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Overview





Isaac Newton (1643–1727)



An experiment to illustrate Newton’s Law

 

 



Experimental results

The data reproduced below are the results obtained by one
student from 22 experimental runs.

t(sec) d(cm) t(sec) d(cm) t(sec) d(cm)
0.241 10 0.358 40 0.460 70
0.249 10 0.395 45 0.485 75
0.285 15 0.435 50 0.508 80
0.291 20 0.412 50 0.516 85
0.327 25 0.451 55 0.524 90
0.329 30 0.444 60 0.545 90
0.334 30 0.461 65
0.365 35 0.481 70

Points for discussion
choice of design points, d?
inputs and outputs?
sources of systematic variation in results?
sources of random variation in results?



Experimental results in graphical form
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How would you describe the relationship between
distance and time?
Why did I put time on the y-axis of the graph, rather than on
the x-axis?



Newtonian mechanics

Newton’s law states that the vertical distance d travelled in time t
by a body initially at rest and falling under the influence of gravity
is given by the formula

d =
1
2

gt2

where g is a constant.



Newtonian mechanics and experimental data
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The experimentally observed relationship is non-linear, as
predicted by Newton’s law.
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Transformation of the data, from distance d to the new
variable x = √d makes the relationship linear, also as
predicted by Newton’s law.
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But Newton’s law does not fit the data!
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We need to add an intercept to the straight line
.
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?

What does the intercept represent?
What does the variation of the data around the fitted line
represent?



A statistical model for the experiment

Start with Newtonian mechanics,

d =
1
2

g × t2

Now transform to x = √d and Y = t, and put Y on the left-hand
side of the equation,

x =
√

g/2× Y Y = β × x (β =
√
2/g)

Now incorporate the effects of the experimenter’s
reaction-time,

Y = α + βx + Z



Interpreting the model

Y = α + βx + Z

α represents mean reaction time

β =
√
2/g is the quantity of scientific interest

Z is a random error, which varies independently between
different runs of the experiment



Statistical method

Design
What data should be collected in order to answer a scientific
question as precisely as possible?

Modelling
How can the variation in the data be described
mathematically, so that the description:
• is not demonstrably inconsistent with the data
• incorporates the underlying science, to the extent that
this is well understood
• is a simple as possible subject to the above two
constraints

Inference
Given the data and the model, what scientific conclusions can
be drawn?



Review: what have we learnt?

1 Graphical presentation of data is almost always useful.

2 Statistical models should:

• respect the data;

• respect the underlying science.

3 Transforming the data can help to achieve both goals.

4 The results of a statistical analysis should always be
interpreted in relation to the original scientific question.

5 The fundamental role of statistical method is to enable
scientists to answer their questions as precisely as possible.

6 The fundamental ingredients of statistical method are: design;
modelling; inference.



Uncertainty



Tossing a coin
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Tossing a coin
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Variation

Variation in experimental results can arise in two qualitatively
different ways:

systematic: a change in the experimental conditions produces
a different result
stochastic: replication under identical conditions produces a
different result

Even a well-designed experiment can therefore lead to uncertainty
in how to interpret the results, but:

stochastic does not necessarily mean completely random
statisticians use probability to measure uncertainty

Example: weather forecasting
How uncertain are we about the weather later today? tomorrow?
next week? next year?



A meteorological time series
maximum daily temperatures (degrees C) at Bailrigg
(Lancaster) field-station, September 1995 to August 1996
note that an unusually cold Christmas 1995 was followed by a
mild period in January-February
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Probability: three definitions

Mathematical

A branch of pure mathematics,
invented by the Russian
mathematician Andrey
Kolmogorov (1903 – 1987) to
formalise the everyday notion
of uncertainty.

Frequentist

Probability as the limit of a proportion: eg genetic variation,...

Subjectivist

Probability as personal belief: eg personal decision-making



Kolmogorov’s axioms

W : all possible outcomes of a study
A,B, ... : any particular outcomes

P(·) = “the probability of”

1 P(A) ≥ 0

2 P(W ) = 1

3 if A, B are mutually exclusive, P(A ∪ B) = P(A) + P(B)



And some consequences

1 Addition law

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

2 Multiplication law

P(A ∩ B) = P(A)P(B|A),

where P(B|A) is the probability of B given that A has
occurred.

3 Bayes’ Theorem

P(A|B) =
P(B|A)P(A)∑
j P(B|Aj )P(Aj )

,

where A1,A2, ... represent all possible different outcomes

Grimmett and Stirzaker (2020)



A topical example: Covid testing

How likely is it that a
positive test result is
correct?

Lateral flow test properties:
Sensitivity Se ≈ 0.8
Specificity Sp ≈ 0.99

p = prevalence of disease

Disease status
Test D D̄

+ p × Se (1− p)× (1− Sp)
− p ∗ (1− Se) (1− p)× Sp

p 1− p

P(D|+) =
P(D ∩+)

P(+)

=
p × Se

p × Se + (1− p)× (1− Sp)

Se = 0.8, Sp = 0.99, p = 0.01⇒ P(D|+) = 0.447



Review: what have we learnt?

