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Abstract

Discrete autocorrelation (a.c.) wavelets have recently been applied in the

statistical analysis of locally stationary time series for local spectral mod-

elling and estimation. This article proposes a fast recursive construction of

the inner product matrix of discrete a.c. wavelets which is required by the

statistical analysis. The recursion connects neighbouring elements on di-

agonals of the inner product matrix using a two-scale property of the a.c.

wavelets. The recursive method is anO(log(N)3) operation which com-

pares favourably with theO(N log N) operations required by the brute force

approach. We conclude by describing an efficient construction of the inner

product matrix in the (separable) two-dimensional case.

KEYWORDS: RECURSIVE WAVELET RELATION, LOCALLY STATION -

ARY TIME SERIES, AUTOCORRELATION WAVELETS

1 Introduction

Locally stationary wavelet processes have recently been introduced by Nason, von

Sachs and Kroisandt (2000) as models for nonstationary time series. Nonstationary
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series have a wide and growing importance in a wide range of areas including

finance, medicine and genomics to name but three (see e.g. Clements and Hendry,

2001, Akay, 1998 and Lio and Vannucci, 2000). A process{Xt,N}N
t=1 is locally

stationary wavelet(LSW) if it admits the mean-square representation:

Xt,N =
J∑

j=1

∞∑

k=−∞
wjkψjk(t)ξjk, (1)

whereξjk are uncorrelated mean-zero random increments,wjk are amplitudes, and

{ψjk(t)} is a set of discrete non-decimated wavelets as defined below (j = 1

is the finest scale,j = J the coarsest) and alsoN = 2J for someJ ∈ N for

computational convenience.

The LSW model in (1) should be compared to the classical model for a station-

ary stochastic process,Yt:

Yt =
∫ π

−π
A(ω) exp(iωt) dζ(ω), (2)

wheredζ(ω) is an orthonormal increment process (see Priestley, 1981). The sta-

tionary model in (2) is constructed from oscillatory sine and cosine functions of

infinite extent whereas the LSW model in (1) uses compactly supported discrete

non-decimated wavelets. In the stationary model the amplitude functionA(ω) is

constant over all timet whereas the the LSW amplitudeswjk depend ont through

the compactly supported waveletsψjk(t). The speed of evolution of the locally sta-

tionary seriesXt is controlled by formally tying the amplitudeswjk to a Lipschitz

continuous functionWj(z), z ∈ (0, 1), so thatwjk ≈ Wj(k/N) using the rescaled

time device of Dahlhaus (1997). For more information on wavelets in time series

analysis see Nason and von Sachs (1999) or Percival and Walden (2000).

Analogous to the classical case the LSW model has an associatedevolutionary
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wavelet spectrum(EWS), Sj(z), that quantifies the power (contribution to vari-

ance) in the process at scalej and locationz ∈ (0, 1). Nasonet al.(2000) construct

an asymptotically unbiased estimator ofS using the formula:

Ŝ = A−1P (3)

whereS(z) is vector of stackedSj(z) for j = 1, . . . , J andP (z) is a vector of

raw wavelet periodograms: the squares of the empirical discrete non-decimated

wavelet coefficients of an observed time series. TheJ × J matrix A is the in-

ner product matrix of the autocorrelation functions of the non-decimated discrete

wavelets. Formal definitions appear below but ifΨj(τ) =
∑

k ψjk(0)ψjk(τ) for

j > 0, τ ∈ Z are the autocorrelation wavelets then the matrixA is defined by

Aj,` =
∑

τ Ψj(τ)Ψ`(τ) for j = 1, . . . , J .

In (3) correction of the raw periodogramP by A−1 to obtain an unbiased esti-

mate of the EWS is crucial. If the correction is not applied then spectral power is

smeared across the time-scale domain giving a blurred appreciation ofS especially

for non-stationary time series. See Nasonet al. (2000) for examples of this blur-

ring and an application that demonstrates the association between EWS estimates

of infant electrocardiograms and sleep state time series.

There is no known closed form formula forA except in the special cases of the

Haar and Shannon wavelets (in the latter caseA is diagonal). Nasonet al. (2000)

computeA using computationally intensive brute force methods. This article intro-

duces a recursive algorithm for computingA which is fundamentally based upon

the scale-recursive formulae for discrete wavelets. Our recursive algorithm effi-

ciently computesAj,k from Aj−1,k−1: the flow of the computations is shown in

Figure 1. Our article quantifies and compares the computational effort required to

computeA using brute force and recursive techniques and this is summarized in
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Figure 1: Recursive scheme for (symmetric) inner product matrixA calculation.
All diagonal elements are obtained recursively:Aj+1,k+1 from Aj,k. The top row
is populated through direct computation.

Table 1: Order of computations required for brute force and new recursive algo-
rithms for inner product matrix and autocorrelation wavelet computation. Recall
the length of the time seriesN = 2J .

Brute force Recursive
Autocorrelation 22J 2J

wavelets (N2) (N )
Inner Product J2J J3

matrix (N log N ) (log N)3

Table 1. We also show that there appears to be a compelling recursive formula for

populating the top row (column) ofA but unfortunately the recursion turns out to

be less efficient that direct computation.

