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Abstract

Discrete autocorrelation (a.c.) wavelets have recently been applied in the
statistical analysis of locally stationary time series for local spectral mod-
elling and estimation. This article proposes a fast recursive construction of
the inner product matrix of discrete a.c. wavelets which is required by the
statistical analysis. The recursion connects neighbouring elements on di-
agonals of the inner product matrix using a two-scale property of the a.c.
wavelets. The recursive method is @flog(N)?) operation which com-
pares favourably with thé@ (N log V) operations required by the brute force
approach. We conclude by describing an efficient construction of the inner
product matrix in the (separable) two-dimensional case.

KEYWORDS RECURSIVE WAVELET RELATION, LOCALLY STATION-

ARY TIME SERIES, AUTOCORRELATION WAVELETS

1 Introduction

Locally stationary wavelet processes have recently been introduced by Nason, von

Sachs and Kroisandt (2000) as models for nonstationary time series. Nonstationary
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series have a wide and growing importance in a wide range of areas including
finance, medicine and genomics to name but three (see e.g. Clements and Hendry,
2001, Akay, 1998 and Lio and Vannucci, 2000). A procgs 1}, is locally

stationary wavelefLSW) if it admits the mean-square representation:

J oo
Xonv =Y Y wigthin(B)n, 1)
j=1 k=—o0

where¢;;, are uncorrelated mean-zero random incremenisare amplitudes, and
{v;x(t)} is a set of discrete non-decimated wavelets as defined bglow (l
is the finest scalej = J the coarsest) and als¥ = 27 for someJ € N for
computational convenience.

The LSW model in (1) should be compared to the classical model for a station-

ary stochastic process;:

vi- [ " A(w) explivt) d¢(w), @)

whered((w) is an orthonormal increment process (see Priestley, 1981). The sta-
tionary model in (2) is constructed from oscillatory sine and cosine functions of
infinite extent whereas the LSW model in (1) uses compactly supported discrete
non-decimated wavelets. In the stationary model the amplitude fundtjen is
constant over all time whereas the the LSW amplitudes;, depend ort through

the compactly supported wavelets, (¢). The speed of evolution of the locally sta-
tionary seriesX; is controlled by formally tying the amplitudes;;, to a Lipschitz
continuous functioV;(z), z € (0, 1), so thatw;, ~ W;(k/N) using the rescaled
time device of Dahlhaus (1997). For more information on wavelets in time series
analysis see Nason and von Sachs (1999) or Percival and Walden (2000).

Analogous to the classical case the LSW model has an assoeiaikdionary
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wavelet spectruntEWS), S;(z), that quantifies the power (contribution to vari-
ance) in the process at scgland locatior: € (0, 1). Nasoret al.(2000) construct

an asymptotically unbiased estimator$tising the formula:
S=A"'p ©)

where S(z) is vector of stacked;(z) for j = 1,...,J and P(z) is a vector of

raw wavelet periodograms: the squares of the empirical discrete non-decimated
wavelet coefficients of an observed time series. The J matrix A is the in-

ner product matrix of the autocorrelation functions of the non-decimated discrete
wavelets. Formal definitions appear below budif(r) = 3", 41 (0);(7) for

j > 0, 7 € Z are the autocorrelation wavelets then the mattiss defined by
Ajg=> Vi(r)Vy(r)forj=1,...,J.

In (3) correction of the raw periodografm by A~! to obtain an unbiased esti-
mate of the EWS is crucial. If the correction is not applied then spectral power is
smeared across the time-scale domain giving a blurred appreciatibespiecially
for non-stationary time series. See Nagtral. (2000) for examples of this blur-
ring and an application that demonstrates the association between EWS estimates
of infant electrocardiograms and sleep state time series.