1 Variation in the results of an investigation can be of two kinds:
1 systematic variation arises as a direct result of known factors –

typically a change in the inputs to the investigation

2 stochastic variation arises when all known factors cannot explain
the observed variation

2 The mathematical theory of probability formalises and
quantifies the intuitive idea of uncertainty

3 Stochastic is not necessarily completely random: eg
coin-tossing vs weather forecasting



Design



Asthma

What is it?

How do you treat it?

How do you know if the treatment works?



A Simple Comparative Trial

Formoterol (F) and Salbutamol (S) are two drugs used to
treat chronic asthma.

trial was carried out to compare efficacy of F and S:
asthmatic children recruited;

Peak Expiratory Flow (PEF) measured after administration of F
or S

PEF is the (primary) outcome, F and S are the treatments of
interest, time is a potential confounder.

Graff-Lonnevig and Browaldh (1990). Twelve hours bronchodilating effect
of inhaled Formoterol in children with asthma: a double-blind cross-over
study versus Salbutamol. Clinical and Experimental Allergy, 20, 429–432.



Data from the Asthma Trial

Formoterol (sorted)
220 250 310 310 320 330 340 370 380 385 400 410 410

Salbutamol (sorted)
90 210 260 260 270 290 300 310 350 365 370 380 390

100 150 200 250 300 350 400

PEF
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F
S

one very small S result
considerable overlap between F and S results
comparison between F and S inconclusive?



Design-based analysis

Difference between average PEF under F and under S is 45.4
in favour of F

Hypothesise that both treatments are equally effective

what would the data have looked like?

and what do they actually look like?



Data from the Asthma Trial: continued

Child Drug F Drug S Child Drug F Drug S
1 310 270 8 385 370
2 310 260 9 400 310
3 370 300 10 410 380
4 410 390 11 320 290
5 250 210 12 340 260
6 380 350 13 220 90
7 330 365



A Picture Paints a Thousand Words ...
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F and S results are (positively) correlated... why?



The full story

Formoterol (F) and Salbutamol (S) are two drugs used to
treat chronic asthma.

trial was carried out to compare efficacy of F and S:
13 asthmatic children recruited;

Peak Expiratory Flow (PEF) measured after
administration of F;

PEF measured after administration of S;

one week between two measurements
(ordering chosen at random)

PEF is the (primary) outcome, F and S are the treatments of
interest, time is a (potential) confounder.



Design-based analysis

40 50 70 20 40 30 −35 15 90 30 30 80 130

Difference between average PEF under F and under S is 45.4
in favour of F

Hypothesise that both treatments are equally effective

what would the data have looked like?

and what do they actually look like?



What does this example tell us?

Study design is important.

Decide what comparisons are of interest
F vs S

Design the experiment to eliminate extraneous sources of variation
pairing eliminates variation between children

randomization eliminates (on average) the time effect



Going beyond hypothesis tests

looks like F beats S

but by enough to be useful? 45.4litres/min? or 45.4± ?

n = 13 how much data do we have?
d̄ = 45.4 how big is the average experimental effect?
SD = 40.6 how variable is it?
SE = SD/

√
n = 11.3 how precisely have we estimated it?

A convenient rule of thumb:

d̄ ± 2× SE



Two Statistical Pioneers

Sir Ronald Aylmer Fisher
(1890–1962): statistician and
geneticist

Sir Austin Bradford Hill
(1897–1991): medical statistician



Principles of experimental design: blocking

A block is a group of experimental units which are thought to be
relatively homogeneous, i.e. which will give relatively similar
results.

Examples:
paired PEF values
siblings
communities

Blocking
Whenever possible, design your experiment so that comparisons of
interest can be made within the same block.



Principles of experimental design: randomisation

How should you choose which units receive which experimental
treatment?

Randomisation:
Within any block, allocate treatments to experimental units at
random;

to avoid conscious or unconscious bias in the allocation of
experimental treatments to experimental units;
and (sometimes – but more often than you might think) to
ensure validity of statistical inferences

Box, Hunter and Hunter (1978)



Don’t do t-tests on non-Normal data?

t = d̄/SE = 45.4/11.2 = 4.05 P(|t12| > 4.05 = 0.0016

Design-based sampling distribution of the t-statistic
 

t−statistic

F
re

qu
en

cy

−4 −2 0 2 4

0
20

40
60

80

histogram
t−distribution



Identifying sources of variation

Before you run an experiment:
list the possible sources of variation in the results;
design the experiment to eliminate extraneous sources of
variation from comparisons of interest;
if it is not possible to eliminate an extraneous source of
variation, use random allocation to avoid bias

Example: in the paired experiment
pairing eliminated extraneous variation between children;
crossover eliminated extraneous variation between
time-periods
randomisation eliminated any possible residual bias



Designing an agricultural field trial

The research farm at Rothamsted, Hertfordshire, UK.