Finally, motivated by recent work on the modelling of two-dimensional random

fields in Eckley (2001), we propose a recursive construction for the inner product

matrix of (separable) two-dimensional discrete autocorrelation wavelets. Proofs

are presented in the appendix.
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2 Discrete wavelets and autocorrelation wavelets

This section formally defines discrete wavelets, the discrete autocorrelation wavelets

and their inner product matrix.

2.1 Discrete wavelets and their autocorrelation

In the Haar case discrete wavelets are simply sampled versions of their continu-

ous cousins. For smoother Daubechies’ wavelets they are the vectors obtained in

Daubechies (1992) cascade algorithm used to produce successively finer approxi-

mations to the continuous wavelet.

Definition 1 Let{hk}k∈Z and{gk}k∈Z be the low and high-pass quadrature mir-

ror filters used in the construction of a particular Daubechies (1988, 1992) com-

pactly supported continuous-time wavelet. Forj ∈ N, define the length of the

discrete wavelet by

Lj = (2j − 1)(Nh − 1) + 1

whereNh is simply the number of non-zero elements in{hk}. Note that trivially,

L1 = Nh. Thediscrete wavelets, {ψj} of scalej, lengthLj , are defined by

ψj =
(
ψj,0, . . . , ψj,(Lj−1)

)
, (4)

where the elements are defined recursively by

ψ1,n =
∑

k

g2−Nh+n−2kδ0,k = g2−Nh+n, for n = 0, . . . , L1 − 1;(5)

and ψj,n =
∑

k

hn−2kψj−1,k, for n = 0, . . . , Lj − 1 whenj > 1 (6)

andδ0,k is the usual Kronecker delta.
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A related set of discrete father wavelets,φj , can be similarly constructed by re-

placing bothgs in equation (5) byh. As mentioned above the LSW processes were

constructed usingnon-decimateddiscrete wavelets — that isψjk(t) = ψj,k−t, i.e.

the position of a wavelet does not depend on its scale. The consequences of a non-

decimated scheme are that there are equal numbers of wavelets at every scale. The

non-decimated scheme is overdetermined and provides another interpretation for

the need to apply the inverse ofA to obtain unbiased spectral estimates. See Shensa

(1992); Nason and Silverman (1995); Mallat (1998); Vidakovic (1999) or Percival

and Walden (2000) for more details of the non-decimated wavelet transform.

The autocovariance of LSW processes is a key statistical quantity of interest.

Indeed, it can easily be seen that the autocovariance ofXt in (1) involves the auto-

correlation functions of the discrete wavelets which we define next.

Definition 2 Let j ∈ N and τ ∈ Z. Then thediscrete autocorrelation (a.c.)

wavelet, Ψj(τ), is defined by

Ψj(τ) =
Lj−1+min{0,τ}∑

k=max{0,τ}
ψj,kψj,k−τ . (7)

Thediscrete a.c. father wavelet, Φj(τ), is defined by replacingψ byφ in (7).

The a.c. wavelets defined above have several interesting and well-known proper-

ties: they are compactly supported on the interval[1 − Lj , . . . , Lj − 1], are sym-

metric aboutτ = 0 and are also positive semi-definite functions. A.c. wavelets are

related to the autocorrelation shell of Saito and Beylkin (1993) and the continuous

father wavelet a.c. function is also the fundamental function of the Deslauriers and

Dubuc (1989) interpolation scheme.

Other useful properties of a.c. wavelets include:Ψ1(τ) = (−1)τΦ1(τ) which

uses equation 5.1.34 from Daubechies (1992). Furthermore, the a.c. wavelet at any
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scale can be recursively obtained from the a.c. wavelet at the previous, finer, scale

using knowledge only ofΦ1:

Lemma 1 Let τ ∈ Z. The discrete a.c. wavelet at scalej + 1 is related to that at

scalej ∈ N by:

Ψj+1(2τ) = Ψj(τ) (8)

and

Ψj+1(2τ + 1) =
min{L1/2−1,Lj+τ−1}∑

p=max{−L1/2,1−Lj+τ}
Φ1(2p + 1)Ψj(τ − p). (9)

We have paid particular attention to the summation limits here and later as this is

important for determining the order of computational effort and implementation. A

similar two-scale scheme is also valid for a.c.fatherwavelets. It can be shown that

the brute force computation of the complete set{Ψj(τ)}j=1,...,J requiresO(22J) =

O(N2) operations, whereas recursive computation using Lemma 1 requiresO(2J) = O(N)

operations (see Eckley, 2001 for details).

2.2 Discrete A.c. Wavelets’ Inner Product Matrix

We now define the a.c. wavelet inner product matrix.

Definition 3 Let J ∈ N. TheJ-dimensionaldiscrete a.c. wavelet inner product

matrix, AJ , is defined byAJ = (Aj,k)j,k∈{1,...,J}, where,

Aj,k = 〈Ψj ,Ψk〉 =
min{Lj ,Lk}−1∑

τ=1−min{Lj ,Lk}
Ψj(τ)Ψk(τ) (10)

= 1 + 2
min{Lj ,Lk}−1∑

τ=1

Ψj(τ)Ψk(τ), (11)
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usingΨj(0) = 1 for all j ∈ N and the symmetry ofΨj .

If the a.c. wavelets have already been evaluated, computation of the inner prod-

uct,Aj,k, for k ≥ j requires the order ofmin {Lj , Lk} + 1 = Lj − 1 operations.

