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It is worth mentioning the commercial module
S+SpatialStats for S-PLUS, which covers all the ar-
eas mentioned here, and is not available for R. The
prospect of such a module, and later of further de-
velopment of it, has dampened enthusiasm for user-
contributed spatial statistics code over much of the
last decade. It is worth bearing in mind that a great
deal of the current wealth of packages for R emanates
from the work of users filling gaps they saw in S and
its commercial offspring.
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geoR: A Package for Geostatistical
Analysis
by Paulo J. Ribeiro Jr and Peter J. Diggle

geoR is a package to perform geostatistical data anal-
ysis and spatial prediction, expanding the set of cur-
rently available methods and tools for analysis of
spatial data in R. It has been developed at the De-
partment of Mathematics and Statistics, Lancaster
University, UK. A web site with further information
can be found at: http://www.maths.lancs.ac.uk/

~ribeiro/geoR.html.
Preliminary versions have been available on the

web for the last two years. Based on users’ feedback
and on our own experiences, we judge that the pack-
age has been used mainly to support teaching ma-
terial and to carry out data analysis and simulation
studies for scientific publications.

Package geoR differs from the other R tools for
geostatistical data analysis in following the model-
based inference methods described in (3).

Spatial statistics and geostatistics

Spatial statistics is the collection of statistical methods
in which spatial locations play an explicit role in the
analysis of data. The main aim of geostatistics is to
model continuous spatial variation assuming a basic
structure of the type Y(x) : x ∈ R

d, d = 1, 2 or 3 for a
random variable Y of interest over a region. Charac-
teristic features of geostatistical problems are:

• data consist of responses Yi associated with loca-
tions xi which may be non-stochastic, specified
by the sampling design (e.g. a lattice covering
the observation region A), or stochastic but se-
lected independently of the process Y(x).

• in principle, Y could be determined from any
location x within a continuous spatial region A.

• {Y(x) : x ∈ A} is related to an unobserved
stochastic process {S(x) : x ∈ A}, which we
call the signal.

• scientific objectives include prediction of one
or more functionals of the stochastic process
{S(x) : x ∈ A}.

Geostatistics has its origins in problems con-
nected with estimation of reserves in mineral ex-
ploration/mining (5). Its subsequent development,
initially by Matheron and colleagues at École des
Mines, Fontainebleau (8) was largely independent
of “mainstream” spatial statistics. The term “krig-
ing” was introduced to describe the resulting meth-
ods for spatial prediction. Earlier developments in-
clude work by Matérn (6, 7) and by Whittle (10). Rip-
ley (9) re-casts kriging in the terminology of stochas-
tic process prediction, and this was followed by sig-
nificant cross-fertilisation during 1980’s and 1990’s
(eg the variogram is now a standard statistical tool
for analysing correlated data in space and/or time).
However, there is still vigorous debate on practical
issues such as how to perform inference and predic-
tion, and the role of explicit probability models.

The Gaussian model

The currently available functions on geoR assume a
basic model specified by:

1. a signal S(·) which is a stationary Gaussian
process with

(a) E[S(x)] = 0,

(b) Var{S(x)} = σ2,

(c) Corr{S(x), S(x − u)} = ρ(u);

2. the conditional distribution of Yi given S(·) is
Gaussian with mean µ+ S(xi) and variance τ2;

3. Yi : i = 1, . . . , n are mutually independent, con-
ditional on S(·).
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Covariate information can be incorporated by as-
suming a non-constant mean µ = Fβ where F is a
matrix with elements of the type f j(xi), a measure-
ment of the jth covariate at the ith location. The model
can be made more flexible by incorporating the fam-
ily of Box-Cox transformations (1), in which case the
Gaussian model is assumed to hold for a transforma-
tion of the variable Y.

The basic model parameters are:

• β, the mean parameters,

• σ2, the variance of the signal,

• τ2, the variance of the noise,

• φ, the scale parameter of the correlation func-
tion.

Extra parameters provide greater flexibility:

• κ is an additional parameter, required by some
models for correlation functions, which con-
trols the smoothness of the field,

• (ψA,ψR) allows for geometric anisotropy,

• λ is the the Box-Cox transformation parameter.

Package features

The main features of the package are il-
lustrated in the PDF document installed at
‘geoR/docs/geoRintro.pdf’.
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Figure 1: Output from the function
points.geodata for the wolfcamp data.

There are functions available which can be used
at different stages of geostatistical data analysis.
Here we use the dataset wolfcamp, included in the
package distribution, for a brief illustration of the
package resources.

For exploratory data analysis, geoR uses R’s
graphical capabilities to produce plots of the data
including their spatial locations. The most relevant
functions are plot.geodata and points.geodata.
Figure 1 shows an output from the latter.