Background

Agricultural field trials are conducted to compare the yields of
different varieties of crop-plants under realistic conditions

Experimental units are contiguous plots of land, typically long,
narrow strips within a square or rectangular field.

Design questions include:
how to orient the strips (eg North-South or East-West)?

which treatments to apply to which strips?



Example

Aim: compare yields of four varieties of wheat

Experimental material:
experiment to be run on a 100 metre by 100 metre
square field.

experimental units to be 100 metre by 5 metre strips,
hence 20 units in all.

Context: there is a suspected North-South fertility gradient
over the field.



Two possible layouts of the experiment

North

 

 

 

 

South



Points for discussion

1. What statistic(s) might we use to compare the yields of the
four varieties of wheat?

2. Would you prefer to have the strips running North-South or
East-West?

3. How would you allocate varieties, A, B, C, D say, amongst the
20 strips?

4. How might you alter your design if the precise objective was to
find which varieties give the largest yields:

on fertile ground?

and on infertile ground?



Review: what have we learnt?

1 Careful design of an investigation can:
1 simplify the analysis of the resulting data
2 enable more precise conclusions to be drawn

2 Two fundamental principles of good statistical design are:
1 blocking: minimise the adverse effects of known sources of

extraneous variation by comparing like-with-like
2 randomisation: minimise the adverse effects of unknown sources

of extraneous variation and/or subconscious bias on the
investigator’s part by random allocation of experimental units to
treatments

3 Randomisation also allows simple questions to be answered
without having to assume that the data follow a particular
probability distribution.



Inference



Key ideas in statistical inference
Populations and samples

population: the set of (biological, environmental,...)
material to which you hope your work is relevant
sample: the (much smaller) set of material on which you
actually base your work

Design and inference
design: how you choose your sample
inference: how you use results from your sample to reach
conclusions about the population

 

 P S
design

inference



How to generate your sample:

1 random sampling from a finite population
Population size N, sample size n, each member of the
population has a known probability, pi say, of being included in
the sample

1 simple random sampling: all pi equal
2 stratified random sampling: all pi equal within pre-defined

sub-populations
2 quasi-random sampling from an infinite population
This is the implicit assumption in most lab-based studies

3 convenience sampling
Use whatever is closest to hand...not recommended



Inferential goals

Parameter estimation
parameter: an unknown constant whose value is
scientifically interesting
point estimate: a best guess at the true value
interval estimate: a range of values which is, in some sense,
likely to include the true value of a parameter (again, informed
by your data)

Hypothesis testing
hypothesis: a statement about a parameter
statistical test: a way of assessing whether your data are
reasonably consistent with a pre-specified hypothesis

Prediction
a probability statement about an unobserved outcome



Interval estimation

A point estimate is of little value without some indication
of its precision

Interval estimation is a compromise between:
the width of your interval;
the likelihood that your interval will include the right answer.

A confidence interval is defined as follows:

choose an acceptable level of confidence, say 100p%
(conventionally p = 0.95, but it’s your choice)

construct an interval so that 100p% of the time, it will
include the true value of the parameter

Exercise: all other things being equal, if you increase p, will the
resulting confidence interval become wider or narrower?



Statistical significance is not the same as clinical/practical
significance: comparing five anti-hypertensive drugs
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Estimating a mean

Probably the most widely used formula for a confidence interval is

x̄ ± 2
√

s2/n

Data independently replicated under identical conditions

x1, x2, ..., xn

x̄ is the sample mean

s2 is the sample variance

n is the sample size

or replace ±2 by a number depending on n ... see next slide



Estimating a mean (2)

Strictly, you should use ±cn, where cn depends on n, but is
approximately 2 for reasonably large n

n cn
5 2.78
10 2.26
20 2.09
50 2.01
∞ 1.96
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Where does the formula for the confidence interval come from?



Estimating a mean (3)
The distribution of the sample mean changes with sample size, n:
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Estimating a mean (4)

The variance, V , of the sample mean changes with sample size, n:

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
5.

0
−

4.
5

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0

log(sample size)

lo
g(

va
ria

nc
e)

log(V ) = a − log(n) ⇒ V = A× n−1

⇒ SE ∝ ×n−0.5



The Central Limit Theorem
Suppose outcomes Y1, ...,Yn are an independent random sample
from any distribution with mean µ and variance σ2, and write Ȳ
for the sample mean, Ȳ =

∑n
i=1 Yi .

Theorem In the limit, as n →∞,

Ȳ − µ√
σ2/n

∼ N(0, 1).

Or in words...sample means are
approximately Normally distributed

Also called the Gaussian distribution,
after the German mathematician
Carl Friedrich Gauss (1777 – 1855).
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Likelihood-based inference

A statistical model is a specification of the joint distribution of a
set of random variables, Y = (Y1, ...,Yn), indexed by a set of
parameters, θ = (θ1, ..., θp); a shorthand notation for this is [Y ; θ].