Thus, brute force construction of symmetricAJ requiresO(
∑J

j=1

∑J
l=j Lj−1) =

O(J2J) operations.

3 Recursive calculation of the inner product matrix

The main goal of this article is to develop an efficient technique for computing the

inner product matrix of discrete wavelet a.c. functions. Our recursive algorithm to

computeA is simple and directly depends on Lemma 1 to obtain a recursive rela-

tionship between elements ofA on a given diagonal. The next section considers the

leading diagonal and then§3.3 considers the other diagonals. Sections 3.2 and 3.4

quantify the computational effort required for our recursive algorithm which was

summarised in Table 1.

3.1 Algorithm for computing the leading diagonal

This section derives a relationship which connects neighbouring elements of the

leading diagonal of the inner product matrix. The relationship enables efficient

computation ofAk,k from A1,1 for any k ∈ N. We start by defining a few key

quantitiesQr andPj,n as follows:

Definition 4 For r ∈ Z, let lr = −L1/2 − min{0, r} and ur = L1/2 − 1 −
max{0, r}. Then define

Qr =
ur∑

p=lr

Φ1(2p + 1) Φ1 (2(p + r) + 1) . (12)
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Clearly Qr is symmetric aboutr = 0 and has support[1 − L1, L1 − 1]. Con-

sequently only{Qr} for r ∈ {0, . . . , L1 − 1} needs to be evaluated which takes

Ops(Q) = L1(L1 + 1)/2 operations. The second definition is based upon a.c.

wavelets.

Definition 5 Letj ∈ N, ln = 1−Lj +max {0, n} andun = Lj−1+min {0, n}.
Define

Pj,n =
un∑

k=ln

Ψj(k)Ψj(k − n). (13)

ClearlyPj,n is symmetric aboutn = 0, has support[2(1−Lj), . . . , 2(Lj−1)] and

Aj,j = Pj,0.

Using the two-scale relationship of the discrete a.c. wavelets, thePj,n them-

selves can be recursively constructed as follows.

Proposition 1 Letp ∈ Z andj ∈ N and let

ue = min{L1 − 1, 2(Lj−1 − 1)− p}, and le = max{1− L1, 2(1− Lj−1)− p};

uo1 = min {L1/2− 1, 2(Lj−1 − 1)− p} and lo1 = max {−L1/2, 2(1− Lj−1)− p} ;

uo2 = min {L1/2− 1, p− 2(1− Lj−1)} and lo2 = max {−L1/2, p− 2(Lj−1 − 1)} .

Then,

Pj,2p = Pj−1,p +
ue∑

q=le

Pj−1,p+qQq, (14)

and

Pj,2p+1 =
uo1∑

r=lo1

Φ1(2r + 1)Pj−1,p+r +
uo2∑

r=lo2

Φ1(2r + 1)Pj−1,p−r. (15)

Thus, thePj,n may be calculated using knowledge of onlyΦ1 and Pk,n at finer

scalesk.
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Once more we pay close attention to the limits of summation. The results of

Lemma 1, together with the above identities, permit the derivation of a recursive

relationship between neighbouring elements which lie along the leading diagonal

of the inner product matrix.

Proposition 2 Let j ∈ N. Then the(j + 1, j + 1)th element of the inner product

matrix is related to the(j, j)th element by the following recursive relation:

Aj+1,j+1 = Aj,j +
L1−1∑

r=1−L1

Pj,rQr;

= Aj,j(1 + Q0) + 2
L1−1∑

r=1

Pj,rQr. (16)

In other words, the elements which lie on the leading diagonal of the inner product

matrix,AJ , can be recursively obtained using only knowledge ofA1,1 andΦ1.

3.2 Effort for leading diagonal recursion

3.2.1 Initialising values

First consider the effort required in calculating the initialising values{P1,n}. Def-

inition 5 implies

P1,n =
u1∑

k=l1

Ψ1(k)Ψ1(k − n). (17)

As P1,n is symmetric inn = 0 it suffices to calculate it forn ∈ [0, . . . , 2(L1− 1)].

Thus, from (17), it follows that direct evaluation of the{P1,n}n∈[0,...,2(L1−1)], using

pre-computed values of{Ψj(τ)}, takes

Ops(Pinit) =
2(L1−1)∑

n=0

2(L1 − 1)− n = (L1 − 1)(2L1 − 1) operations.
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In other words, for any given wavelet family, it is anO(1) operation

3.2.2 Calculation of thePj,2p

SincePj,2p is symmetric about2p = 0 we only need considerp > 0. Calculation

of Pj,2p from (14) for any givenj ∈ N, p ∈ Z, requires the following number of

operations:

Ops(Pj,2p) = 1 + ue − le,

= 1 + min{L1 − 1, 2(Lj−1 − 1)− p}

−max{1− L1, 2(1− Lj−1)− p}

= 1 + min{L1 − 1, 2(Lj−1 − 1)− p} − (1− L1) (18)

sincep > 0 and that1−L1 is always greater than2(1−Lj−1)−p, for j ∈ N\{1}.
However, it is important to note that the minimum term cannot be simplified, as

there existp ∈ N such that2(Lj−1−1)−p < L1−1. Thus the number of operations

required to calculatePj,2p from Pj−1,¦ for j, p ∈ N, is given byOps(Pj,2p) =

L1 + min{L1 − 1, 2(Lj−1 − 1)− p}.
We now consider the values ofp for which we wish to evaluatePj,2p, for any

given j ∈ N. The recursive identity (16) requires only those values ofPj,r such

that r ∈ [1, . . . , L1 − 1]. I.e. the length of the filter associated with the wavelet

determines the number ofPj,r which need to be evaluated at any given level. Thus,

at first glance, it appears reasonable simply to calculatePj,2p for all 2p ∈ [1, L1−1]

for all levelsj′ < j. However, as we demonstrate in the following example, the

recursive form of (14) used to generate the{Pj,2p}, ensures that this is not the case.

