
Introduction to R software for Macs 

Sally Eagle 

(Updated by Peter J Diggle and Rob Christley) 

Version: 09 October 2014 

 

Before we start - Installing R  

The R software, and contributed packages, can be accessed and installed by visiting the R project 
website www.r-project .org. 

Here are step-by-step instructions for computers running on a Mac operating system: 

1) Go to http://www.r-project.org/ 
2) Click on CRAN 
3) Click on the web-address for one of the ‘CRAN MIRRORS’ (not critical which but 

recommended to choose from a nearby country – eg UK or Ireland) 
4) Inside the box ‘Download and install R’ click on Mac 
5) Click on R-3.1.1-mavericks.pkg (or the appropriate other version if you are using a different 

Mac OS operating system, such as Snow Leopard) 
6) Once the file has downloaded, double click the file (it is located in your downloads folder) 
7) Once the install has run you can open R (R 3.1.1) through the icon in your Applications 

folder. You can keep the icon in your dock of on your desktop if you want easier access. 

*But note that by the time you read this, the version number may have changed 

 

Use of R for simple arithmetic 

When you launch R, the program begins  with the ‘R console’ window open. You can type commands 
directly into this box. You will see the ‘>’ symbol which is basically your prompt to start typing! You 
need to see this symbol before each command. 

R can be used as a simple calculator 

You can simply type in commands and press the return key to perform simple calculations: 

20+69    (type in ‘20 + 69’ after the ‘>’)                                                                  
[1] 89                                        (this is what you should see as your answer)                                       
5*6                                                                                                                                                                               
[1] 30 

(1/5 + 3/10) * 6^3                                                                                                                                                   
[1] 108                                               (make sure you understand this calculation) 

http://www.r-project.org/


Saving your R code 

Typing commands directly into R is fine for simple calculations, but for anything complicated it’s 
advisable to save the code so that you can edit it if it contains any mistakes…or if you want to modify 
it for any other reason.   

R for Mac has a built in text editor that can be used for writing and saving your code: 

Go to File -> new document (shortcut: command+N) and then save by File -> save as and save the 
new editor as  Intro.R* in a sensible location.  Save as an R file (*.R). This editor window now appears 
with the name Intro.R – R Editor. 

*You can use whatever name you like, but mnemonic names are always a good idea. I would also 
suggest that you set up a new folder for the work you do in the course. 

Typing into the editor window: 

• When you type commands into this editor window you do not need to type the ‘>’ symbol.   
• When you want to run a command you need to click on the line (if it’s just one line of code) 

or highlight the whole section and then press command+enter.  
• Each time you run a new command you need to see the ‘>’ symbol in the console window. If 

you see a ‘+’ then R is expecting something more from the previous command! 

Note that the code you type into the editor should not include the ‘>’ prompt in front of each line.  
In the remainder of this note, we use italic script to indicate R commands, ordinary script to indicate 
messages that the system writes to the console 

 

Vectors/Matrices 

A vector is simply a sequence of ‘elements’, typically ordinary numbers. We can define a vector in R  
using the c() command (c for concatenate).  

In the following examples, note that R treats anything you type after a `#’ symbol as a comment.  
Including comments in your R code is highly recommended, as it helps you keep track of exactly 
what your code is doing. 

Try the following: 

vec  <-  c(1,2,3,4,5)                                                                                                                                               
vec 

The ‘<-‘ (less than followed by minus, commonly called ‘gets’) symbol has been used to assign what 
follows to the name given. So here vec ‘gets’ the vector [1,2,3,4,5].  Typing the name of any object in 
R simply prints the contents of the object to the console. If you want to save the result of any 
command, you have to assign it to a named object using the ‘<-‘ symbol. Note that the equals 
symbol (i.e. =) can be used, although for various reasons we prefer to use <-. 



We can also set up vectors using functions such as ‘seq’ (sequence) and ‘rep’ (repeat): 

evens  <- seq(0,20, 2 ) #  even.seq ‘gets’ the even numbers from 0 to 20 in jumps of two 

evens                                                                                                                                                                        
[1]  0  2  4  6  8 10 12 14 16 18 20 

ones <- rep(1,20)                               #repeat  the number 1, twenty times                                     
ones                                                                # gives the following output:                                                      
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Note the structure of the R code in the above examples; functions (such as seq and rep) are always 
followed by other information in round brackets, i.e. (), which provides the information needed for 
that function to run. We will introduce new functions throughout the course. 