The likelihood function is L(θ) = [y ; θ], where y is the observed
value of Y

The maximum likelihood estimator, θ̂, maximises L(θ)

For n large, [θ̂] = MVN(θ,V (θ)), where V (θ) =
[
−∂

2L(θ)
∂θ2

]−1
Bayesian estimation requires you to specify a prior distribution, [θ],
from which you can deduce a posterior distribution,

[θ|y] =
L(θ)[θ]∫
L(θ)[θ]dθ

Pawitan (2001), Lee (2012)



Conclusions
sample means are approximately Normally distributed
(symmetric, bell-shaped histogram)

larger samples lead to more precise estimates

the variance of an estimate is inversely proportional to the
sample size, n

the standard error of an estimate is therefore inversely
proportional to √n

law of diminishing returns – doubling the sample size does not
double the precision of your estimate

likelihood-based methods provide a generally applicable,
efficient and principled approach to model-based inference



Review: what have we learnt?

1 How you choose your sample is important

2 Why statistical significance is not the same thing as
clinical/practical significance

3 How to estimate a mean from an independently replicated
sample

4 The
√

n law of statistical precision

5 The Central Limit Theorem...sample means are approximately
Normally distributed



Modelling



Statistical modelling principles

models are devices to answer questions, and should:
be not demonstrably inconsistent with the data;
incorporate the underlying science, where this is well understood
be as simple as possible, within the above constraints

“Too many notes, Mozart”

Emperor Joseph II

“Only as many as there needed to be”

Mozart (apochryphal?)

Empirical or mechanistic approach to model-building?



An empirical model: simple linear regression
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An empirical model: simple linear regression
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An empirical model: simple linear regression
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data are pairs of values x and y (input and output)
some lines are “obviously” better fits to the data than others,
but which is the “‘best-fitting” line?



An empirical model: simple linear regression

0 2 4 6 8 10

0
5

10
15

20
25

x

y

data are pairs of values x and y (input and output)
dashed vertical lines are residuals
the best-fitting line makes the sum of squared residuals as
small as possible

Exercise: why are residuals measured vertically?



Plant growth and pollution

Glyphosate is a powerful
weed-killer, its presence in
the water-supply is
potentially harmful to
irrigated crops.

Experiment conducted to
investigate how average
root-length of batches of
15 safflower plants is
affected by glyphosate
added to distilled or tap
water

Glyphosate data

x (ppm) 0.000 0.000 0.053
y (distilled) 107.0 110.9 106.2
y (tap) 111.0 168.3 105.7

x (ppm) 0.106 0.211 0.423
y (distilled) 97.3 105.9 88.5
y (tap) 116.7 143.7 84.7

x (ppm) 0.845 1.609 3.380
y (distilled) 74.4 46.2 30.0
y (tap) 59.3 36.7 38.0



Scientific and statistical objectives
what can these data tell us about the effect of small
concentrations of glyphosate on plant growth?
how could we build a statistical model to describe the
relationship between glyphosate concentration and
root-length?

Where do models come from?
in the gravity experiment, the linear regression model had a
mechanistic justification (physics plus physiology)
In the glyphosate experiment, there is no scientific law to
guide us.
but we may still be able to use the linear regression model to
describe the empirical relationship between glyphosate
concentration and root-length.



Plotting the glyphosate data
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Notes on data-transformations

other transformations of the data could have been used
choice could be determined by empirical and/or scientific
considerations

Example.

Suppose x and y follow a power law model,

y = axb

Then, log-log transformation produces a linear model,

Y = α + βX

where Y = log y , X = log x, α = log a and β = b.



A linear model for the glyphosate data

y = log(root length) (response)

x = log(1 + glyphosate) (explanatory variable)

w = 0/1 = distilled/tap water (factor)

y = {α0 + α1w}+ βx + z

parallel straight-line relationships for distilled and
for tap-water
α1 = 0 if source of water does not affect average
root-length
β measures effect of glyphosate on plant-growth
(on transformed scale)



Residuals vs fitted values plot
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Anscombe’s quartet
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Residuals: Anscombe’s quartet
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Residuals

DATA = FITTED VALUE + RESIDUAL

Anscombe’s quartet

All four data-sets have:

the same best-fitting
straight line,
y = α̂ + β̂x

the same standard
errors for α̂ and β̂

the same residual sum
of squares

R code for linear regression
Call:
lm(formula = y1 x123)

Coefficients:
Estimate SE t value

(Intercept) 3.0001 1.1247 2.667
x123 0.5001 0.1179 4.241

Residual standard error: 1.237 on 9
degrees of freedom

But the residuals themselves tell four different stories.



res1 res2 res3 res4

1 -0.740 -1.901 0.389 0.000
2 0.179 -0.761 0.229 -0.111
3 1.239 0.129 0.079 -1.751
4 -1.681 0.759 -0.081 0.909
5 -0.051 1.139 -0.230 -1.241
6 1.309 1.269 -0.390 1.839
7 0.039 1.139 -0.540 -0.421
8 -0.171 0.759 -0.689 1.469
9 1.839 0.129 -0.849 -1.441
10 -1.921 -0.761 3.241 0.709
11 -0.041 -1.901 -1.159 0.039