There is no known closed form formula fdrexcept in the special cases of the
Haar and Shannon wavelets (in the latter cdse diagonal). Nasoat al. (2000)
computeA using computationally intensive brute force methods. This article intro-
duces a recursive algorithm for computidgwhich is fundamentally based upon
the scale-recursive formulae for discrete wavelets. Our recursive algorithm effi-
ciently computesA; ;, from A;_; ;_;: the flow of the computations is shown in
Figure 1. Our article quantifies and compares the computational effort required to

computeA using brute force and recursive techniques and this is summarized in
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direct computation
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Figure 1: Recursive scheme for (symmetric) inner product matroalculation.
All diagonal elements are obtained recursively | 41 from A; ;.. The top row
is populated through direct computation.

Table 1: Order of computations required for brute force and new recursive algo-
rithms for inner product matrix and autocorrelation wavelet computation. Recall
the length of the time serie§ = 27.

Brute force Recursive

Autocorrelation 227 27

wavelets v?) (N)

Inner Product J27 J3
matrix (Nlog N)  (logN)3

Table 1. We also show that there appears to be a compelling recursive formula for
populating the top row (column) oA but unfortunately the recursion turns out to
be less efficient that direct computation.

Finally, motivated by recent work on the modelling of two-dimensional random
fields in Eckley (2001), we propose a recursive construction for the inner product
matrix of (separable) two-dimensional discrete autocorrelation wavelets. Proofs

are presented in the appendix.
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2 Discrete wavelets and autocorrelation wavelets

This section formally defines discrete wavelets, the discrete autocorrelation wavelets
and their inner product matrix.
2.1 Discrete wavelets and their autocorrelation

In the Haar case discrete wavelets are simply sampled versions of their continu-
ous cousins. For smoother Daubechies’ wavelets they are the vectors obtained in
Daubechies (1992) cascade algorithm used to produce successively finer approxi-

mations to the continuous wavelet.

Definition 1 Let{h;},., and{gx},c, be the low and high-pass quadrature mir-
ror filters used in the construction of a particular Daubechies (1988, 1992) com-
pactly supported continuous-time wavelet. Foe N, define the length of the
discrete wavelet by

Li= (2 -1)(N,—1)+1

where Ny, is simply the number of non-zero elementg/in}. Note that trivially,

L, = N},. Thediscrete wavelet+;} of scalej, lengthL;, are defined by

Yj = <1/1j,0, . -;%,(qu)) : 4)

where the elements are defined recursively by

Yin = Y 9r-Np4n—2k00k = g2-Ny+n,  fOrn=0,...,L1 — I5)

!
and  Yjn = Y hn_okio1k forn=0,...,L; —1whenj > 1 (6)
!

andJdy , is the usual Kronecker delta.
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A related set of discrete father wavelets, can be similarly constructed by re-
placing bottys in equation (5) by.. As mentioned above the LSW processes were
constructed usingon-decimatedliscrete wavelets — that i8;,.(t) = 1 x—, i.€.
the position of a wavelet does not depend on its scale. The consequences of a non-
decimated scheme are that there are equal numbers of wavelets at every scale. The
non-decimated scheme is overdetermined and provides another interpretation for
the need to apply the inverse 4fto obtain unbiased spectral estimates. See Shensa
(1992); Nason and Silverman (1995); Mallat (1998); Vidakovic (1999) or Percival
and Walden (2000) for more details of the non-decimated wavelet transform.

The autocovariance of LSW processes is a key statistical quantity of interest.
Indeed, it can easily be seen that the autocovarianég of (1) involves the auto-

correlation functions of the discrete wavelets which we define next.

Definition2 Let j € N andr € Z. Then thediscrete autocorrelation (a.c.)

wavelef ¥;(7), is defined by

L;—14min{0,7}

(r) = > Yiktikor (7)

k=max{0,7}
Thediscrete a.c. father wavelg®;(7), is defined by replacing by ¢ in (7).