Vector calculations  

We will use the vector ‘vec’ we defined earlier to perform some simple calculations on vector 
elements. For example: 

vec*2                                                                                                                                                                        
[1]  2  4  6  8 10 

 Try the following, noting that you can put several R commands on the same line if you wish, 
separating them by the semi-colon character 

vec+ vec; vec^2; vec+3; sqrt(vec) 

Notice how the calculation works on each element of the vector.  If, as in one of the above 
examples, you add a single number to a vector, the single number will be added to each element of 
the vector.  If by mistake you try to add two vectors of different lengths, R will not give you an error 
message, but it will give you a warning. Try the following:   

vec+c(2,4,6,8) 

Simple functions on vectors 

You can perform simple functions on each element of a vector  such as sqrt(vec) and exp(vec) for the 
square root and for the exponential, respectively. Note that you can also directly perform any of 
these calculations on a vector without defining it first, for example: 

sqrt(c(1,2,3,4,5))                                                                                                                                                         
[1] 1.000000 1.414214 1.732051 2.000000 2.236068 

We will now illustrate some simple statistical functions.  

Set up a new vector called ‘age’ with the following data (ages of 8 subjects): 21, 35, 18, 22, 24, 33, 
37, 41. 

age<-c(21, 35, 18, 22, 24, 33, 37, 41) 



We can now easily find the mean, variance, maximum, range and so on: 

mean(age)                                                                                                                                                               
[1] 28.875 

var(age)                                                                                                                                                                   
[1] 74.125 

max(age)                                                                                                                                                                 
[1] 41 

range(age)                                                                                                                                                               
[1] 18 41 

Other useful functions include: 

Min() – gives the minimum value 

sum() – sum of the elements                                                                                                                                     

sort()  - sorts the elements in ascending order 

length() – counts the number of elements 

summary() – gives the range, interquartile range, mean and median of the data 

Note that you can also assign a name to the output to any of these commands if you want to use 
them later (and it often makes it easier to understand your code when you revisit or if someone else 
reads it). For example: 

mean.age <- mean(age) ; mean.age         #this does not look like a short cut here but it does help   
#when you get to more complicated coding!!                          

[1] 28.875 

 

 

Exercises 

1) For the following data find ∑ 𝑥2  (the sum of all elements, each squared) 

3, 7, 2, 6, 1, 3                                                          answer =  108 

2) Set up a vector called ‘my.seq’ which repeats the sequence 0 ,5, 10, 15,...,100 six times, i.e.  
0, 5, 10, 15,...,100, 0, 5, 1,0 15,...etc  (hint: you need to use the functions seq() and rep() 
which were used earlier). Check your vector by running : 

my.seq 

3) The command 



x<-runif(n) 
generates a vector of n random numbers. 

a) Generate 10 random numbers and find the 3rd biggest 
b) Generate 10000 random numbers and find the 143rd biggest 

 

Reading in data files 

We will now read in an external data set called ‘gravity’ which holds data (distance and time) from a 
simple undergraduate physics experiment (covered in the lectures). Data can be read in from various 
formats such as .csv, .txt, .data, .dbf. Here we have a .data file. For import of other formats see the 
help pages http://cran.r-project.org/doc/manuals/r-release/R-data.html. Reading in data can be a 
pain unless you understand exactly how your computer’s operating system e.g. (Windows, Mac or 
Linux) organises its file-structure. If you are stuck try a google search as you can often find help on 
discussion forums or other websites. However, the following tips should avoid most of these 
problems: 

1. Store your data as a regular array of rows and columns,  as a .csv file (columns separated by 
a comma and, optionally, any number of spaces)  and using the two-character string NA  
(which must be in upper case) to indicate a missing value. 

2. Make sure the first  line of your data-file contains mnemonic names for each of the columns, 
again separate by commas (example below) 

3. Read the data-file with the R command 
data<-read.csv(file.choose()) 

This will open a window  from which you can browse through your folders until you find the data-file 
you want. Opening it will then cause its contents to be read into R.  

Example.  Create  a file called “testdata.csv” in a folder called “statscourse” containing the following 
information: 

x,y                                                                                                                                                                              
1, 5.1                                                                                                                                                                           
2, 6.3                                                                                                                                                                         
3, 7,7                                                                                                                                                                         
4, 8.5                                                                                                                                                                  
5,10.1 

You can do this either using a text-editor or entering the information into an Excel spread-sheet with 
two columns and saving the result as a .csv file. 

Within R, try the following:  

data<-read.csv(file.choose))   # navigate to “statscourse” find  “testdata.csv” and click to open 
names(data)                                                                                                                                               
dim(data)                                                                                                                                 
plot(data$x,data$y)                 # data$x means “the column named x in the file called data” 

http://cran.r-project.org/doc/manuals/r-release/R-data.html


Once you are comfortable with this, you can find out about other, more flexible ways of reading 
data-files in various formats.  One that you will need for the exercises is the following. 

data<-read.table(file.choose(),header=TRUE) 

This operates in the same way as the previous example, except that it expects the data to be in a .txt 
file with columns separated by one or more spaces (rather than commas), and you have to tell the 
function that the first line of the file contains the names of the columns (also separated by one or 
more spaces). 