Example 1 Assume thatJ ∈ N is fixed and that all{Pj,r}j=1,...,J−1 which are

required for the construction of{PJ,2p} have already been evaluated. AsJ is
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fixed, we know from(16) that it suffices to calculatePJ,2p for 2p ∈ [1, . . . , L1− 1].

However, for Daubechies’ compactly supported wavelets,L1 is even and so one

can calculatePJ,2p for p ∈ [1, . . . , L1/2− 1]. By Proposition 1,

PJ,2p = PJ−1,p +
ue+p∑

q=le+p

PJ−1,qQq−p. (19)

In other words, we need to knowPJ−1,q for

1− L1 + p ≤ q ≤ min{L1 − 1, 2(LJ−1 − 1)− p}+ p. (20)

However,

min
p∈{1,...,L1/2−1}

{L1 − 1, 2(LJ−1 − 1)− p} = min{L1 − 1, 2LJ−1 − L1/2− 1};

= L1 − 1.

Hence(20) reduces to:

1− L1 + p ≤ q ≤ L1 − 1 + p, (21)

for p ∈ {1, . . . , L1/2−1}. Thus, to calculate{PJ,2p}1,...,L1/2−1, we requirePJ−1,q

for q ∈ [0, . . . , L1 + L1/2− 2].

Clearly, wider and wider “intervals” ofPj,r will be required as we progress

down through the scales. However, using the above scheme, it is not at all easy

to construct an identical algorithm for the evaluation of{Pj,2p}j=1,...,J for all

Daubechies’ compactly supported wavelets. Consider, for example, the situation

at the end of the above example: to constructPJ,2p for p ∈ {1, . . . , L1/2− 1}, we

need to be able to evaluatePJ−1,r for r ∈ {0, . . . , L1 + L1/2 − 2}. However, as
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L1 is even,L1 +L1/2−2 can be either oddor even valued, depending on the form

of Nh.

However, the situation is actually more complicated: we also need to consider

the above for each scale (see Eckley, 2001 for further details). Thus, if the algo-

rithm is to be efficient (i.e. such that onlyrequired{Pj,r} are evaluated) not only

do we need routines for each individual wavelet family but also for each scale: this

is most unappealing from an implementational perspective.

As an alternative we propose the algorithm below that evaluates a slightly larger

number ofPj,r than absolutely necessary. The algorithm is easy to implement and,

more importantly, still efficient and universal for each Daubechies’ wavelet. The

universal algorithm is:

1. Fix J ∈ N.

2. CalculateP1,r for all r ∈ [0, . . . , 2(L1 − 1)].

3. Then, forj ∈ 2, . . . , J , calculatePj,r for r ∈ Ij , where

Ij = {0, . . . , min{2(Lj − 1), (J − j + 1)L1}}, (22)

settingPj,r = 0 for otherr.

The universal algorithm permits the evaluation of a tractable upper bound for

the number of operations required no matter what the choice of wavelet. Moreover,

asPj,r is evaluated for values ofr ∈ Ij , we know that we need only evaluate

{Pj,2p} for

p ∈ Ij,even= {0, . . . , uj = min{Lj − 1, (J − j + 1)L1/2}}.

Note that in general,uj cannot be simplified to(J − j + 1)L1/2, for if J is large
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whilst j is small, thenuj = Lj − 1. However, using the definition ofLj , it is easy

to show that the following holds:

uj = (J − j + 1)L1/2 iff
Nh

Nh − 1
≤ 2

2j − 1
(J − j + 1)

. (23)

Eckley (2001) shows that

Ops{Peven} =
J∑

j=2

uj∑

p=0

Ops(Pj,2p)

is, at the very most, anO(J2) operation and develop a similar algorithm for eval-

uatingPj,2p+1.

3.2.3 Effort in calculating the leading diagonal

Suppose thatA1,1, {Pj,r} and the{Qr} have already been calculated. Then from

(16), it follows that the calculation ofAj+1,j+1, for any levelj ∈ 1, . . . , J − 1,

takesL1 operations. Thus construction of the leading diagonal of the inner product

matrix via the schemes proposed in§3.1 takes

Ops(Leading Diagonal) = Ops(A1,1) + Ops(Aj+1,j+1)j=1,...,J−1 + Ops(Podd)

+Ops(Peven) + Ops(Pinit) + Ops(Q)

= JL1 + 1 + Ops(Podd) + Ops(Peven) + Ops(Pinit) + Ops(Q)

operations: i.e. at mostO(J2) operations. In contrast, the brute force approach

used by Nasonet al. (2000) tookO(2J) operations.
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3.3 Algorithm for the general diagonal

The results of§3.1, particularly Proposition 2, suggest that a recursive relationship

may exist for entries on other diagonals. First we defineTj,k,r that plays a similar

role toPj,n in (16).