Why are the four sets of residuals different?
obvious if you have only one explanatory variable
less obvious when you have many



Analysing residuals

check that their average value is (close to) zero

plot them against fitted values

plot them against explanatory variables in the model

plot them against explanatory variables not in the model
(for example, residuals against time-order)



What if our response is a proportion?

a linear regression may fit over a restricted range of the input
variable
but it usually fails when the observed proportions cover most
of the range from zero to one.
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What if our response is a proportion?

a linear regression may fit over a restricted range of the input
variable
but it usually fails when the observed proportions cover most
of the range from zero to one.
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What if our response is a proportion?

a linear regression may fit over a restricted range of the input
variable
but it usually fails when the observed proportions cover most
of the range from zero to one.
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Generalising the linear model

Y = α + βx + Z

Or equivalently:
µ = E[Y ] = α + βx

Y ∼ N(µ, σ2)

The generalisation:
h(µ) = α + βx (link function)

Y ∼ f (µ, ...) (error distribution)



Generalised linear models

h(µ) = α + βx (Link function)

Y ∼ f (µ, ...) (error distribution)

choice of link function makes linear dependence on
explanatory variables less restrictive

choice of error distribution adds flexibility

puts a very wide range of statistical methods under a common
framework

encourages open thinking
(problem-driven rather than recipe-driven)

McCullagh and Nelder (1989)



Residuals re-visited

Linear model

µi = E[Yi ] = α + βxi Var(Y ) = σ2

Generalised linear model

µi = E[Yi ] = h−1(α + βxi ) Var(Y ) = v(µi )

Residuals and standardised residuals

Linear Generalised linear
residual yi − µ̂i yi − µ̂i

standardised residual (yi − µ̂i )/σ̂ (yi − µ̂i )/
√

v(µ̂i



The statistical modelling cycle

1 identify the question

2 design the study

3 collect the data

4 build the model

1 exploration
2 fitting
3 diagnostic checking
4 repeat (a) to (c) as necessary

5 answer the question



Examples of generalised linear models

Open-ended count response

Default choice is Poisson log-linear model

log(µ) = α + βx Y ∼ Poiss(µ)

Data-sets often show evidence of extra-Poisson variation

log(µ) = α + βx Var(Y ) = φµ : φ > 1



Examples of generalised linear models (2)
Binary or closed-count response (number out of n)

(Binomial) logistic model

log{µ/(1− µ)} = α + βx µ = P(Y = 1)
Complementary log-log

log{− log(µ)} = α + βx µ = P(Y = 1)
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Extra-binomial variation can also arise, and can be handled in
the same way as extra-Poisson variation



Examples of generalised linear models (3)

Survival analysis (life-times)

Exponential log-linear model

log(µ) = α + βx µ = P(Y = 1)

f (y) = µ−1 exp(−y/µ)

Rarely used in practice, because of the problem of censoring

Standard approach is semi-parametric proportional hazards
modelling

Cox (1972)



Review: what have we learnt?

1 statististical models are devices to answer questions

2 statististical models can be empirical or mechanistic (or a mix
of the two)

3 the linear regression model is surprisingly flexible

4 but for count data, generalised linear models are usually
preferable

5 residual diagnostic checks on model fit are an important part
of the statistical modelling cycle



Random effects



Linear regression re-visited

input variable x
factor, covariate, explanatory variable, ...

output variable y
response, end-point, primary outcome,...



A synthetic example
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relationship between x and y can be captured
approximately by a straight line
scatter about the line is approximately the same at all values
of x



Interpreting the linear regression model
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Yi = α + βxi + zi

How precisely can we:
estimate the parameters α and β?
estimate the straight-line relationship?
predict a future value of y?



The data are longitudinal
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simple linear regression software assumes that data are
uncorrelated
in longitudinal studies, with repeated measurements on each
subject, this is rarely true
reported standard errors and p-values are then not correct

Diggle, Heagerty, Liang and Zeger (2002)



Standard fitting method: least squares

> fit1<-lm(y~1+x)
> summary(fit1)

... plus lots of stuff you don’t want to know

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.26789 0.10274 31.81 <2e-16 ***
x 0.39286 0.01924 20.41 <2e-16 ***

Residual standard error: 0.7817 on 198 degrees of freedom
Multiple R-squared: 0.6779, Adjusted R-squared: 0.6763
F-statistic: 416.7 on 1 and 198 DF, p-value: < 2.2e-16



Correct fitting method: maximum likelihood with random effect

> library(nlme)
> fit2<-lme(y~1+x,random=~1|id)
> summary(fit2)
Linear mixed-effects model fit by REML
...
Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 0.7477531 0.2730349

Fixed effects: y ~ 1+x
Value Std.Error DF t-value p-value

(Intercept) 3.267887 0.17100989 179 19.10935 0
x 0.392856 0.00672165 179 58.44637 0

Number of Observations: 200
Number of Groups: 20



Random effects

Random effects can be thought of as missing information on
individual subjects that, were it available, would be included in
the statistical model
we model the missing information as a random sample from a
distribution (usually, we assume a Normal distribution)

This induces correlation amongst repeated measurements on
the same subjects

Example: some subjects are intrinsically high responders,
others intrinsically low responders

⇒ replace fixed intercept α by a random intercept, α + Ui



Random effects or fixed effects?