The a.c. wavelets defined above have several interesting and well-known proper-
ties: they are compactly supported on the intefvat L;,...,L; — 1], are sym-
metric aboutr = 0 and are also positive semi-definite functions. A.c. wavelets are
related to the autocorrelation shell of Saito and Beylkin (1993) and the continuous
father wavelet a.c. function is also the fundamental function of the Deslauriers and
Dubuc (1989) interpolation scheme.

Other useful properties of a.c. wavelets includg:(r) = (—1)"®;(7) which

uses equation 5.1.34 from Daubechies (1992). Furthermore, the a.c. wavelet at any
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scale can be recursively obtained from the a.c. wavelet at the previous, finer, scale

using knowledge only ob:

Lemma 1 LetT € Z. The discrete a.c. wavelet at scale- 1 is related to that at
scalej € N hy:
\I/j+1(27') = \I/j<’7') (8)

and

min{Ly/2—1,L;4+71—-1}
Va2 +1) = > ®1(2p+ )(T—p).  (9)
p=max{—L1/2,1-L;+7}

We have paid particular attention to the summation limits here and later as this is
important for determining the order of computational effort and implementation. A
similar two-scale scheme is also valid for datherwavelets. It can be shown that
the brute force computation of the complete{sf(7)},_, requires0(2%/) =
O(N?) operations, whereas recursive computation using Lemma 1 reqizé$ = O(N)

operations (see Eckley, 2001 for details).

2.2 Discrete A.c. Wavelets’ Inner Product Matrix

We now define the a.c. wavelet inner product matrix.

Definition 3 LetJ € N. The.J-dimensionaliscrete a.c. wavelet inner product

matrix, Ay, is defined byl ; = (Aj,k)jjke{lw_”,}, where,
min{L;,Lj}—1
Ajp = (U;,0,) = > U ()W (7) (10)
T=1—min{L;,Ly}
min{L;,L}—1
= 142 > W(n)W(n), (11)

T=1
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using¥;(0) = 1 for all j € N and the symmetry of ;.

If the a.c. wavelets have already been evaluated, computation of the inner prod-
uct, A; x, for k > j requires the order ahin {L;, L} + 1 = L; — 1 operations.
Thus, brute force construction of symmetrig requires@(Zj:1 Z;’:j Li—1)=

O(J27) operations.

3 Recursive calculation of the inner product matrix

The main goal of this article is to develop an efficient technique for computing the
inner product matrix of discrete wavelet a.c. functions. Our recursive algorithm to
computeA is simple and directly depends on Lemma 1 to obtain a recursive rela-
tionship between elements dfon a given diagonal. The next section considers the

leading diagonal and thej8.3 considers the other diagonals. Sections 3.2 and 3.4
guantify the computational effort required for our recursive algorithm which was

summarised in Table 1.

3.1 Algorithm for computing the leading diagonal

This section derives a relationship which connects neighbouring elements of the
leading diagonal of the inner product matrix. The relationship enables efficient
computation ofA4; ;, from A;; for anyk € N. We start by defining a few key

quantities), and P; ,, as follows:
Definition 4 For r € Z, letl, = —L;1/2 — min{0,r} andu, = L1/2 — 1 —

max{0,r}. Then define

Qr =3 B1(2p+1) &1 (2p+7) + 1), (12)

p:lr
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Clearly Q, is symmetric about = 0 and has suppoiffit — L;,L; — 1]. Con-
sequently only{ @, } for r € {0,...,L; — 1} needs to be evaluated which takes
Ops(Q) = Li(L1 + 1)/2 operations. The second definition is based upon a.c.

wavelets.

Definition 5 Letj € N, 1, = 1—L;+max{0,n} andu,, = Lj —1+min {0, n}.
Define

Pin =3 Wk (k — ). (1)
k=l,

Clearly P; ,, is symmetric about = 0, has suppor2(1 — L;), ...,2(L; —1)] and
Using the two-scale relationship of the discrete a.c. waveletsPthethem-

selves can be recursively constructed as follows.
Proposition 1 Letp € Z andj € N and let
ue =min{L; —1,2(L;—1 — 1) — p}, and [ =max{l —L,2(1 — Lj—1) — p};

Uol = min {L1/2 — 1, 2(Lj,1 — 1) — p} and lol = max{—Ll/Q, 2(1 — Ljfl) — p};

Up2 = min {L1/2 — 1,p — 2(1 — Lj—l)} and loo = max{—Ll/Q,p — Q(Lj_l — 1)} .