Definition 6 Letr ∈ Z, j, k ∈ N with k ≥ j, lr = max {1− Lj , 1− Lk + r} and

ur = min {Lj − 1, Lk + r − 1}. Then define,

Tj,k,r =
ur∑

l=lr

Ψj(l)Ψk(l − r). (24)

The support ofTj,k,r is [2− Lj − Lk, Lk + Lj − 2] andTj,k,r is not generally

symmetric inr, though it is easy to see that:Tj,k,−r = Tk,j,r. Whenk = j we

haveTj,j,r = Pj,r and hence symmetry inr is restored. The following proposition

establishes an efficient, recursive, approach for the construction of theTj,k,r.

Proposition 3 Suppose thatj, k ∈ N with k ≥ j, j 6= 1, p ∈ Z and set

le,p = max {1− L1, 2− Lj−1 − Lk−1 − p} , ue,p = min {L1 − 1, Lk−1 + Lj−1 − 2− p} ,

lo1,p = max {−L1/2, 2− Lj−1 − Lk−1 − p} , uo1,p = min {L1/2− 1, Lk−1 + Lj−1 − 2− p} ,

lo2,p = max {−L1/2, 2 + p− Lj−1 − Lk−1} , and uo2,p = min {L1/2− 1, Lj−1 + Lk−1 + p− 2} .

Then it can be shown that

Tj,k,2p = Tj−1,k−1,p +
ue,p∑

m=le,p

Tj−1,k−1,p+mQm, (25)

and

Tj,k,(2p+1) =
uo1,p∑

r=l01,p

Φ1(2r + 1)Tj−1,k−1,p+r +
uo2,p∑

r=lo2,p

Φ1(2r + 1)Tj−1,k−1,p−r.(26)
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Combining knowledge of the{Tj,k,r}, together with{Qr} and the top row

of the inner product matrix, the following recursive algorithm may be derived for

elements ofA.

Proposition 4 Let k ≥ j. Then usingQr andTj,k,r as defined above, the follow-

ing recursive scheme can be derived to calculate those elements which lie on a

diagonal of the inner product matrix A:

Aj,k = Aj−1,k−1 +
L1−1∑

r=1−L1

Tj−1,k−1,rQr. (27)

3.4 Effort in calculating the other diagonals

By using arguments similar to those in§3.2.2 we can develop an efficient algorithm

that computes only a slighter larger number ofTj,k,r than actuallyrequired. We

shall only considerAj,k for k > j sinceA is symmetric and we have already

considered the main diagonal.

The following two quantities will be required: forj, k ∈ N \ 1, set

lej,k = max{−L1(J − k + 1), 2− Lj − Lk}

and ue
j,k = min{L1(J − k + 1), Lj − Lk − 2}. (28)

3.4.1 Calculation of the initialising values

Here we consider computation ofT1,k,r which is supported on on[2 − L1 −
Lk, . . . , L1 + Lk − 2] as a function ofr. The{T1,k,r} can be calculated directly,

using the values ofΨj(τ) obtained from Lemma 1. However, following arguments

similar to those proposed in§3.2.2, it is evident that a complicated case by case al-

gorithm is required for the evaluation of the precise number of{T1,k,r} required for

the recursive construction of the{Aj,k}. As before, a simpler algorithm, suitable
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for all wavelet families, may be developed if we are willing to evaluate a slightly

larger number of{T1,k,r} than required. An outline of the algorithm is provided

below. Note how the width of the interval is dependent onk — a consequence of

the assumption thatk > j.

1. Fix J ∈ N.

2. CalculateT1,k,r for all r ∈ Ik = [le1,k, . . . , u
e
1,k], settingT1,k,r = 0 for other

r.

It can be shown that construction of the initialisingT1,k,r via the above scheme

takes at mostOps(Tinit) = O(J2) operations (see Eckley, 2001 for further details).

3.4.2 Calculation of theTj,k,2p

Assuming that all relevant{Tj−1,k−1,r} have been evaluated, it follows from (25)

that evaluation ofTj,k,2p for any givenj, k,∈ N andp ∈ Z takesOps(Tj,k,2p) =

1 + ue,p − le,p operations. As in earlier sections, it is important to observe that for

any givenj, k ∈ Z, it is not necessarily the case that one must evaluateTj,k,2p for

all 2p ∈ [2−Lj −Lk, Lj + Lk − 2]. However, as in§3.4.1, the exact construction

would require a cumbersome case by case algorithm. We therefore propose the

following algorithm:

1. Fix J ∈ N.

2. EvaluateTj,k,2p for all

p ∈ Ie
j,k =

{
lej,k/2, . . . , ue

j,k/2
}

.

settingTj,k,2p = 0 for otherp.
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As before this algorithm can be used for all wavelet families although it evaluates

a slightly larger number ofTj,k,2p than is actually required.