For our synthetic example, write:

Yij = j th response from i th subject: i = 1, ..., n
xij = corresponding value of explanatory variable

A random effects model
Yij = α + βxij + Ui + Zij

Ui = random effect for subject i
Zij = residual
all Ui and all Zij mutually independent

Model implies that different responses on the same subject are
positively correlated:

ρ =
Var(U)

Var(U) + Var(Z)



Random effects or fixed effects?

For our synthetic example, write:

Yij = j th response from i th subject: i = 1, ..., n
xij = corresponding value of explanatory variable

A fixed effects model
Yij = αi + βxij + Zij

αi = intercept for subject i
Zij = residual
all Zij mutually independent

Model implies that different responses on the same subject are
uncorrelated



Random or fixed effects: which model is correct?

• They both are

• The choice between them depends primarily on why you are
analysing the data

to adjust for the heterogentiy amonst the particular subjects
in your data
to undertand the heterogeneity amongst members of the
population from which your subjects were drawn

• These two cases call for fixed effects and random effects models,
respectively

• A second consideration is statistical efficiency: for large n, the
fixed effects model has many more parameters than the random
effects model, which necessarily implies that the parameter
estimates are less precise



A philosophical objection to fixed effects?

Yij = mark for student i on exam paper j = 1, ..., p

Question: what overall mark should you give to student i?

Fixed effects model: Yij = αi + Zij Zij ∼ N(0, τ 2), independent
Answer: α̂i = Ȳi , the observed average mark for student i

Random effects model: Yij = Ai + Zij

Zij ∼ N(0, τ 2), independent
Ai ∼ N(α, σ2), independent

Answer: Âi = c × ȳi + (1− c)× ȳ, c = p/(p + τ 2/σ2)
Observed average for student i is “shrunk” towards the class
average



An RCT of drug therapies for schizophrenia

Randomised clinical trial of drug therapies

Three treatments:
haloperidol (standard); placebo; risperidone (novel)

Dropout due to “inadequate response to treatment”

Treatment Number of non-dropouts at week
0 1 2 4 6 8

haloperidol 85 83 74 64 46 41
placebo 88 86 70 56 40 29
risperidone 345 340 307 276 229 199
total 518 509 451 396 315 269



The schizophrenia trial data
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A summary of the schizophrenia trial data

0 2 4 6 8

70
75

80
85

90
95

10
0

Time (weeks)

av
er

ag
e 

P
A

N
S

S
 s

co
re

placebo
haloperidol
risperidone



A model for the schizophrenia trial data

Mean response depends on treatment and time

Two random effects:
between subjects (high or low responders)

between times within subjects (good and bad days)

Method of analysis allows for dropouts: maximum likelihood with
random effects



PANSS mean response profiles
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What’s going on?

dropout is selective (high responders more likely to leave)

but the data are correlated

and this allows the model to infer what you would have seen,
had there not been any dropouts

which may or may not be what you want
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Diggle, Heagerty,Liang and Zeger (2002)



Review: what have we learnt?

1 Fixed effects describe the variation in average responses of
groups of subjects according to their measured characteristics
(age, sex, treatment,...)

2 Random effects describe variation in subject-specific responses
according to their unmeasured characteristics

3 Both kinds of model can easily be fitted using the open-source
software R, or in various proprietary packages

4 Dropout in longitudinal studies can have surprising
consequences:

5 Random effects and parameters are different things
− parameters don’t change if you re-run an experiment
− random effects do



Time



A meteorological time series
maximum daily temperatures (degrees C) at Bailrigg
(Lancaster) field-station, September 1995 to August 1996
note that an unusually cold Christmas 1995 was followed by a
mild period in January-February

•
•
•

•

•

•

•

••
•

•

••••
••
••
•

••
•

•

•
•

•
•
•
••••
•

•

•
•

•

•

•
••
•

•

•
•
•

•
••
•
•

•
•

•
•

•
••
•
•
•
•
••••

••

•
•

••
•••

•
•

•

•••
•••

•
••
•

•

•
•

••

•

•
•

•

•

••
•••
•
•

••
••

•

•
•

•
•
•

••
••

•
•

•

••
•
•
••
••

•
•
•
••
•

••••

•
•
•••
••••
••
•

•
•
•
•
•

•
•

•

••••••

•
••

•

•••

•
•
•

••

•
••
•
••
•

•

••

•
•
•

•

••

•••

••••

•

•

•

••
•

•

••

•
•

•

•
••

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

••

••
•

••
••

••

•

•
•

•

•
•

•

•

••
••
•••••••

•
••

•

•
•
•
•

•

•

•

•
•

•

••

••

•

•

•

••
•

••
•
••
•••

•

•

••
••
•
••

•

•

•
•

•

•
•

•

••
•

••

•
•
•

•

•
•
•
••

•

••
•
•
•

•

•

••

•

••
•

•

•
•
•

•

•

•
•

•

••
•

••
•

•
•
•
••

Day (1=1 September)

M
ax

te
m

p 
(d

eg
re

es
 C

)

0 100 200 300

0
5

10
15

20
25



Points for discussion

what are the main features of the data?

how did I fit the smooth curve to the data?

what features are and are not explained by the
fitted curve?