Then,
Ue
Pjop = Pj1p+ Z Pj_1p+qQq; (14)
q=le
and
Uo1l Uo2
Piopy1 = Y, @12+ DPjiprr + Y @120+ )Pj1p . (15)
r=lo1 r=lo2

Thus, theP;,, may be calculated using knowledge of odly and P, ,, at finer

scalesk.
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Once more we pay close attention to the limits of summation. The results of
Lemma 1, together with the above identities, permit the derivation of a recursive
relationship between neighbouring elements which lie along the leading diagonal

of the inner product matrix.

Proposition 2 Letj € N. Then the(j + 1,5 + 1)t element of the inner product
matrix is related to thej, )" element by the following recursive relation:

Li-1

Ajiig = Ajg+ Y. PiQu
r=1—10L
Li—1
= Aj;(1+Qo)+2 > PiQr (16)

r=1

In other words, the elements which lie on the leading diagonal of the inner product

matrix, A7, can be recursively obtained using only knowledgd pf and ®;.

3.2 Effort for leading diagonal recursion
3.2.1 Initialising values

First consider the effort required in calculating the initialising val{ies,, }. Def-

inition 5 implies

U1
Pin= > Ui(k)¥si(k —n). (17)
k=l
As P ,, is symmetric inn = 0 it suffices to calculate it for € [0,...,2(L; — 1)].

Thus, from (17), it follows that direct evaluation of theé’ . },¢(o,....2(2, 1)), USING
pre-computed values ¢fl';(7)}, takes
2(L1—1)

Ops(Piit) = Z 2(Ly —1)—n=(L; —1)(2L; — 1) operations
n=0
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In other words, for any given wavelet family, it is &(1) operation

3.2.2 Calculation of theP; 5,

SinceP; 5, is symmetric aboup = 0 we only need considgr > 0. Calculation
of Pj 9, from (14) for any givenj € N,p € Z, requires the following number of

operations:

Ops(Pj2p) = 1+ ue—L,
= 1+ min{L1 - 1,2(Lj_1 — 1) —p}
- max{l - Ll, 2(1 - Lj_l) - p}

= 14min{L —1,2(L; 1 —1)—p}—(1—Li) (18)

sincep > 0 and thatl — L; is always greater tha®(1—L;_;) —p, for j € N\ {1}.
However, it is important to note that the minimum term cannot be simplified, as
there exisp € Nsuchtha®(L;_1—1)—p < L;—1. Thus the number of operations
required to calculateé’; o, from P;_; , for j,p € N, is given byOps(Pj2,) =

Ly +min{L; — 1,2(Lj—1 — 1) — p}.

We now consider the values pffor which we wish to evaluat®; »,,, for any
givenj € N. The recursive identity (16) requires only those value$’gf such
thatr € [1,...,L; — 1]. l.e. the length of the filter associated with the wavelet
determines the number &% . which need to be evaluated at any given level. Thus,
atfirst glance, it appears reasonable simply to calcutaig for all 2p € [1, L, —1]
for all levelsj’ < j. However, as we demonstrate in the following example, the

recursive form of (14) used to generate {l#& -, }, ensures that this is not the case.