Construction of the required{Tj,k,2p} via the above algorithm takes

ue
j,k/2∑

p=lej,k/2

Ops(Tj,k,2p) operations. (29)

Thus, the construction of the complete suite of{Tj,k,2p} j = 2, . . . , J − 1

k = j + 1, . . . , J

for all

relevantp takes

Ops(Teven) =
J−1∑

j=2

J∑

k=j+1

ue
j,k/2∑

p=lej,k/2

Ops(Tj,k,2p) =
J−1∑

j=2

J∑

k=j+1

ue
j,k/2∑

p=lej,k/2

1 + ue,p − le,p;

≤
J−1∑

j=2

J∑

k=j+1

(2L1 + 1)(ue
j,k/2− lej,k/2 + 1) ≤ (2L1 + 1)

J−1∑

j=2

J∑

k=j+1

L1(J − k + 1).

Thus construction of the required{Tj,k,2p+1} is, at worst, anO(J3) operation.

Eckley (2001) develops a similar algorithm for evaluatingTj,k,2p+1.

3.4.3 Calculation of theAj,k

Given prior enumeration of the{Tj,k,r}, equation (27) shows that calculation of any

given{Aj,k} for j = 2, . . . , J−1 andk > j takesOps(Aj,k) = 2L1−1 operations.

Thus, using the schemes outlined in§3.4.1–3.4.2 , the recursive construction of

those elements which lie neither upon the leading diagonal nor upon the first row

of the inner product matrix, takes

Ops(Lead Diags) = Ops(Tinit)+Ops(Teven)+Ops(Todd)+
J−1∑

j=2

J∑

k=j+1

Ops(Aj,k) ops.

(30)
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In other words aO(J3) operation at worst. Conversely, brute force calculation

would takeO(2J) operations. Next we consider how to compute the top row ofA

which seeds the whole recursive algorithm.

4 Construction of the inner product matrix top row.

Given the efficiency gains using the recursive formulae above it is natural to wonder

whether the{A1,j+1} can be obtained recursively using knowledge ofA1,j and

hence seed the first row of the matrix. If such a recursive method exists is it more

efficient than brute force?

The following recursive scheme seems natural but it turns out that it is not

efficient.

Definition 7 Define

Rl
j,q =

min
nj

L1−2−q

2j−l+1

k
,Lj−1

o
∑

r=max
nl−L1−q

2j−l+1

m
,1−Lj

o
Ψ1

(
2j−l+1r + q + 1

)
Ψj(r). (31)

The{Rl
j,q} may be evaluated recursively via the following proposition.

Proposition 5 Rl
j,q has the following recursive form:

Rl
j,q = Rl−2

j−1,q +
∑

p

Φ1(2p + 1)Rl−2
j−1,2j−l+1+2j−l+2p+q

. (32)

Furthermore, it can be shown that the support ofRl
j,q is given by

[
−L1 + (1− Lj)2j−l+1, L1 + (Lj − 1)2j−l+1 − 2

]
.

Consequently, the support ofRj
j,2p is [2(1− Lj)− L1, L1 + 2(Lj − 2)].
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The proposition permits the following recursive form for the top row ofA.

Proposition 6 The value ofA1,j+1 can be obtained by calculatingRj
j,2p recur-

sively and usingΦ1. More precisely:

A1,j+1 = 1 +
L1/2−1∑

p=−L1/2

Φ1(2p + 1)Rj
j,2p. (33)

How efficient is this recursive approach? As we go from one scale to the next, the

Rl
j,q required by one scale differ from that required by the next. Hence, in effect,

we have to re-calculate theRl
j,q for eachA1,j which seems unattractive. Indeed,

for the majority of entries along the top row ofA it is more efficient to calculate

theA1,j directly via the interpolation rules of Lemma 1, usingΨ1(τ) andΨk(τ)

which can be computed using the efficientO(2J) algorithm.

5 Extension to Two-Dimensions

One way of extending discrete wavelets to two dimensions is by forming tensor

products of the one-dimensional ones following Mallat (1989).

Definition 8 Let ψj andφj be the discrete one-dimensional wavelets from defini-

tion 1. Thetwo-dimensional discrete wavelets, {ψl
j}, are compactly supported, of

dimensionL2
j , and defined by the matrix

ψl
j = (ψl

j,(k1,k2))k1,k2

wherel = h, v or d (for horizontal, vertical or diagonal) and the elements are
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given by:

ψh
j,k = φj,k1ψj,k2 , ψv

j,k = ψj,k1φj,k2 , ψd
j,k = ψj,k1ψj,k2 , (34)

wherek = (k1, k2) andk1, k2 = 0, . . . , Lj − 1. Similarly, the two-dimensional,

discrete father wavelet is defined byφj,k = φj,k1φj,k2 .

Two-dimensional discrete non-decimated wavelets have been used to construct

locally stationary wavelet processes for the modeling and analysis of texture in

Eckley (2001). Texture comprehension is closely related to the local structure of

the process autocovariance function which can be represented using the following

quantity:

Definition 9 Thea.c. wavelet, of a given two-dimensional discrete wavelet family{
ψl

j,k

}
, at scalej ∈ N in directionl, for τ ∈ Z× Z is given by

Ψl
j(τ ) =

∑

k

ψl
j,k(0) ψl

j,k(τ ) =
∑

u

∑
v

ψl
j,(u,v)ψ

l
j,(u−τ1,v−τ2), (35)

wherek = (u, v) andτ = (τ1, τ2). The two-dimensional father a.c. waveletΦj(τ )

can be similarly defined.

