Cristian Barrera-Hinojosa, Mladen Ivkovic, Pawel Radtke, Tobias Weinzierl
Durham University
PAX-HPC project meeting, Lancaster

22. April 2024

 Awenl e T, PR
NN T TE T TR,
VI VA VR VTR o
A, CWINARNE
v O [V o

What it Does

Cosmological & Astrophysical
simulations:

Hydrodynamics

Gravity and Dark Matter

Planetary science

Neutrinos

Schaller et al. 2024

Radiative transfer and cooling
Sub-grid models

e And much more!

Visit us at swiftsim.com

o "

NEW IR T TR
IR VAT i
e N/ |/ (T !

x

3 < .
- oy

Under the Hobd

Particle methods to solve the physics

several flavours for almost all physics
* Written in C

e Paralellism:

fine-grained interdependent tasking with own

scheduler based on pthreads (based on QuickSched
library)

Permits Asynchronous MPI communications

Permits domain decomposition based on work, not
data

SWIFT: The Good

The fine-grained tasking
approach is key to SWIFT’s
successes:

- Largest ever moon formation
simulations

- Largest cosmological
hydrodynamical simulation (by
particle number):

« 128x10° hydro particles
 128x10° gravity particles
* 10° neutrino particles

- Remarkable weak scaling

III‘I.I

Time relative to total on one node [—|

—_—
=
|

._
i
|

_
<

(&1

Number of particles (gas+ DM + neutrinos) [—]

10° 1010 1o
1l 1 1 T B R A | 1 1 T T T |
] =@ Total Tasks —®— Domain decomp.
] Tree construction Gravity =—®— [mbalance
1 =—®— Mesh gravity SPH
| - — - e ——
<
AN
o
|
©
)
()
_
Q
©
® —o- S
wn
i —.———f‘-—-.—_.-_.
-I. ! ! LI | /' ! LI | ' ! LI
10 10° 104
Compute cores [—]
43904 cores

SWIFT: The Not-So-Good

 Clearly SWIFT is doing a couple of things right.

 What can and needs to be improved upon?

- We need to look into how SWIFT does things
internally, in particular how the fine-grained
tasking and scheduler work.

lIIIIIIIIIIIIIIIIIIlllIlllIlllllllllllllllllllll‘iil

Task-Based Parallelism

iifﬂllli“hﬂ“ﬂ“ﬂ"'lﬁﬂ"Hﬂﬂ“mﬂllﬁql

in

= sub_pair/force
= sub_pair/gradient

4000

pair/force
= pair/gradient
sub_pair/rt_gradiene=== sub_pair/rt_transport== pair/rt_transport

gradient

sub_self/
pair/rt_gradient
3000

port

gradient

How it looks like

0 === ======SSSSE=

c I-Hnuuuunnwwmmuunnnnl|Hnmmun||mM
o5 C|| SRR ENEEREE |
] N | | ====| O . = T IIHHHHmmll £
tsc: | NNEREEERRENREE RN |
= = s = || - | | | | | | | v
Su v w = | [I I N) I R E
o m un u | | |] =
I I I ~
5 o0 o0 o || . BN . g
% 3 3 3 . °
| N | U n n n B ittt o
E= ERE= =
] =

il S = —— g
—_EE=S==Em====TTos e o K=}

| | | T e - SR - ™~
mEE== BII

v_end_force

rt_ghostl
ghost2

— gra

— [t
u
|
-I
[|
l-
|
IF-

0_end force= collect

drift_g_part
rt_tchem

[

|

|

|

I

[

= ghost
= hydr
|
I
[
|
|
u
!
|
I
|
|
1000

y = kick2
— kickl
timestep
grave=drift_part=—
II
I
I
I
|
|
|
I
|
I
I
|
|
|
|
|
I
I
I
[
|

Q
O
-
=
O
©
L
o

al peatyl

= pair/density
sub_pair/density

self/fexternal

- sub self/densit

=
(V)]
“r
-
L)
=
.’
©
O
©
o
e
Q
(7))
©
(aa]
1
=
7))
©
—

Task-Based Parallelism

Task-Based Parallelism: Dependencies

Task:

Dependency:

Task-Based Parallelism: Conflicts

Task:

Conflicts: ‘ W ‘

The Dependency Graph As Algorithm Steps

A single SPH step for each particle needs the
following order of operations:

neighbour neighbour

soarch: loo: find new
o exchahge step At

density forces

lllIlIlIllllllllIlIllllIllIlIllllllllllllllllllll‘i.ll

The Dependency Graph As Algorithm Steps

The Dependency Graph: In Reality

Adding Gravity

drift_part

<Gon > | Goremn> Sub el densiy Gty > Cpuraemis >)

Tecv_rho

+

drift_gpart

<G> | et g > g Cpargrtion > o i gt > |

extra_ghost recv_gpart init_grav_out

Grift_gpart_out >)
- —r
[Gt > e | [G ey

Ty, ond-force < tond >

Send tend

‘Task dependencies for SWIFT v1.0.0

Adding Stars and Stellar Feedback

S i part
T
J,
=

-]
") @ ol gpart

sub_pair gradient

[> G Capltom> Gt | < J
\4 |
<>

(G i

[o st aomity ety > ol san senity > |

stars_density_ghost

e

‘ sub_pair stars feedback pair stars_feedback Sub_self stars feedback self stars_feedback ‘

D>

Send_tend

‘Task depondencies for SWIFT v1.0.0-dirty

Adding Radiative Transfer

U

. and blgck holes, sinkw :

el 1

MHD. ..] ‘:i

How Is It Done?

 Task creation: « Task activation:
engine_maketasks.c: ~5k lines of cell unksip.c: ~3.5k lines of
if (condition A) { if (condition A) {
TA = create_task(A); activate_ task(TA);
} }
if (condition B) { if (condition B) {
TB = create task(B); activate task(TB);
} }

if (condition A && condition B &&
condition C) {
create dependency(TA, TB);

) A1l of this needs to be done

manually. i

To Make Matters Worse
The dependency graph doesn’t

Discussing the Bad

 The current tasking system is deeply embedded into SWIFT

- Adding new physics to SWIFT is tricky, convoluted, and very
time consuming.

- There are countless pitfalls and edge cases that are nearly
impossible to predict and hard to diagnose and debug.

- This means that physicists will have to spend a lot of time
not doing physics. :(

 The current tasking system is not future-proof

- Only supports CPU tasking, no GPUs (yet).

III‘E‘I

How do we fix that?

 We need to replace the engine.
* Goals:
- Keep fine-grained tasking.

- Separation of concerns:
users specify this:

Goals (cont.)

Dependency graph is generated, not written by devs
« Users can focus on the equations they want solved

« We can worry about (and play with) the underlying framework

- Precise parallelisation strategy: Which scheduler to use? What to
solve on GPUs? Which MPI communication strategy to use?

- Data management: What to store as AoS, what as SoA? What precision
to use?

- How to group together function calls into tasks?

- We can even go so far as to design a set of tests and benchmarks
that will tell you the best configuration for your problem and
your machine.

IIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllliiil

How?

« Place SWIFT in Peano4
framework

- Peano4 provides
parallelisation, domain
decomposition,
optimization

- SWIFT 2 extension
provides framework to
adopt Swift kernels
(physics)

http://www.peano-framework.org E

What Peano Gives Us

 Adaptive Mesh Tree Traversals along
Refinement Peano Space Filling
Curve

A]
AN R Z \

F G H | J L M N . c I
//\\ /'\ /\\ Ha|Hb | La | Lb [Na| Nb '
OPQR STUV WX Y Z o P U

V| W[X

Vv w| X

Q| R|s|T|Y | 2z Q|R|[S|T|Y |z L

Weinzierl et al. 2019 a

How It Works

 Particles are stored in a dual tree:
« Both in cells and on vertices

 Peano provides top-down grid traversals.
« Users can’t touch that.

 During the traversal, events are triggered.
 vertex/cell touched for the first time during traversal.

 Cell can be worked on.
 vertex/cell touched for the last time during traversal.

* We attach whatever we need done to these events.

How It Works

e Main Idea:

- Translate Algorithm steps onto grid traversals using
these events.

- One algorithm step corresponds to one grid traversal.

neighbour neighbour

)) search; loop;

density forces

find new
time
step At

Example

* Touch vertex first time:

- Do something on all particles assigned to this vertex
 Cell can be worked on:

- Do a particle-particle interaction loop
 Touch vertex last time:

- Do something on all particles assigned to this vertex

II‘E.I

What It Looks Like In Practice

«Step 1: Define a particle type

class Particle():
self.data.add attribute(dastgen2.attributes.Double("mass"))

self.data.add attribute(dastgen2.attributes.Double("density"))
self.data.add attribute(dastgen2.attributes.Double("pressure"))
self.data.add attribute(dastgen2.Peano4DoubleArray("v","Dimensions"))

etc ..

IIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllllllllll‘iil

What It Looks Like In Practice

« Step 2: Define the life cycle of your particle

kick
drift
density

AlgorithmStep(...)

AlgorithmStep(...)

AlgorithmStep(
name = "Density",
touch_vertex_first_time_kernel = "functionPrepareDensity(particles);"
cell _kernel = "densityInteraction(particles);",
touch_vertex_last_time_kernel = "functionEndDensity(particles);",

 then add it to your particle:

particle.algorithm_steps = [kick, drift, density, force, timestep]

« And Peano4/Swift 2 does the rest for you! ‘:I

Current State Of Affairs

Bare-bones SPH implementation 1s present and running

- 1.0
08 ;|
i
' 0.8
06 :
= ‘ a
z H 206
310 ' 2
ka PR
> : =
H 0.4
0.2 s i
1 H
. 0.2 H
o0 ’ (—
-0.4 -0.2 0.0 02 0.4 -0.4 -0.2 0.0 0.2 0.4
Pasit cn x Positian x
2.2
1.0 .
2.0
‘
0.8 18 | l
3 P
o e I i
o 16 i H
o i i !
@ = [H
o £1.4 i H
i 3 ' b
04 £ 2 v
1.2 [—
5 { H
02 1 10 13
—
08
-0.4 -0.2 0.0 0.2 0.4 -0.4 =0.2 0.0 0.2 0.4
Paston x Pasitian x

12 13
1.0 12
0: 11
> Q
20 2z
g gl.
L a
>0.
0.9
0.2
0.8
0.0
0.7
00 01 02 _03 04 05 06
Radius r
6.0 9.0
8.8
5.8 06
L8
a 8.4
256 5
2 w2
2 =
g]
£s54 o,
£
5.2
7.4
0.0 01 02 04 05 06 00 01 02 04 05 06

Gresho-Chan vortex (2D) with y=1.667 in 2D at t=0.50

Minimal SPH
Cubic Spline (M4)
15.14 neighbours (7 =1.235)

N=642

Automatic Runtime Dependency Checks

« In Debug mode, we can keep track of each stage of the
particle during a simulation step

Touch Vertex First Time Cell Kernel Touch Vertex Last Time

AlgorithmStep 1 1 1 1
AlgorithmStep 2 1 0 0
AlgorithmStep N 0 0 0

« Verify on-the-fly that dependencies are satisfied: Nothing
done too early, nothing done too late.

« These checks are automatically generated for you!

II‘E‘I

Storage Management Experiments

« Store particles

110
- Globally, randomly on heap 105 -
- Globally, contiguous 100 -
- Per-vertex, contiguous S I o
. . E gp] —¥ lathreads
 Particle sorting: §
- On-the-fly, or in additional step :; rffﬁf*xaaaff,fff-;f'”’ffJ
* Outcome: f .8 . B 15 a3
- Sorting comes at noticeable expense %% %E %é %E §§ %%
- For large thread counts, sorting i e))

gives speedup, as nasty memory access
1s avoided

ﬂ

Outlook

 Currently in progress and planned:

A wider suite of benchmarks, testing different
scenarios

Performance analysis and optimization

Compiler extension to allow memory compression via
C++ annotations

Adaptive and individual time step sizes
Additional physics, additional particle methods...

III‘%‘I

Final Slide

e Final Slide

Individual Timestepping

Particle 1 ‘ 3 ‘

steps of 8At
Particle 2

steps of 4At 4 4 ® o g
Particle 3

steps of 2At 4 o 4 d * o ¢

Global simulation t (A

time 0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16

IIIIIIIIIIIIIIIIIIIIIIIlllllllllllllllllllizil

Individual Timestepping

Density (g cm™3)
10—31 10—29 10—27 10—25 10—23 10—21

1 1 L 1 1 1 DM density [10°M, /kpc?] gas density [10°M, /kpc?]
102 {4 =< 1x 10 3 5
10?
107 A
10°
$ 10"
= 5 :
< 10 —— Timestep
£ —— Density
(s 104
—
o
L 3 10°
o 10° -
o
=
S
=
10°
10! - 107!
— 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
< 3 X 104 > cMpc cMpe
103 10% 10° 106 107

Timestep (years)

Borrow et al. 2018

Data-Based Parallelism