Example 1 Assume that/ € N is fixed and that al P;,};—1 . ;-1 which are

required for the construction of P;,} have already been evaluated. Asis
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fixed, we know fror(iL6) that it suffices to calculat®; o, for 2p € [1,..., L, —1].
However, for Daubechies’ compactly supported wavelktsis even and so one
can calculateP; o, forp € [1,...,L;/2 — 1]. By Proposition 1,

ue+p

Pjrop=Pr_1,+ Z Py 1 4Qq—p- (19)
q=le+p

In other words, we need to knaity_; , for
1-Li+p<qg<min{l; —1,2(L;j_1 — 1) —p} +p. (20)
However,

pe{l,...,Ll/za}{ ' (By-1=1) = p} {1 g1 = L1/2-1}

= L;—1
Hence(20) reduces to:
1-Li+p<qg<Li—1+p, (21)

forp € {1,...,L1/2—1}. Thus, to calculatg¢ Pj2p}1. . 1, /21, We requireP;
forg € [0,...,L1 +L1/2 — 2].

Clearly, wider and wider “intervals” of; . will be required as we progress
down through the scales. However, using the above scheme, it is not at all easy

to construct an identical algorithm for the evaluation{d®, >, };— .. for all

Daubechies’ compactly supported wavelets. Consider, for example, the situation
at the end of the above example: to consti®igt, forp € {1,...,L;/2 — 1}, we

need to be able to evaluai&_; , for » € {0,..., Ly + L1/2 — 2}. However, as
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L, iseven,L; + L;/2—2 can be either oddr even valued, depending on the form
of Ny,.

However, the situation is actually more complicated: we also need to consider
the above for each scale (see Eckley, 2001 for further details). Thus, if the algo-
rithm is to be efficient (i.e. such that onfgquired { P; .} are evaluated) not only
do we need routines for each individual wavelet family but also for each scale: this
is most unappealing from an implementational perspective.

As an alternative we propose the algorithm below that evaluates a slightly larger
number ofP; . than absolutely necessary. The algorithm is easy to implement and,
more importantly, still efficient and universal for each Daubechies’ wavelet. The

universal algorithm is:
1. FixJ € N.
2. CalculateP; , forall » € [0,...,2(L; — 1)].

3. Then, forj € 2,...,J, calculateP;, for r € I;, where

Ij = {0, . .,min{Q(Lj — 1), (J - j + 1)L1}}, (22)

settingP; . = 0 for otherr.

The universal algorithm permits the evaluation of a tractable upper bound for
the number of operations required no matter what the choice of wavelet. Moreover,
as P;, is evaluated for values of € I;, we know that we need only evaluate
{Pj2p} for

D S Ij7even: {0, . ,Uj = mln{LJ — ]., (J —j + 1)L1/2}}

Note that in general;; cannot be simplified t9.J — j + 1)L, /2, for if J is large
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whilst j is small, then:; = L; — 1. However, using the definition di;, it is easy

to show that the following holds:

Jj
Mo g 21 (23)

i=(J—j4+1)Ly/2 iff .

Eckley (2001) shows that

J  uj
OPS{Peven} = Z Z OPS(Pj,zp)

j=2 p=0

is, at the very most, a€?(J?) operation and develop a similar algorithm for eval-

uating Pj 2p+1-

3.2.3 Effortin calculating the leading diagonal

Suppose thatl; 1, {P;,} and the{Q, } have already been calculated. Then from
(16), it follows that the calculation ofi;; ;11, for any levelj € 1,...,J —1,
takesL; operations. Thus construction of the leading diagonal of the inner product

matrix via the schemes proposediBi1 takes

Ops(Leading Diagonal = Ops(A1,1) + Ops(Ajy1,j+1)j=1,...7—1 + Ops(FPodd)
+Ops(Peven) + Ops(Phit) + Ops(Q)

= JL1 + 1 + OpS(Podd) -+ OpS(Peven) + Ops(Rmt) + OpS(Q)

operations: i.e. at mosP(.J?) operations. In contrast, the brute force approach

used by Nasost al. (2000) tookO(2”) operations.
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3.3 Algorithm for the general diagonal

The results 0§3.1, particularly Proposition 2, suggest that a recursive relationship
may exist for entries on other diagonals. First we defing, that plays a similar
role to P; ,, in (16).