Since the two-dimensional wavelets are separable it is no surprise that the a.c.

wavelets are also. In other words ifτ = (τ1, τ2) ∈ Z2 thenΨh
j (τ ) = Φj(τ1)Ψj(τ2),

Ψv
j (τ ) = Ψj(τ1)Φj(τ2), Ψd

j (τ ) = Ψj(τ1)Ψj(τ2), andΦj(τ ) = Φj(τ1)Φj(τ2).

The separability of the two-dimensional a.c. wavelets means that efficient algo-

rithms based on the recursion in Lemma 1 can also be applied here. More details

can be found in Eckley (2001).

Due to the separability we can use the earlier results to devise efficient algo-

rithms for the inner product matrix in the 2D case. LetBJ = (Bj,k) = (〈Φj , Φk〉)
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andCJ = (〈Φj ,Ψl〉), note thatCJ is not symmetric. To simplify notation combine

the two indicatesj andl into one to provide a single multi-index,η, each value of

which represents a particular decomposition scale in a given direction as follows:

η(j, l) ≡ j + J I(l = h) + 2J I(l = d) for j = 0, . . . , J − 1 andI(·) is the usual

indicator function. We now define the “two-dimensional” inner product matrix.

Definition 10 The inner product matrix of a collection of discrete, two-dimensional

a.c. wavelets{Ψh
j ,Ψv

j , Ψ
d
j}j=1,...,J to be the3J-dimensional matrix,DJ given by

DJ = (Dη,ν)η,ν = (〈Ψη,Ψν〉)η,ν

=




AJ ∗BJ CJ ∗ CT
J AJ ∗ CJ

CJ ∗ CT
J AJ ∗BJ AJ ∗ CJ

AJ ∗ CT
J AJ ∗ CT

J AJ ∗AJ




whereη, ν are multi-indices,A ∗B denotes a component-wise multiplication ofA

andB. Thus recursion schemes of the form given in§3 can be used to efficiently

DJ .

6 Example

Tables 2 and 3 show theA matrix for Haar and Daubechies’ compactly supported

wavelet with ten vanishing moments (recall that both the extremal phase and least
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Table 2: Inner product matrix of Haar discrete autocorrelation wavelets of dimen-
sion 8 (to 4 decimal places)




1.5 0.75 0.375 0.1875 0.0938 0.0469 0.0234 0.0117
1.75 1.125 0.5625 0.2812 0.1406 0.0703 0.0352

2.875 2.0625 1.0312 0.5156 0.2578 0.1289
5.4375 4.0312 2.0156 1.0078 0.5039

10.7187 8.0156 4.0078 2.0039
21.3594 16.0078 8.0039

42.6797 32.0039
85.3398




Table 3: Inner product matrix of Daubechies’ extremal phase with 10 vanishing
moments discrete autocorrelation wavelets of dimension 8 (to 4 decimal places)




1.8391 0.3216 4e− 04 0 0 0 0 0
3.0354 0.6425 8e− 04 0 0 0 0

6.0704 1.285 0.0016 0 0 0
12.1408 2.5701 0.0032 1e− 04 0

24.2817 5.1402 0.0064 1e− 04
48.5634 10.2803 0.0127

97.1267 20.5606
194.2534




asymmetric wavelets have the same autocorrelation functions). The matrix in Ta-

ble 3 is not strictly a band matrix although the off diagonal elements do get small

very quickly away from the main diagonal. The Haar wavelets form the beginning

of the sequence of Daubechies’ compactly supported wavelets and the matrices be-

come “increasingly diagonal” and in the limit the matrix is diagonal (this is for the

Shannon wavelet).

It should be mentioned that software is available to compute these and all other

matrices for the Daubechies family of compactly supported wavelets using the
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ipndacw function available fromwww.stats.bris.ac.uk/˜wavethresh

Prototype R routines implementing the calculation of the diagonal of theA in-

ner product matrix, the quantities,P , Q and discrete wavelets and autocorrelation

wavelets can be found atwww.stats.bris.ac.uk at

˜magpn/Eliospub/reports/Wavelets/IPNDACW/ipndacw.html

7 Conclusion

This article introduces a efficient recursive scheme for the construction of the inner

product matrix of discrete a.c. wavelets. Our recursive scheme constructs matrices

usingO(J3) = O((log N)3) operations in comparison to the brute force scheme

which usesO(J2J) = O(N log N) operations. If our new algorithm is used in

conjunction with the recursive formula for generating the a.c. wavelets then the

recursive methods requireO(2J) = O(N) operations in contrast to the expensive

O(22J) = O(N2) operations required by the brute force approach.

The efficient computation of the discrete a.c. wavelets’ inner product matrix

is vital for the (asymptotically)unbiasedestimation of the evolutionary wavelet

spectra of locally stationary wavelet processes. Collection of longer time series

(for better estimation) requires computation of inner product matrices of larger

and larger dimension and hence demonstrates the need for efficient methods of

computation.
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A Proofs

Proof of Lemma 1

By Definitions 1 and 2

Ψj+1(τ) =
∑

l

ψ(j+1)lψ(j+1)(l−τ) =
∑

l

∑

k

hl−2kψjk

∑
m

hl−τ−2mψjm. (36)

Case A: (even argument). Now

Ψj+1(2τ) =
∑

l

∑

k

hl−2kψjk

∑
m

hl−2(τ+m)ψjm (then letr = m + τ)

=
∑

l

∑

k

hl−2kψjk

∑
r

hl−2rψj(r−τ)

=
∑

k

ψjk

∑
r

ψj(r−τ)

∑
m

hmhm+2(k−r)

=
∑

k

ψjk

∑
r

ψj(r−τ)δk−r,0 = Ψj(τ) (by (5.1.39) of Daubechies (1992)).

