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Linear geostatistical models
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The first law of geography

All things are related, but close things are more strongly related
than distant things

Completely random variation: measurements at different locations
are statistically independent

Spatial variation: measurements at different locations are
statistically dependent, and the strength of this dependence varies
according to their relative locations
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Notation

I Y = {Yi : i = 1, ..., n} is the measurement data

I X = {xi : i = 1, ..., n} is the sampling design

I A is the region of interest

I Y∗ = {Y(x) : x ∈ A} is the measurement process

I S∗ = {S(x) : x ∈ A} is the signal process

I S = {S(xi) : i = 1, ..., n}

I T = F(S∗) is the target for prediction

I [S∗,Y] = [S∗][Y|S∗] is the geostatistical model

4



The linear Gaussian model

Model:

I Stationary Gaussian process S(x) : x ∈ IR2

· E[S(x)] = µ

· Cov{S(x), S(x′)} = σ2ρ(‖x− x′‖)

I Mutually independent Yi|S(·) ∼ N(S(xi), τ 2)

Questions:

I covariates? µ→ µ(x) = d(x)′β

I how to specify the correlation function ρ(u)?
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The Matérn family of correlation functions

ρ(u) = 2κ−1(u/φ)κKκ(u/φ)

I parameters κ > 0 and φ > 0

I Kκ(·) : modified Bessel function of order κ

I κ = 0.5 gives ρ(u) = exp{−u/φ}

I κ→∞ gives ρ(u) = exp{−(u/φ)2}

I κ and φ are not orthogonal:

− helpful re-parametrisation: φ→ α = 2φ
√
κ

− but estimation of κ is difficult
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The Matérn correlation function
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κ = 0.5 ,  φ = 0.25
κ = 1.5 ,  φ = 0.16
κ = 2.5 ,  φ = 0.13

I κ ≤ 1⇒ S(x) is continuous but non-differentiable

I κ > c⇒ S(x) is c times differentiable
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Matérn simulated realisations
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Parameter estimation using the variogram

What not to do and how to do it

I weighted least squares criterion:

W(θ) =
∑

k

nk{V̂(uk)− V(uk; θ)}2

where θ denotes vector of covariance parameters

I arbitrary upper limit for uk

I false analogy with regression modelling of independently
replicated data
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Comments on variogram fitting

Different extrapolations at origin give equally good fits
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Comments on variogram fitting (2)

Correlation between variogram points induces
smoothness, giving false impression of precision

Three simulations from the same model.
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Parameter estimation: maximum likelihood

Y ∼MVN(µ1, σ2R + τ 2I)

I R is n× n matrix, (i, j)th element ρ(uij)

I uij = ||xi − xj||, Euclidean distance between xi and xj

Adding explanatory variables is technically straightforward:

µ(xi) = d(xi)
′β

Y ∼MVN(Dβ, σ2R + τ 2I)
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Gaussian log-likelihood function

Y ∼MVN(Dβ, σ2R + τ 2I)

I write ν2 = τ 2/σ2, hence σ2V = σ2(R + ν2I)

I log-likelihood function is maximised for

β̂(V) = (D′V−1D)−1D′V−1y

σ̂2 = n−1(y − Dβ̂)′V−1(y − Dβ̂)

I substitute (β̂, σ̂2) to give reduced maximisation problem

L∗(ν2, φ, κ) ∝ −0.5{n log |σ̂2|+ log |(R + ν2I)|}

choosing κ from a discrete set, e.g. κ = 0.5, 1.5, 2.5

13



A philosophical problem and its resolution

I In a linear geostatistical model with explanatory variables,
write µ(x) = d(x)′β

I Then, the data are generated by the formula

di = µ(xi) + s(xi) + zi

where
I µ(x) is a deterministic function of x
I S(x) is a realisation of the stochastic process S(x)

Problem

I without independent replication of the spatial process, how
can you distinguish between µ(x) and s(x)?

Resolution

I empirical: use µ(x) and s(x) to describe large-scale and
small-scale spatial variation, respectively

I theoretical: use contextual knowledge to transfer variation
from s(x) (unexplained) to µ(x) (explained)
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geoR: maximum likelihood estimation

mlfit2<-likfit(elevation,trend="2nd",ini.cov.pars=c(1000,1),

cov.model="matern",kappa=2)

mlfit2
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Prediction

The answer to any prediction problem is a probability distribution

Peter McCullagh, FRS

I T = any quantity of scientific interest

I Y = data that can tell us something about T.

The predictive distribution of T is the conditional probability
distribution of T given Y
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Geostatistical prediction

Let S∗ = {S(x∗1 ), ..., S(x∗M)} for any set of locations {x∗1 , ..., x∗M}

I Y ∼ multivariate Normal

I for the Gaussian linear model S∗|Y ∼ multivariate Normal

I hence simulate samples of S∗ conditional on Y

I corresponding T∗ = T (S∗) are samples from predictive
distribution of T

17



Minimum mean square error prediction

Model

I [S∗] = probability distribution of underlying spatial process

I [Y|S∗] = probability distribution of data conditional on
underlying spatial process

I Bayes’ theorem then gives us the predictive distribution [S∗|Y]

Mean square error

I T̂ = t(Y) is a point predictor

I MSE(T̂) = E[(T̂− T)2] is the mean square error

Theorem

1. MSE(T̂) takes its minimum value when T̂ = E(T|Y).

2. Var(T|Y) estimates the achieved mean square error
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Simple and ordinary kriging

Y ∼MVN(µ1, σ2V)

V = R + (τ 2/σ2) Rij = ρ(‖xi − xj‖)

Target for prediction is T = S(x)

Write r = (r1, ..., rn) where

ri = ρ(‖x− xi‖)

