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Outline

e introduction

e general remarks on statistical modelling

o the standard binomial geostatistical model: Loa loa

@ low-rank approximations: river blindness

o combining data from multiple surveys: malaria

@ spatially structured zero-inflation: river blindness re-visited
o implementation

o closing remarks



Low resource settings




Prevalence mapping 1

Single prevalence survey

Sample n individuals, observe Y positives

Y ~ Bin(n, p)

Multiple prevalence surveys

Sample n; individuals, observe Y; positives, i = 1, ...

Yi ~ Bin(ni, pi) ?

,m



Prevalence mapping 2

Extra-binomial variation

Sample n; individuals, observe Y; positives, i = 1,...,m

Yildi, Ui ~ Bin(n;, pi) log{pi/(1 — pi)} = d{3 + U;

This talk

What to do if the d; and/or the U; are spatially structured



Geostatistics

o traditionally, a self-contained methodology for spatial
prediction, developed at Ecole des Mines,
Fontainebleau, France

e nowadays, that part of spatial statistics which is
concerned with data obtained by spatially discrete
sampling of a spatially continuous process



A geostatistical data-set: Loa loa prevalence surveys

Y Coord




Model-based Geostatistics
(Diggle, Moyeed and Tawn, 1998)

o the application of general principles of statistical
modelling and inference to geostatistical problems

— formulate a model for the data
— use likelihood-based methods of inference

— answer the scientific question



Statistical modelling principles

@ models are devices to answer questions
e models should:
o be not demonstrably inconsistent with the data;
e incorporate the underlying science, where this is well understood
o be as simple as possible, within the above constraints
“Too many notes, Mozart”
Emperor Joseph Il
“Only as many as there needed to be”

Mozart (apochryphal?)



Empirical modelling: The AEGISS project
(Diggle, Rowlingson and Su, 2005)

o early detection of anomalies in
local incidence

o data on 3374 consecutive
reports of non-specific
gastro-intestinal illness

o log-Gaussian Cox process,
space-time correlation p(u, v)




Mechanistic modelling: the 2001 UK FMD epidemic
(Diggle, 2006)

%25 JuL 2001

o Predominantly a classic epidemic
pattern of spread from an initial
source

@ Occasional apparently
spontaneous outbreaks remote
from prevalent cases

@ A(x,t|H.) =conditional
intensity, given history #;




Onchocerciasis (River Blindness)




APOC

African
Programme for
Onchocerciasis
Control

@ “river blindness” — endemic in wet tropical regions
o donation programme of mass treatment with ivermectin
o approximately 60 million treatments to date, in 19 countries

@ serious adverse reactions experienced by some patients highly
co-infected with Loa loa parasites

@ precautionary measures put in place before mass
treatment in areas of high Loa loa prevalence

http://www.who.int/pbd/blindness/onchocerciasis/en/









The Loa loa prediction problem

Ground-truth survey data

e random sample of subjects in each of a number of villages

@ blood-samples test positive/negative for Loa loa
Environmental data (satellite images)

e measured on regular grid to cover region of interest

o elevation, green-ness of vegetation
Objectives

o predict local prevalence throughout study-region (Cameroon)
@ compute local exceedance probabilities,

P(prevalence > 0.2|data)



Schematic representation of Loa loa model

o
b
o
© | sampling error
local fluctuation
o |
o
@
2
3
[
S
e
=
<
S
~
CA . -
environmental gradient
o |
o

0.0 0.2 0.4 0.6 0.8 1.0

location



The Loa loa modelling strategy

o use relationship between environmental variables and
ground-truth prevalence to construct preliminary
predictions via logistic regression

@ use local deviations from regression model to estimate smooth
residual spatial variation

@ model-based approach acknowledges uncertainty in predictions

“The answer to any prediction problem is a probability distribution”

Peter McCullagh



Loa loa: a generalised linear model

o Latent spatially correlated process
S(x) ~ SGP{0, 02, p(u))}
p(u) = exp(—|u|/®)

@ Linear predictor (regression model)

d(x) = environmental variables at location x
n(x) = d(x)'8 + S(x)
p(x) = log[n(x)/{1 — n(x)}]

e Conditional distribution for positive proportion Y;/n;

Yi|S(:) ~ Bin{n;, p(xi)} (binomial sampling)



Conditional dependence structure

Signal: S, S* (data-locations and prediction locations)
Data: Y (data-locations only)

Parameters: 3 (regression terms), 6 (covariance structure)

/




logit prevalence vs elevation
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How useful is the geostatistical modelling?
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Probabilistic exceedance map for Cameroon
(Diggle et al, 2007)
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Extending the model

@ non-spatial extra-binomial variation

low-rank approximations;

@ combining data from multiple surveys
o randomised and non-randomised

o at different times

spatially structured zero-inflation.