Case B: (odd argument). Now

Ψj+1(2τ + 1) =
∑

l

∑

k

hl−2kψjk

∑
m

hl−1−2(τ+m)ψjm (again letr = m + τ .)

=
∑

k

ψjk

∑
r

ψj(r−τ)

∑

l

hl−2khl−1−2r

=
∑

k

ψjk

∑
r

ψj(r−τ)Φ1 {2(r − k) + 1} (now letp = r − k)

=
∑

p

Φ1(2p + 1)Ψj(τ − p).
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The summation limits are obtained by considering the supports ofΦ1(2p + 1) and

Ψj(τ − p). ¤

Proof of Proposition 1

First, consider the case ofPj,n whenn is even. By definition:

Pj,2p =
∑

k

Ψj(k)Ψj(k − 2p)

=
∑

k (even)

Ψj(k)Ψj(k − 2p) +
∑

k (odd)

Ψj(k)Ψj(k − 2p)

=
∑

l

Ψj(2l)Ψj(2(l − p)) +
∑

l

Ψj(2l + 1)Ψj(2(l − p) + 1).

Applying Lemma 1, the above expression can be re-written as

Pj,2p = Pj−1,p +
∑

r

∑
s

Φ1(2r + 1)Φ1(2s + 1)
∑

l

Ψj−1(l − r)Ψj−1(l − p− s).

Settingq = l − r, we obtain:

Pj,2p = Pj−1,p +
∑

r

∑
s

Φ1(2r + 1)Φ1(2s + 1)
∑

q

Ψj−1(q)Ψj−1(q − (s + p− r));

= = Pj−1,p +
∑

r

∑
s

Φ1(2r + 1)Φ1(2s + 1)Pj−1,s+p−r.

Finally, on making the substitutionq = s− r and applying definition 4, the above

can be simplified to

Pj,2p = Pj−1,p +
∑

r

∑
q

Φ1(2r + 2q + 1)Φ1(2r + 1)Pj−1,p+q;

= Pj−1,p +
∑

q

Pj−1,p+qQq, (37)
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as required.

The odd case,Pj,2p+1, is similar, see Eckley (2001) for further details. ¤

Proof of Proposition 2

Let j ∈ Z+. From Definition 3, we know that:

Aj+1,j+1 = 〈Ψj+1, Ψj+1〉

=
∑

k

Ψj+1(2k)Ψj+1(2k) +
∑

k

Ψj+1(2k + 1)Ψj+1(2k + 1).

Applying Lemma 1, we obtain:

Aj+1,j+1 = Aj,j +
∑

p

∑
q

Φ1(2p + 1)Φ1(2q + 1)
∑

k

Ψj(k − p)Ψj(k − q).

Next, make the substitutionr = k − p,

Aj+1,j+1 = Aj,j +
∑
p,q

Φ1(2p + 1)Φ1(2q + 1)
∑

r

Ψj(r)Ψj(r + p− q);

= Aj,j +
∑

p

∑
q

Φ1(2p + 1)Φ1(2q + 1)Pj,q−p. (38)

Finally, we make the substitutionr = q − p in (38). This results in

Aj+1,j+1 = Aj,j +
∑

r

Pj,r

∑
p

Φ1(2p + 1)Φ1(2(p + r) + 1);

= Aj,j +
∑

r

Pj,rQr, (by Definition 4.) (39)

as required. ¤
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Proofs of Proposition 3 and 4

Similar to the proof of Proposition 1 in that we considerTj,k,2p andTj,k,2p+1 sepa-

rately: the summation is divided into odd and even parts before applying Lemma 1.

For Proposition 4: similar to the proof of Proposition 2 by using the odd/even

division of the summation and then applying Lemma 1

In both cases see Eckley (2001) for further details. ¤

Proof of Proposition 5

As with earlier proofs, this result can be shown by adopting a divide and conquer

approach. By Definition 7,

Rl
j,q =

∑
r

Ψ1(2j−l+1r + q + 1)Ψj(r) (40)

wherej, l > 0. Dividing the summation in (40) into odd and even valued argu-

ments, applying Proposition 2 and re-arranging the resulting expression, we find

that

Rl
j,q = Rl−2

j−1,q +
∑

p

Φ1(2p + 1)Rl−2
j−1,2j−l+1+2j−l+2p+q

. (41)

The limits of the summation in (40) can be found by considering the support of the

Ψ1 andΨj term. (See Eckley, 2001 for further details).



Proof of Proposition 6

Dividing the summation in (11) into odd and evenτ and using the resultsΨ1(2τ) =
∑

k gkgk−2τ = δτ,0 andΨj(0) = 1 it follows that

A1,j+1 = 1 +
∑

k

Ψ1(2k + 1)Ψj+1(2k + 1).

Using Lemma 1, the above expression may be simplified to

A1,j+1 = 1 +
∑

p

Φ1(2p + 1)Rj
j,p as required. (42)
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