A harmonic regression model

Y (t) = µ + α cos(2πt/p + φ) + residual

= µ + β1 cos(2πt/p) + β2 sin(2πt/p) + residual

µ = overall mean value (of time series Y (t))
p = period
α = amplitude
φ = phase

Usually, the period is known, but the mean, amplitude and phase
are not



Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Why does the model work?

Use the first form of the model,

Y (t) = µ + α cos(2πt/p + φ) + residual
Now imagine tracking the vertical displacement of a particle
moving at constant speed around a circle
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Lifting, stretching, shifting

Y (t) = µ + α cos(2πt/p + φ) + residual

Lifting
µ: adjust to match observed and modelled average value

Stretching
α: adjust to match observed and modelled range

Shifting
φ: adjust to match observed and modelled nadir



Fitting the model

Use the second form of the model,

Y (t) = µ + β1 cos(2πt/p) + β2 sin(2πt/p) + residual

Note that the following quantities are known, i.e. they
can be calculated without having to estimate anything

x1(t) = cos(2πt/p)
x2(t) = sin(2πt/p)

Re-write the model as

Y = µ + β1x1 + β2x2

After fitting (see next page), amplitude and phase can be
recovered using

α =
√
β2
1 + β2

2 φ = tan−1(β2/β1)



Using the lm() function to fit the model

data<-read.table("maxtemp.dat")
y<-data[,4]
day<-1:366
x1<-cos(2*pi*day/366)
x2<-sin(2*pi*day/366)
fit<-lm(y~x1+x2)
summary(fit)



Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-7.5921 -1.8240 -0.1475 1.7140 8.5232

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.8467 0.1441 82.22 <2e-16 ***
x1 6.2508 0.2038 30.68 <2e-16 ***
x2 -3.3177 0.2038 -16.28 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.756 on 363 degrees of freedom
Multiple R-Squared: 0.7687, Adjusted R-squared: 0.7674
F-statistic: 603.1 on 2 and 363 DF, p-value: < 2.2e-16



Autocorrelation

relationship between today’s and yesterday’s temperature?

relationship between today’s and yesterday’s residual?
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Autocorrelation (2)
How does the relationship between residuals today and k days ago
change as k increases?
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Autocorrelation (3)

lag-k autocorrelation is the correlation between pairs of values
from the same time series k time-units apart

correlogram is a plot of lag-k autocorrelation against k
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Exercise

Imagine that you have data on daily maximum temperatures for
several years, up to today.

1. How would make a forecast of:

tomorrow’s temperature?

the temperature one month from now?

2. In what ways are your two answers different, and why?



Time series models and random effects

Y (t) = α + β1 cos(2πt/p) + β2 sin(2πt/p) + residual(t)

1. Model consists of a time-varying mean, also called the trend,

µ(t) = α + β1 cos(2πt/p) + β2 sin(2πt/p)

and stochastic variation, residual(t), about the trend.

2. Decompose the residual into two terms:

residual(t) = S(t) + Zt

Cov{S(t), S(t − u)} = σ2 exp(−u/φ) (random effect)

Zt uncorrelated N(0, τ 2) (noise/measurement error)
Diggle (1990), Priestley (1981)



Space



Spatial Data Formats

spatially aggregated; spatially sampled; point process

Example 1a. Wheat uniformity trial
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Mercer and Hall (1911)



Example 1b. Cancer atlases

Raw (left panel) and spatially smoothed (right panel) relative risk
estimates for
lip cancer in 56 Scottish counties
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Wakefield (2007)



Example 2. Galicia biomonitoring study

Lead concentrations measured in samples of moss, map shows
locations and log-concentrations
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Diggle, Menezes and Su (2010)



Example 3. Retinal mosaics

Locations of two types of light-responsive cells in macaque retina
(2 animals)

 

 

 

 

Eglen and Wong (2008)



Spatial dependence

First law of geography: all things are related but close things are
more strongly related than distant things

Spatial dependence may be:

functional (deterministic)

statistical (stochastic)

Origin of statistical dependence may be mechanistic (causal) or
empirical (descriptive/predictive)



Geostatistical regression modelling

A common scenario in tropical disease epidemiology:

Objective: understand geographical variation in risk

Study-design: Identify n communities in study-region A, by a
suitable sampling scheme (not necessarily completely random)

Data: Measure empirical prevalence and hypothesised
risk-factors on each sampled community, also risk-factors on
all unsampled communities for which estimates of risk are
required

Model: either a linear or a generalized linear model for
prevalence (or transformation thereof)

Diagnostic checking: all the usual plus check for spatial
independence of residuals

Diggle and Giorgi (2019)



A model-based approach: random effects again

Yi = µ(xi ) + S(xi ) + Zi : i = 1, ..., n

xi = location

Yi = (transformed) prevalence

µ(xi ) = u′i β (fixed effects)

S(x) = spatially correlated process, variance σ2

Zi = uncorrelated residuals, variance τ 2



Estimating correlation structure

Regression residuals, ri = Yi − ui β̂

Each ri estimates S(xi ) + Zi

Do we need the random effect process S(x)?