Definition 6 Letr € Z, j,k € Nwithk > 5,1, = max{1 — L;,1 — Ly +r} and

ur, = min{L; — 1, L, + r — 1}. Then define,

Up

Tjkr = Y O (11— 7). (24)
=l

The support off} . is [2 — L; — Ly, Ly, + L; — 2] andT} ;. , is not generally
symmetric inr, though it is easy to see thdl} ; _, = T} ;,. Whenk = j we
haveT; ; , = P;, and hence symmetry inis restored. The following proposition

establishes an efficient, recursive, approach for the construction @f the

Proposition 3 Suppose that, k € Nwithk > j,j # 1, p € Z and set

le,p :max{l—Ll,Q—Lj_l —Lk,1 —p}, Ue,p :min{L1 —1,Lk,1+Lj_1 —2—p},
l017p = max{—Ll/Q, 2 — Lj_l — Lk,1 - p} s Uol,p = min {L1/2 - 1, kal + Lj_1 —2— p} y

lop = max {—L1/2,2+p— Ly — L1}, and Up2,p = Min {Li/2 -1, Li v+ Lig1+p— 2}.

Then it can be shown that

Ue’p
Tikop=Tj—1k-1p+ Z Ti—1 k=1,p+mQm, (25)
m=le,p
and
Uol,p Uo2,p
Tinopeny = Y ©1@r+ DTjprper + Y 120 + D)Tjo15-1426)

r=lo1,p r=lo2,p
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Combining knowledge of th¢T} ;. }, together with{Q,} and the top row
of the inner product matrix, the following recursive algorithm may be derived for

elements ofA.

Proposition 4 Letk > j. Then usingl, andTj , as defined above, the follow-
ing recursive scheme can be derived to calculate those elements which lie on a
diagonal of the inner product matrix A:

Li—-1

Ajp=A5 11+ Z T 1 k—1,Qr- (27)
r=1—11

3.4 Effortin calculating the other diagonals

By using arguments similar to those§8.2.2 we can develop an efficient algorithm
that computes only a slighter larger numberIof. . than actuallyrequired We
shall only consider4;;, for £ > j since A is symmetric and we have already
considered the main diagonal.

The following two quantities will be required: fgrk € N\ 1, set

¢ = max{—Li(J —k+1),2—L; — Ly}

and u$;, = min{li(J—-k+1),L; — L, —2}. (28)

s

3.4.1 Calculation of the initialising values

Here we consider computation @f ;. which is supported on of2 — L; —

Ly, ..., L1 + L, — 2] as a function of-. The{T} ;,} can be calculated directly,
using the values o¥ ;(7) obtained from Lemma 1. However, following arguments
similar to those proposed §{8.2.2, it is evident that a complicated case by case al-
gorithm is required for the evaluation of the precise numbégf®f; , } required for

the recursive construction of tHed; . }. As before, a simpler algorithm, suitable
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for all wavelet families, may be developed if we are willing to evaluate a slightly
larger number of 7} . } than required. An outline of the algorithm is provided
below. Note how the width of the interval is dependention- a consequence of

the assumption thdt > j.
1. Fix J € N.

2. CaleulateTl’ y, forall v € Iy = [If ;, ..., uf ], settingTy k. = 0 for other

T.
It can be shown that construction of the initialisi#iyy, , via the above scheme
takes at mosDps(Tinit) = O(J?) operations (see Eckley, 2001 for further details).
3.4.2 Calculation of theT} ;. 5,

Assuming that all relevarft?’;_; ,_1 -} have been evaluated, it follows from (25)

that evaluation off; ;. o, for any givenj, k, € N andp € Z takesOps(T x,2p) =

1+ uep — lep Operations. As in earlier sections, it is important to observe that for
any giveny, k € Z, it is not necessarily the case that one must evaliigie,, for

all2p € 2— L; — Ly, Lj + L, — 2]. However, as i133.4.1, the exact construction
would require a cumbersome case by case algorithm. We therefore propose the

following algorithm:
1. Fix J € N.