Non-spatial extra-binomial variation

o Latent spatially correlated process
S(x) ~ SGP{0,02,p(u))} p(u) = exp(—|u|/¢)

o Latent spatially independent random effects

U; ~ iidN(0, ?)

e Linear predictor (regression model)

d(x) = environmental variables at location x
n(xi) = d(x)'8 + S(x) + U;
p(xi) = log[n(xi)/{1 — n(xi)}]

e Conditional distribution for positive proportion Y;/n;

Yi|S(-) ~ Bin{n;, p(x;)} (binomial sampling)



Low-rank approximations
(Rodrigues and Diggle, 2010)

M
S(x) =~ p+ Zw(x — kj)Z;

=1
e w(u): kernel function

o Z; ~ iid N(0,v?)

e kic AC R?: fixed set of points

Choose w(-) to approximate to preferred family of correlation
functions

Computation linear in number of prediction points



Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): 14,473 survey locations




Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): low-rank model

e M = 10734 points X in regular lattice at spacing 0.1 degrees

o to approximate Matérn correlation, M(¢, k), kK = 2

w(u) = ¢~ exp(—2v2u/¢)

Parameter estimate 95% confidence interval
n 2:451 (2.469, 2.432)
V2 31:570 (31.038, 32.112)

b 65:208 (64.993, 66.301)



Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): prevalence estimates




Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): exceedance probabilities
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Multiple surveys (Giorgi et al, 2015)

Surveys: i =1,...,r locations x;:j=1,...,m

mi = d(x;) " B1 + Si(xy) + (i € B)[Bi(xy) + d(x;)' 8] + Uy

é;_fg




Application: malaria mapping, Chikhwawa district, Malawi
(Giorgi et al, 2015): rMIS individual locations
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Application: malaria mapping, Chikhwawa district, Malawi
(Giorgi et al, 2015): eMIS individual locations
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Application: malaria mapping, Chikhwawa district, Malawi
(Giorgi et al, 2015): EAG village locations and prevalences
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Continuous time: rolling malaria indicator surveys

Hotspots: P(prevalence > 20%)

May 2010
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Continuous time: rolling malaria indicator surveys

Coldspots: P(prevalence < 5%)

May 2010
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Spatially structured zero-inflation: river blindness re-visited

@ public health experts have strong sense that some areas are
fundamentally unsuitable for onchocerciasis transmission

@ hence need to incorporate mix of structural and chance zeros

Non-spatial model
vi { 0 : wpg
' Bin(ni,pi) : wp1l—gq;

Spatial model

{a@i,pi} — {Q(x),P(x)} : x € R? ~ bivariate stochastic process



Double logistic Gaussian process

Q(x) + (1 — Q(x)) X Bin(0: n, p(x))

P(Y = y|S1(x), S2(x)) = {(1 — Q(x)) x Bin(y; n, p(x))

o ogit(Q(x)) = 411 + S1(x)
o logit(P(x)) = p2 + S2(x)

o {S1(x),S2(x)} ~ bivariate Gaussian process

ty=0
ty>0



Geo-ZIB
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Sudan: non-transmissible probability map (Q(x))
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Mozambique/Malawi/Tanzania: non-transmissible
probability map (Q(x))

0 - ": .
£
% 1.0
S 08
06
e | 04
02
o
§ 0.0
['e]
g

25 30 35 40 45



Implementation

@ Monte Carlo maximum likelihood

Plug-in prediction

R package PrevMap

Bayesian version?



Closing remarks

@ principled statistical methods
— make assumptions explicit
— deliver optimal estimation within the declared model

— make proper allowance for predictive uncertainty

@ but there is no such thing as a free lunch
“We buy information with assumptions”

C H Coombs

e which is why statistics is at its most effective when conducted
as a dialogue with substantive science

e and this should guide the way we teach statistics ...especially
to science students
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