Standard results on multivariate Normal then give [T|Y] as
multivariate Gaussian with mean and variance

T̂ = µ + r′V−1(Y − µ1)

Var(T|Y) = σ2(1− r′V−1r)

Simple kriging: µ̂ = Ȳ Ordinary kriging: µ̂ = (1′V−11)−11′V−1Y
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Simple kriging: three examples

1. Varying κ (smoothness of S(x))
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2. Varying φ (range of spatial correlation
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3. Varying τ 2/σ2 (noise-to-signal ratio)
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Trans-Gaussian models

I assume Gaussian model holds after point-wise
transformation

I Box-Cox family is widely used

Y∗i = hλ(Yi) =

{
(Yλ

i − 1)/λ if λ 6= 0
log(Yi) if λ = 0

Example: log-Gaussian kriging

I T(x) = exp{S(x)} T̂(x) = exp{Ŝ(x) + v(x)/2}

I S1, ..., Sm are a sample from [S|Y]

I Ti = exp(Si) ⇒ T1, ...,Tm are a sample from [T|Y]
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Reminder: Predicting non-linear functionals

I minimum mean square error prediction is not invariant under
non-linear transformation

I the complete answer to a prediction problem is the
predictive distribution, [T|Y]

I Recommended strategy:

I draw repeated samples from [S∗|Y]

I calculate required summaries
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geoR: plug-in prediction

region<-matrix(c(0,0,6.5,0,6.5,6.5,0,6.5),4,2,T)

grid<-as.matrix(pred grid(region,by=0.25))

KC<-krige.control(obj.model=mlfit2,trend.d="2nd",trend.l="2nd")

OC<-output.control(n.predictive=100)

set.seed(24367)

predictions<-krige.conv(geodata=elevation,locations=grid,

borders=region,krige=KC,output=OC)

image(predictions)

points(elevation,add=T)

par(mfrow=c(1,2))

hist(elevation$data,main="data")

predict.max<-NULL

for (sim in 1:100) {
predict.max<-c(predict.max,max(predictions$simulations[,sim]))

}
hist(predict.max,main="predicted maximum")
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Bayesian inference

Model specification

[Y, θ] = [θ][Y|θ]

I [Y|θ] probability distribution of Y given parameter value θ

I [θ] prior probability distribution for θ
(before you collect any data)

Parameter estimation

I Bayes’ Theorem gives posterior distribution for θ
(adding information from data)

[θ|Y] = [Y|θ][θ]/[Y]

where [Y] =
∫

[Y|θ][θ]dθ
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Bayesian inference for geostatistical models

Model specification

[Y, S, θ] = [θ][S|θ][Y|S, θ]

I [S] is an unobserved spatial stochastic process, representng
the spatial phenomenon of scientifc interest

Parameter estimation

I integration gives likelihood function

[Y, θ] =

∫
[Y, S, θ]dS = [θ][Y|θ]

I as before, Bayes’ Theorem gives posterior distribution

[θ|Y] = [Y|θ][θ]/[Y]

where [Y] =
∫

[Y|θ][θ]dθ
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Bayesian inference for geostatistical models (2)

Prediction

S denotes the spatial process of interest at data-locations

S∗ denotes the same process at data and prediction locations

I expand model specification to

[Y, S∗, θ] = [θ][S|θ][Y|S, θ][S∗|S, θ]

I plug-in predictive distribution is

[S∗|Y, θ̂]

I Bayesian predictive distribution is

[S∗|Y] =

∫
[S∗|Y, θ][θ|Y]dθ

I for any target T = t(S∗), required predictive distribution [T|Y]
follows by direct calculation
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Notes

I likelihood function is central to both classical and Bayesian
inference

I Bayesian prediction is a weighted average of plug-in
predictions, with different plug-in values of θ
weighted according to their conditional probabilities
given the observed data.

I Bayesian prediction is usually more conservative
than plug-in prediction
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geoR: Bayesian estimation and prediction

MC<-model.control(trend.d="2nd",trend.l="2nd",kappa=2)

PC<-prior.control(beta.prior="flat",sigmasq.prior="sc.inv.chisq",

sigmasq=1000,df.sigmasq=4,phi.discrete=0.5*(1:5),

tausq.rel.prior="uniform",tausq.rel.discrete=0.1*(1:5))

OC<-output.control(n.posterior=100,n.predictive=100,

simulations.predictive=T,signal=T,moments=F)

set.seed(24367)

results.bayes<-krige.bayes(geodata=elevation,locations=grid,

borders=region,model=MC,prior=PC,output=OC)
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geoR: plotting posterior distributions

plot(results.bayes)

posteriors.bayes<-results.bayes$posterior

posterior.sample<-posteriors.bayes$sample

par(mfrow=c(3,3))

for (i in 1:9){
hist(posterior.sample[,i],main=" ")

}
par(mfrow=c(1,1))

plot(posterior.sample[,2],posterior.sample[,3])
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geoR: plotting predictive distributions

predictions.bayes<-results.bayes$predictive

image(unique(grid[,1]),unique(grid[,2]),

matrix(predictions.bayes$mean.simulations,27,27))

points(elevation,add=T)

par(mfrow=c(1,2))

predict.max<-NULL

predict.max<-c(predict.max,max(predictions$simulations[,sim]))

for (sim in 1:100) {

predict.max<-c(predict.max,max(predictions$simulations[,sim]))

hist(predict.max,xlab="maximum", main="plug-in")

predict.bayes.max<-NULL

for (sim in 1:100) {
predict.bayes.max<-c(predict.bayes.max,

max(predictions.bayes$simulations[,sim]))

}
hist(predict.bayes.max,xlab="maximum",main="Bayesian")
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