The variogram

dij = ||xi − xj ||(distance) vij = 1
2(ri − rj )2

V (dij ) = E[v2
ij ]

V (d) = τ 2 + σ2{1− ρ(d)}



Onchocerciasis: a vector-borne disease

“A small black fly, with thick shoulders and bullet-head,
infests the place, and torments the naked arms and legs
of the people with its sharp stings to an extent that
must make life miserable to them”

John Hanning Speke, Uganda, 1864

The first written description of the
onchocerciasis vector, Simulium
damnosum (blackfly)



Onchocerciasis: aka River Blindness



MDA: a tool for control of vector-borne filarial disease

Ivermectin (Mectizan): annual
dose clears microfilarial
infections of the blood

generally considered safe, with
no serious side-effects

mass distribution made possible
by donation programme (Merck)

used in multi-national
programmes to combat
onchocerciasis and lymphatic
flariasis



A prevalence survey data-set: onchocerciasis in Liberia
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Analysing prevalence data: a geostatistical model

Data: (xi , d(xi ), ni ,Yi ) : i = 1, ..., n

Model:
log[p(xi )/{1− p(x)i}] = d(x)′iβ + Ui + S(xi )

Ui ∼ N(0, ν2), mutually independent

S(x) ∼ Gaussian process, spatially correlated

Yi |Ui , S(xi ) ∼ Binomial{ni , p(xi )}



Exploratory analysis: empirical logits

fitting the binomial logistic model is computationally
demanding, and requires judgement:

convergence of iterative algorithms

judicious choice of approximations

empirical logit transform:

Zi = log{(Yi + 0.5)/(ni − Yi + 0.5)}

fit linear model with Zi as response



Exploratory analysis of onchocerciasis data

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

u

V
(u

)

residual variogram after fitting linear trend surface



Exploratory analysis of onchocerciasis data
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Fitting the binomial logistic model

likelihood function involves intractable high-dimensional
integral

need to use Monte Carlo methods

Monte Carlo maximum likelihood or Bayesian estimation
according to choice

for large data-sets, algorithms need careful tuning to preserve
accuracy while remaining computationally feasible



PrevMap: fitting the binomial logistic model

library(PrevMap)
response<-cbind(npositive,ntested-npositive)
fit.glm<-glm(response∼longitude+latitude,

data=data,family=binomial)
beta<-fit.glm$coef; par0<-c(beta,fit$cov.pars,fit$nugget)
mcmc<-control.mcmc.MCML(n.sim=10000,burnin=2000,thin=8,

h=1.65/(nrow(data)**(1/6)))
fit.bl<-binomial.logistic.MCML(npositive∼longitude+latitude,

units.m= ntested,coords=∼longitude+latitude,
data=data,par0=par0,control.mcmc=mcmc,kappa=0.5,
start.cov.pars=c(par0[5],par0[6]/par0[4]))



PrevMap: mapping the results

library(splancs)
xy<-data.frame(longitude=data$longitude,latitude=data$latitude)
par(pty="s"); pointmap(xy)
poly<-getpoly()
grid.predict<-as.data.frame(gridpts(poly,xs=0.1,ys=0.1))
names(grid.predict)<-c("longitude","latitude")
predict.MCML<spatial.pred.binomial.MCML(fit.bl,

grid.pred=grid.predict,predictors=grid.predict,
control.mcmc=mcmc,scale.predictions="prevalence",
standard.errors=TRUE,thresholds=0.2,
scale.thresholds="prevalence")

plot(predict.MCML,type="prevalence")
points(gd,add=TRUE)
polymap(poly,add=TRUE)



Liberia: onchocerciasis prevalence map
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Liberia: onchocerciasis exceedance maps

P(prevalence>10%) P(prevalence>20%)
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Summary

Statistics is fundamentally about understanding variation

Design: eliminate extraneous sources of variation

Model: acknowledge remaining sources of variation

Inference: estimate model parameters efficiently so that
interpretations are:

valid (honest)
efficient (as precise as possible)

Design and modelling both involve scientific judgement

Inference should follow automatically (likelihood-based)

And the inference should answer the original question



Statistics and scientific method
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statistical inference

Statistical method :
a device to answer a question
a bridge between theoretical and
applied science
a framework to enable principled
inference in the presence of
uncertainty

Scientific purpose is more important than data-format

Analyse problems, not data

Diggle, P.J. and Chetwynd, A.G. (2011). Statistics and Scientific
Method: an Introduction for Students and Researchers. Oxford: Oxford
University Press.