 

 

Exercise 

Visit the web-page 

 http://www.lancaster.ac.uk/staff/diggle/intro-stats-book/datasets/ 

go to the line “Crossover trial of asthma treatments” and click on description. After you have read 
this, click on data and  download its contents.  Read the data into R and make a scatterplot* of each 
child’s  F result against their S result.  Which of the two drugs do you think is the more effective in 
treating an asthma attack? 

*a scatterplot of pairs of values (x,y) is a plot in which each pair is shown as a dot at position x on the 
x-axis and y on the y-axis. To do this you will need to use the plot() function. 

 

Simple graphics 

We have already seen a simple example of a scatterplot. If x and y are vectors of the same length, a 
scatterplot of x against y is obtained from the command 

plot (x,y)   #if you don’t have objects called x and y  you will  get an error 

You can customise your graphs in various ways, and superimpose pots.  Try the following: 

x<-1:10                                                # 1:10 is a convenient shorthand for c(1,2,3,4,5,6,7,8,9,10)                  
y<-c(1.3,2.5,3.5,4.2,5.9,7.0,7.8,8.5,9.9,11.1)                                                                         
plot(x,y,type=”l”)                                                                                                                    
plot(x,y,pch=19,col=”red”)                                                                                                                     
plot(x,y,cex=2);   lines(x,y); points(5,5,cex=3,col=”red”,pch=19) 

Plots can also be saved as pdf files so that they can be used in other documents. 

par(pty="s")                              #this gives a square plot window       
pdf(“scatterplot.pdf”,height=6,width=8)                         # height and width are in inches              
plot(x,y, pch=19, xlim=c(0,10),ylim=c(0,12),xlab=”this is x”,ylab=”and this is y”, col = “red”)     
dev.off() 

http://www.lancaster.ac.uk/staff/diggle/intro-stats-book/datasets/


The ‘scatterplot.pdf’ file now appears in your folder and you should be able to open it as a pdf 
document. 

 

 

Exercise 

Notice the other inputs (arguments) to the plot function which are used for improving the 
appearance of the plot. The arguments xlim/ylim set the limits of the x-axis/y-axis. Those containing 
‘cex’ set the text size (axis and labels), ‘pch’ sets the symbol used for plotting and ‘col’ sets the 
colour of the plotted  points or lines. Experiment  with changing some of these inputs. 

 

Help pages 

If you want to find out the inputs needed/available for a particular function, what the function does 
and how the result is stored you can access the details by simply typing the following : 

?plot       

or  

help(plot)                 #for the plot function 

 

Exercises 

1) Using the plot function help page add a title to your scatterplot.pdf file 
 

2) Now save and read in a new dataset - blood pressure data - from the website 
www.lancs.ac.uk/staff/diggle/intro-stats-book/datasets in the same way that we read in the 
asthma  data. This data gives synthetic BMI and blood pressure data for 30 study patients, 
15 of whom were assigned to receive drug A and 15 assigned to drug B. Have a look at the 
data to see how it is laid out and make sure that the column names are defined for use later.  
 
Now we can produce a plot of  BMI vs blood pressure indicating which patients received A 
and which received B 
 

3) Run the following code line-by-line, filling in the gaps indicated by ???.  Check you 
understand what is happening in each step as this is a little more complicated than the 
earlier plots. The last line gives an alternative way of saving plots to pdf files.  

plot(c(BMIA,BMIB), c(BPA,BPB), type="n", xlab="BMI", ylab="BP", cex.lab=1.5, cex.axis=1.5, 
xlim=c(22,30), ylim=c(???,???))  #this produces the plot region and labels              
points(BMIA, BPA, pch=19, cex=1.5) #this adds the points for the drug A patients        

http://www.lancs.ac.uk/staff/diggle/intro-stats-book/datasets


points(BMIB, ???, pch=1, cex=1.5,col=”red”)     #this adds the points for the drug B patients  
title(“???”)                                                            #whatever you like                                      
dev.print(device=pdf, file="BP_BMI.pdf", width = 8, height = 6)  

There are some ‘optional extras’ below that you can complete now or in your own time. Otherwise 
you can now end the R session. 

You can close R by simply closing all the windows, but the recommended way is to type the 
command 

q()                                        # for “quit”                                                                                                              

You will be asked if you wish to save the workspace. This is useful if you want to save the objects you 
have created in the session. 