2. EvaluateTj . o, for all

€ Ije’k = {l;k/27 ..,Uik/2} .

settingT) 1. 2, = 0 for otherp.
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As before this algorithm can be used for all wavelet families although it evaluates
a slightly larger number df} ;. »,, than is actually required.

Construction of the requirefil’; . »,,} via the above algorithm takes

u;k/Q
> Ops(Tj2p) Operations (29)
p:lje.yk/Q
Thus, the construction of the complete suite{@f,} ,_, ,_, forall
k=j+1,..., J

relevantp takes

J-1 J  Uk/2 J-1 J Yiw/?
OPS(Teven) = Z Z OPS ],k 2p = Z Z Z 1+ Ue,p — le,p;
J=2 k=j+1p=l5 /2 J=2 k=j+1p=I$, /2
J-1 J
< D@Ly (W2 15,/241) < 2L1+1)> > Li(J —k+1).
=2 k=j+1 =2 k=j+1

Thus construction of the required ; 2,11} is, at worst, anO(.J3) operation.

Eckley (2001) develops a similar algorithm for evaluatifng. 2, 1.

3.4.3 Calculation of theA; ;,

Given prior enumeration of thr’; ;. - }, equation (27) shows that calculation of any
given{A;}forj =2,...,J—1andk > jtakesOps(A; ;) = 2L, —1 operations.
Thus, using the schemes outlined§i®.4.1-3.4.2 , the recursive construction of
those elements which lie neither upon the leading diagonal nor upon the first row

of the inner product matrix, takes

J-1 J
Ops(Lead Diag$:Ops(Tinit)+Ops(Teven)+Ops(T0dd)—|—Z Z Ops(A; ) ops.
=2 k=j+1

(30)
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In other words a0 (J?) operation at worst. Conversely, brute force calculation
would takeO(2”) operations. Next we consider how to compute the top row of

which seeds the whole recursive algorithm.

4 Construction of the inner product matrix top row.

Given the efficiency gains using the recursive formulae above it is natural to wonder
whether the{A; ;;1} can be obtained recursively using knowledge4af; and
hence seed the first row of the matrix. If such a recursive method exists is it more
efficient than brute force?

The following recursive scheme seems natural but it turns out that it is not

efficient.

Definition 7 Define

Ré-yq = Z . 0, <ijl+1r +q+ 1) W(r). (31)

L4 —
r=max —L 1-L,

The{Rg,q} may be evaluated recursively via the following proposition.
Proposition 5 Ré,q has the following recursive form:
! 1—2 1—2
Rjy =R+ @12+ DR 5 iyt (32)
p
Furthermore, it can be shown that the supportHéfq is given by

Ly (1= L2~ Ly (L — 1)2~ 1 2} .

Consequently, the supporth;?Qp is[2(1 — Lj) — L1, L1 +2(L; — 2)].
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The proposition permits the following recursive form for the top rowAof

Proposition 6 The value of4; ;,; can be obtained by calculatinﬁ?;fgp recur-
sively and usingp,. More precisely:
L1/2—-1

A17j+1 =14 Z @1(2}? + 1)R§72p. (33)
p=—1L1/2

How efficient is this recursive approach? As we go from one scale to the next, the
R;q required by one scale differ from that required by the next. Hence, in effect,
we have to re-calculate thlégq for eachA; ; which seems unattractive. Indeed,
for the majority of entries along the top row df it is more efficient to calculate

the A, ; directly via the interpolation rules of Lemma 1, usidig(7) and ¥ (7)

which can be computed using the efficiént2”) algorithm.

5 Extension to Two-Dimensions

One way of extending discrete wavelets to two dimensions is by forming tensor

products of the one-dimensional ones following Mallat (1989).

