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Overview: spatial epidemiology and
model-based geostatistics
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Epidemiological data

I incidence: number of new cases per unit time per unit
population

I prevalence: number of existing cases per unit population

I risk: probability that a person will contract the disease (per
unit time or per life-time)

General objective is to understand spatial variation in disease
incidence and/or prevalence and/or risk according to context

Relevant books include

Elliott et al (2000); Gelfand et al (2010); Rothman (1986); Waller
and Gotway (2004); Woodward (1999);
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Epidemic vs endemic patterns of incidence

I Foot-and-mouth in Cumbria (the 2001 epidemic)

Diggle (2006)

I Gastro-enteric disease in Hampshire (AEGISS)

Diggle, Rowlingson and Su (2005)

Animations at: http://www.lancaster.ac.uk/staff/diggle/

What are the similarities and differences between the two
phenomena?
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In the beginning: Cholera in Victorian London, 1854

The physician John Snow famously removed the handle of the
Broad Street water-pump, having concluded (correctly) that
infected water was the source of the disease contrary to
conventional wisdom at the time.

https://en.wikipedia.org/wiki/1854 Broad Street cholera outbreak
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Study-designs

I Registry
I case-counts in sub-regions to partition study-region (numerators)
I population size in each sub-region (denominators)
I collateral information from national census (covariates)

I Case-control
I cases: all known cases within study region
I controls: probability sample of non-cases

within study-region

I Survey
I sample of locations within study-region
I collect data from each location
I commonly used in developing country settings
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Registry example. Colorectal cancer in Birmingham
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Smoothed estimates of relative risk in 36 electoral wards.

Kelsall and Wakefield (2002).
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Case-control example Childhood leukaemia in Humberside
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I residential locations of all known cases of childhood leukaemia
in Humberside, England, over the period 1974-82;

I residential locations of a random sample of births

Cuzick and Edwards (1990); Diggle and Chetwynd (1991).
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Survey example Loa loa prevalence in Cameroon

Data are empirical prevalences in surveyed villages

Map shows predictive probabilities of exceeding 20% prevalence
threshold

Diggle et al (2007)
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What is the public health question?

1. Colorectal cancer in Birmingham

I Does the risk of contracting the disease vary spatially?
I And if so, why?

2. Childhood leukaemia in Humberside
I Do cases show a surprising tendency to cluster

together?

3. Loa loa in Cameroon
I What environmental characteristics affect the risk of disease?
I Can we predict where the prevalence of the disease exceeds a

policy-based intervention threshold?
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Spatial stochastic processes

1. A stochastic process is a collection of random variables

2. A spatial stochastic process is a stochastic process in which
each random variable is associated with a position in space

3. Three important types of spatial stochastic process:

I discrete spatial variation: the random variables
associate a real value with a particular, pre-specified, set of
points in space, hence {(Si, xi) : i = 1, ..., n}

I point processes: the random variables are the
locations themselves, {xi : i = 1, ..., n}

I continuous spatial variation: the random variables associate a
real value with every point in the space, hence {S(x) : x ∈ IR2}

This course covers continuous spatial variation, with a focus on its
application to prevalence mapping
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Geostatistics

I traditionally, a self-contained methodology for spatial
prediction:

I origins in the South African mining industry

I subsequently developed at École des Mines, Fontainebleau,
France

I nowadays, that part of spatial statistics which is
concerned with data obtained by spatially discrete
sampling of a spatially continuous process

Model-based geostatistics: the application of general principles of
statistical modelling and inference to geostatistical problems

Diggle, Moyeed and Tawn (1998)
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Measured surface elevations
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I simplest form of geostatistical data

I locations and associated measurements

I no covariates
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Loa loa prevalence surveys
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Maps show prevalence as estimated by each of two methods:

I parasitology (blood sample, red)

I simple questionnaire (RAPLOA, blue)

I covariates include elevation and NDVI (green-ness of
vegetation) at 1km resolution
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Environmental monitoring in Galicia, north-west Spain
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I spatially irregular sample in 1997
I potential for selection bias?
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Geostatistical problems

I Design: how to choose locations xi at which to collect
outcome data?

I Estimation: how to investigate relationship between outcome
and covariates when data may be spatially correlated?

I Prediction: how to map (expected value of) outcome
throughout the study-region?

Practical point:

I Estimation only requires covariate information at locations xi

I Prediction requires covariate information throughout the
study-region.
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A non-spatial model for prevalence survey data

Design

I Sample communities i = 1, ..., n.

I In community i, sample mi individuals of whom Yi test positive
for disease of interest.

I Associated covariates wi

Model

I ρi = probability that a randomly sampled individual
in community i will test positive

I log{ρi/(1− ρi)} = α + w′
iβ

I Yi ∼ Binomial(mi, ρi), mutually independent

17



A spatial model for prevalence survey data

Design

I Sample communities i = 1, ..., n at locations xi

I In community i, sample mi individuals of whom Yi test positive
for disease of interest.

I Associated covariates wi = w(xi)

Model

I ρi = probability that a randomly sampled individual
in community i will test positive

I log{ρi/(1− ρi)} = α + w(xi)′β + S(xi)

I Yi ∼ Binomial(mi, ρi), conditionally independent given S(·)
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A spatial model for prevalence survey data (continued)

Two kinds of covariates

I w(xi) an intrinsic property of the location xi

I w(xi) a property of the people who live at location xi

Practical implication: when mapping prevalence we need to be
able to assign a value w(x) to every location in the study-region.

What is S(x)?

I an unobserved spatially varying stochastic process

I a proxy for unmeasured, spatially structured covariates

Practical implication: in any application where S(x) turns out to
be important, it is worth asking what the missing covariate(s)
might be.
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Person or place?

Extend spatial model to

log{ρi/(1− ρi)} = α + {w(xi)
′β + S(xi)}+ {d′

iγ + Ui}

I w(x) : measured properties of location x

I S(x) : stochastic process, proxy for unmeasured properties of x

I di : measured properties of ith community

I Ui : independent random variables, proxy for unmeasured
properties of ith community
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