%/0?) Rij = p(llxi — xll)
Target for prediction is T = S(x)
Write r = (r1, ..., rn) where
i = p(|lx — xill)

Standard results on multivariate Normal then give [T|Y] as
multivariate Gaussian with mean and variance

T=p+rVIY —pul)
Var(T|Y) = o?(1 — ¥V~ 1r)
Simple kriging: it =Y  Ordinary kriging: i = (I’'V-11)~11'V—1Y
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Simple kriging: three examples

1. Varying k (smoothness of S(x))
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locations
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2. Varying ¢ (range of spatial correlation

0.2 0.3 0.4 0.5 0.6 0.7 0.8
locations
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3. Varying 72/0? (noise-to-signal ratio)
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Trans-Gaussian models

» assume Gaussian model holds after point-wise
transformation

> Box-Cox family is widely used

. Y —1)/A ifA#0
Y =h)\(Yi)={ I(og(Y;) / ifA=0

Example: log-Gaussian kriging

> T(x) = exp{S(x)} T(x) = exp{S(x) + v(x)/2}
> Si,...,Sm are a sample from [S|Y]

» T; = exp(Si) = T1,..., Tm are a sample from [T|Y]
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Reminder: Predicting non-linear functionals

» minimum mean square error prediction is not invariant under
non-linear transformation

» the complete answer to a prediction problem is the
predictive distribution, [T|Y]

» Recommended strategy:

> draw repeated samples from [S*|Y]

> calculate required summaries
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geoR: plug-in prediction

25

region<-matrix(c(0,0,6.5,0,6.5,6.5,0,6.5),4,2,T)

grid<-as.matrix(pred_grid(region,by=0.25))

KC<-krige.control(obj.model=mlfit2,trend.d="2nd",trend.1="2nd")

0C<-output.control(n.predictive=100)

set.seed(24367)

predictions<-krige.conv(geodata=elevation,locations=grid,

borders=region,krige=KC, output=0C)

image (predictions)

points(elevation,add=T)

par (mfrow=c(1,2))

hist(elevation$data,main="data")

predict.max<-NULL

for (sim in 1:100) {
predict.max<-c(predict.max,max(predictions$simulations[,sim])

}

hist(predict.max,main="predicted maximum")



Bayesian inference

Model specification
[Y, 6] = [6][Y|6]

> [Y|6] probability distribution of Y given parameter value 6

» [0] prior probability distribution for 6
(before you collect any data)

Parameter estimation

» Bayes’ Theorem gives posterior distribution for 0
(adding information from data)

[01Y] = [Y|6][6]/1Y]

where [Y] = [[Y|0][6]d6
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Bayesian inference for geostatistical models

Model specification
[Y,S, 6] = [6][S|6I[Y]S, 6]

> [S] is an unobserved spatial stochastic process, representng
the spatial phenomenon of scientifc interest

Parameter estimation

» integration gives likelihood function
[Y,0] = /[Y, S, 6]dS = [0][Y]6]
» as before, Bayes’ Theorem gives posterior distribution
[01Y] = [Y[6][6]/[Y]

where [Y] = [[Y]|0][6]d6
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Bayesian inference for geostatistical models (2)

Prediction

S denotes the spatial process of interest at data-locations

S* denotes the same process at data and prediction locations

» expand model specification to
[Y,S*, 6] = [0][S|O][YIS, 6][S™|S. 6]
» plug-in predictive distribution is
[S*|Y, 6]
» Bayesian predictive distribution is

(511 = [Is°IY. 6lleIv]de

» for any target T = t(S*), required predictive distribution [T|Y]
follows by direct calculation
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Notes

29

likelihood function is central to both classical and Bayesian
inference

Bayesian prediction is a weighted average of plug-in
predictions, with different plug-in values of 0
weighted according to their conditional probabilities
given the observed data.

Bayesian prediction is usually more conservative
than plug-in prediction



geoR: Bayesian estimation and prediction
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MC<—mode1.control(trend.d="2nd“,trend.1="2nd",kappa=2)
PC<-prior.control(beta.prior="flat",sigmasq.prior="sc.inv.chisq"
sigmasq=1000,df.sigmasq=4,phi.discrete=0.5%(1:5),
tausq.rel.prior="uniform",tausq.rel.discrete=0.1%(1:5))
0C<-output.control(n.posterior=100,n.predictive=100,
simulations.predictive=T,signal=T,moments=F)

set.seed(24367)
results.bayes<-krige.bayes(geodata=elevation,locations=grid,
borders=region,model=MC,prior=PC,output=0C)



geoR: plotting posterior distributions

plot(results.bayes)
posteriors.bayes<-results.bayes$posterior
posterior.sample<-posteriors.bayes$sample
par (mfrow=c(3,3))
for (i in 1:9){
hist(posterior.sample[,i] ,main=" ")
}
par (mfrow=c(1,1))
plot(posterior.sample[,2] ,posterior.sample[,3])

31



geoR: plotting predictive distributions
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predictions.bayes<-results.bayes$predictive

image (unique(grid[,1]) ,unique(grid[,2]),
matrix(predictions.bayes$mean.simulations,27,27))

points(elevation,add=T)

par (mfrow=c(1,2))

predict.max<-NULL

predict.max<-c(predict.max,max(predictions$simulations[,sim]))
for (sim in 1:100) {

predict.max<-c(predict.max,max(predictions$simulations[,sim]))
hist(predict.max,xlab="maximum", main="plug-in")
predict.bayes.max<-NULL
for (sim in 1:100) {
predict.bayes.max<-c(predict.bayes.max,
max (predictions.bayes$simulations[,sim]))
}

hist(predict.bayes.max,xlab="maximum" ,main="Bayesian")



