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What it Does

Cosmological & Astrophysical
simulations:

Hydrodynamics

Gravity and Dark Matter

Planetary science

Neutrinos

Schaller et al. 2024

Radiative transfer and cooling
Sub-grid models

e And much more!

Visit us at swiftsim.com
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Under the Hobd

Particle methods to solve the physics

several flavours for almost all physics
* Written in C

e Paralellism:

fine-grained interdependent tasking with own

scheduler based on pthreads (based on QuickSched
library)

Permits Asynchronous MPI communications

Permits domain decomposition based on work, not
data




SWIFT: The Good

The fine-grained tasking
approach is key to SWIFT’s
successes:

- Largest ever moon formation
simulations

- Largest cosmological
hydrodynamical simulation (by
particle number):

« 128x10° hydro particles
 128x10° gravity particles
* 10° neutrino particles

- Remarkable weak scaling
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SWIFT: The Not-So-Good

 Clearly SWIFT is doing a couple of things right.

 What can and needs to be improved upon?

- We need to look into how SWIFT does things
internally, in particular how the fine-grained
tasking and scheduler work.
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Task-Based Parallelism
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Task-Based Parallelism




Task-Based Parallelism: Dependencies

Task:

Dependency:



Task-Based Parallelism: Conflicts

Task:

Conflicts: ‘ W ‘




The Dependency Graph As Algorithm Steps

A single SPH step for each particle needs the
following order of operations:

neighbour neighbour

soarch: loo: find new
o exchahge step At

density forces
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The Dependency Graph As Algorithm Steps




The Dependency Graph: In Reality




Adding Gravity
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Adding Stars and Stellar Feedback
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Adding Radiative Transfer
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How Is It Done?

 Task creation: « Task activation:
engine_maketasks.c: ~5k lines of cell unksip.c: ~3.5k lines of
if (condition A) { if (condition A) {
TA = create_task(A); activate_ task(TA);
} }
if (condition B) { if (condition B) {
TB = create task(B); activate task(TB);
} }

if (condition A && condition B &&
condition C) {
create dependency(TA, TB);

) A1l of this needs to be done

manually. i



To Make Matters Worse
The dependency graph doesn’t




Discussing the Bad

 The current tasking system is deeply embedded into SWIFT

- Adding new physics to SWIFT is tricky, convoluted, and very
time consuming.

- There are countless pitfalls and edge cases that are nearly
impossible to predict and hard to diagnose and debug.

- This means that physicists will have to spend a lot of time
not doing physics. :(

 The current tasking system is not future-proof

- Only supports CPU tasking, no GPUs (yet).
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How do we fix that?

 We need to replace the engine.
* Goals:
- Keep fine-grained tasking.

- Separation of concerns:
users specify this:




Goals (cont.)

Dependency graph is generated, not written by devs
« Users can focus on the equations they want solved

« We can worry about (and play with) the underlying framework

- Precise parallelisation strategy: Which scheduler to use? What to
solve on GPUs? Which MPI communication strategy to use?

- Data management: What to store as AoS, what as SoA? What precision
to use?

- How to group together function calls into tasks?

- We can even go so far as to design a set of tests and benchmarks
that will tell you the best configuration for your problem and
your machine.
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How?

« Place SWIFT in Peano4
framework

- Peano4 provides
parallelisation, domain
decomposition,
optimization

- SWIFT 2 extension
provides framework to
adopt Swift kernels
(physics)

http://www.peano-framework.org E




What Peano Gives Us

 Adaptive Mesh  Tree Traversals along
Refinement Peano Space Filling
Curve
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How It Works

 Particles are stored in a dual tree:
« Both in cells and on vertices

 Peano provides top-down grid traversals.
« Users can’t touch that.

 During the traversal, events are triggered.
 vertex/cell touched for the first time during traversal.

 Cell can be worked on.
 vertex/cell touched for the last time during traversal.

* We attach whatever we need done to these events.




How It Works

e Main Idea:

- Translate Algorithm steps onto grid traversals using
these events.

- One algorithm step corresponds to one grid traversal.

neighbour neighbour

) ) search; loop;

density forces

find new
time
step At




Example

* Touch vertex first time:

- Do something on all particles assigned to this vertex
 Cell can be worked on:

- Do a particle-particle interaction loop
 Touch vertex last time:

- Do something on all particles assigned to this vertex
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What It Looks Like In Practice

«Step 1: Define a particle type

class Particle():
self.data.add attribute( dastgen2.attributes.Double("mass") )

self.data.add attribute( dastgen2.attributes.Double("density" ) )
self.data.add attribute( dastgen2.attributes.Double("pressure") )
self.data.add attribute( dastgen2.Peano4DoubleArray("v","Dimensions") )

# etc ..
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What It Looks Like In Practice

« Step 2: Define the life cycle of your particle

kick
drift
density

AlgorithmStep( ... )

AlgorithmStep( ... )

AlgorithmStep(
name = "Density",
touch_vertex_first_time_kernel = "functionPrepareDensity(particles);"
cell _kernel = "densityInteraction(particles);",
touch_vertex_last_time_kernel = "functionEndDensity(particles);",

 then add it to your particle:

particle.algorithm_steps = [kick, drift, density, force, timestep]

« And Peano4/Swift 2 does the rest for you! ‘:I



Current State Of Affairs

Bare-bones SPH implementation 1s present and running
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Automatic Runtime Dependency Checks

« In Debug mode, we can keep track of each stage of the
particle during a simulation step

Touch Vertex First Time Cell Kernel Touch Vertex Last Time

AlgorithmStep 1 1 1 1
AlgorithmStep 2 1 0 0
AlgorithmStep N 0 0 0

« Verify on-the-fly that dependencies are satisfied: Nothing
done too early, nothing done too late.

« These checks are automatically generated for you!
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Storage Management Experiments

« Store particles

110
- Globally, randomly on heap 105 -
- Globally, contiguous 100 -
- Per-vertex, contiguous S I o
. . E gp ] —¥ lathreads
 Particle sorting: §
- On-the-fly, or in additional step :; rffﬁf*xaaaff,fff-;f'”’ffJ
* Outcome: f .8 . B 15 a3
- Sorting comes at noticeable expense %% %E %é %E §§ %%
- For large thread counts, sorting i e ) )

gives speedup, as nasty memory access
1s avoided

ﬂ



Outlook

 Currently in progress and planned:

A wider suite of benchmarks, testing different
scenarios

Performance analysis and optimization

Compiler extension to allow memory compression via
C++ annotations

Adaptive and individual time step sizes
Additional physics, additional particle methods...
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Final Slide

e Final Slide




Individual Timestepping

Particle 1 ‘ 3 ‘

steps of 8At
Particle 2

steps of 4At 4 4 ® o g
Particle 3

steps of 2At 4 o 4  d * o ¢

Global simulation t (A

time 0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16
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Individual Timestepping
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Data-Based Parallelism