Empirical variograms are used to explore the
spatial structure of the data. Residual variograms
can be obtained from an ordinary least squares “de-
trend”, internal to the functions. Figure 2 shows
directional and omni-directional variograms for the
wolfcamp data assuming a first order polynomial
trend on the coordinates. The main function for em-
pirical variogram calculation is variog.
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Figure 2: Directional and omni-directional var-
iograms for the wolfcamp data.

Parameter estimation can be performed using
different paradigms. Likelihood-based estimation
(maximum and restricted maximum likelihood) is
implemented by the function likfit. Alternatively,
variogram-based estimation can be used. This con-
sists of fitting a chosen parametric model to the sam-
ple variogram. The fitting can be done by “eye”, or-
dinary least squares or weighted least squares. Fig-
ure 3 shows the empirical variogram and correlation
function models fitted by different methods.
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Figure 3: Directional and omni-directional var-
iograms of the wolfcamp data.

The function proflik computes 1-D and 2-D pro-
file likelihoods for the model parameters as illus-
trated by Figure 4. The profiles can be used to assess
the variability of the estimates.
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Figure 4: Profile likelihoods for the model pa-
rameters.

Spatial prediction by “plugging-in” the
model parameters is performed by the function
krige.conv. Depending on the input options the
results correspond to methods known as simple , or-
dinary, universal and external trend kriging.

Model validation tools are implemented by the
cross-validation function xvalid. Envelopes for the
empirical variograms are computed by the functions
variog.model.env and variog.mc.env.

Bayesian inference takes the parameter uncer-
tainty into account when performing spatial pre-
diction. Simulations of the posterior distribution
[S(x)|Y] allow inferences on linear and non-linear
functionals of the signal S(x) (Figure 5).
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Figure 5: Predicted values over the area (left
panel) and estimated probabilities of having
values greater than 850 (right panel). The
grey levels in right panel correspond to breaks
(0, 0.1, 0.5, 0.9, 1).

Simulation of (transformed) Gaussian random
fields can be obtained by using the function grf.
This function is intended for quick simulations with
a small number of data locations. For simulations
using large number of locations we recommend the
package RandomFields.

Typically, the methods functionality is used to plot
and/or print results returned by the main functions
in the package. Additional details on the package re-
sources can be found at the package’s web-page and
its documentation.

Future developments

The file ‘docs/ToDo.geoR’ is included in the package
distribution and contains a list of features for which
implementation is planned.

There is joint work with Ole Christensen (Aal-
borg University, Denmark) in progress to implement
the non-Gaussian spatial models proposed by Dig-
gle et al. (4). These models generalise the Gaussian
model previously mentioned in a similar way that
generalised linear models extend the classical linear
regression model.
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Simulation and Analysis of Random
Fields
by Martin Schlather

Random fields are the d-dimensional analogues of
the one-dimensional stochastic processes; they are
used to model spatial data as observed in environ-
mental, atmospheric, and geological sciences. They
are traditionally needed in mining and exploration to
model ore deposits, oil reservoirs, and related struc-
tures.

The contributed package RandomFields allows
for the simulation of Gaussian random fields defined
on Euclidean spaces up to dimension 3. It includes
some geostatistical tools and algorithms for the sim-
ulation of extreme-value random fields.

In the following two sections we give an example
of an application, and a summary of the features of
RandomFields.

A brief geostatistical analysis

To demonstrate key features we consider soil mois-
ture data collected by the Soil Physics Group at the
University of Bayreuth (see Figure 1), and perform a
simple geostatistical analysis.
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Figure 1: Measured soil moisture content (%)

The coordinates of the sample locations are as-
sumed to be stored in pts and the moisture measure-
ments in d. (See the example to the data set soil for
the complete code.)

In geostatistics the variogramγ is frequently used
to describe the spatial correlation structure. It can
be expressed in terms of the (auto-)covariance func-
tion C if the random field is stationary: γ(h) =
C(0) − C(h) for h ∈ R

d. We assume isotropy, i.e. γ
depends only on the distance |h|. Then, we can find
variogram values by

ev <- EmpiricalVariogram(pts, data=d,

grid=FALSE,

bin=c(-1, seq(0, 175, l=20)))

and select an appropriate model by

ShowModels(0:175, x=x, y=y, emp=ev)

see Figure 4 where x and y equal seq(-150, 150,

l=121). The parameters of the variogram model
(here the Whittle-Matérn model) might be fitted by
eye, but we prefer maximum likelihood,

p <- mleRF(pts, d, "whittle", param=rep(NA,5),

lower.k=0.01, upper.k=30).

Now,

Kriging("O", x=x, y=y, grid=TRUE,

model="whittle", par=p, given=pts,

data=d)

yields the expected moisture content on the grid
given by x and y (Figure 2).
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