#1. Transform data to log-concentrations and calculate the empirical variogram loglead<-lead loglead$data<-log(lead$data) u<-5000*(1:25) V.loglead<-variog(loglead,uvec=u) plot(V.loglead) #2. Fit theoretical variogram ``by eye'' assuming (by default) an exponential correlation function result<-eyefit(V.loglead) result # cov.model sigmasq phi tausq kappa kappa2 practicalRange #1 exponential 0.19 29729.73 0.0213133527731625 89062.3116429668 #3. Fit theoretical variogram by maximum likelihood MLE<-likfit(loglead,ini.cov.pars=c(0.19,29730))