Definition 8 Let; and ¢; be the discrete one-dimensional wavelets from defini-
tion 1. Thetwo-dimensional discrete wavelet&ﬁé.}, are compactly supported, of

dimensionL?, and defined by the matrix

7/’; = (1/];,(141 k2) ) k1,k2

wherel = h, v or d (for horizontal, vertical or diagonal) and the elements are
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given by:

h d
w_j,k = ¢j,k1¢j,k27 w_;'),k = ¢j,k1 ¢j,k27 ¢j,k - wj,kle,kga (34)

wherek = (ki,k2) andkq, ko = 0,...,L; — 1. Similarly, the two-dimensional,

discrete father wavelet is defined ®yx = ¢; i, @ k-

Two-dimensional discrete non-decimated wavelets have been used to construct
locally stationary wavelet processes for the modeling and analysis of texture in
Eckley (2001). Texture comprehension is closely related to the local structure of
the process autocovariance function which can be represented using the following

quantity:

Definition 9 Thea.c. waveletof a given two-dimensional discrete wavelet family

{¢§7k}, at scalej € N in directionl, for T € Z x Z is given by

Vh(r) = 00 ha(T) =D > W )W umomyr (35)
k u v

wherek = (u,v) andrT = (11, 72). The two-dimensional father a.c. wavelst( )

can be similarly defined.

Since the two-dimensional wavelets are separable it is no surprise that the a.c.
wavelets are also. In other wordsif= (71, 75) € Z* thenW’ (1) = @;(71)¥;(72),
W(T) = W) ®;(r2), WHT) = Uj(7)W;(r), andD;(7) = @;(r1)D;(r2).
The separability of the two-dimensional a.c. wavelets means that efficient algo-
rithms based on the recursion in Lemma 1 can also be applied here. More details
can be found in Eckley (2001).

Due to the separability we can use the earlier results to devise efficient algo-

rithms for the inner product matrix in the 2D case. It = (B; ) = ((®;, ®x))
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andC; = ((®;, ¥;)), note thatC; is not symmetric. To simplify notation combine
the two indicateg and! into one to provide a single multi-index, each value of
which represents a particular decomposition scale in a given direction as follows:
n(g,)=j+JI(l=h)+2JI(l=4d)forj=0,...,J —1andI(-) is the usual

indicator function. We now define the “two-dimensional” inner product matrix.

Definition 10 The inner product matrix of a collection of discrete, two-dimensional

a.c. wavelets{\ll;?, oy, \Il?}jzl,,,,,J to be the3.J-dimensional matrixD; given by

D, = (Dn,v)n,v = (<\I'77’ \II,,>)77,,,

Aj;x By CJ*C; A;xCy

= CJ*C?; AJ*BJ AJ*CJ

AJ*C:‘; A‘]*C}ﬂ AJ*AJ

wheren, v are multi-indices A x B denotes a component-wise multiplicationAof
and B. Thus recursion schemes of the form giverg&can be used to efficiently

Djy.

6 Example

Tables 2 and 3 show thé matrix for Haar and Daubechies’ compactly supported

wavelet with ten vanishing moments (recall that both the extremal phase and least
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Table 2: Inner product matrix of Haar discrete autocorrelation wavelets of dimen-

sion 8 (to 4 decimal places)

[ 1.5 0.75 0.375 0.1875 0.0938 0.0469 0.0234
1.75 1.125 0.5625 0.2812 0.1406 0.0703
2.875 2.0625 1.0312 0.5156 0.2578
0.4375 4.0312 2.0156 1.0078

10.7187 8.0156  4.0078

21.3594 16.0078

42.6797

0.0117
0.0352
0.1289
0.5039
2.0039
8.0039
32.0039
85.3398 |

Table 3: Inner product matrix of Daubechies’ extremal phase with 10 vanishing
moments discrete autocorrelation wavelets of dimension 8 (to 4 decimal places)

[ 1.8391 0.3216 4e—04 0 0 0
3.0354 0.6425 8e—04 0 0
6.0704 1.285  0.0016 0

12.1408 2.5701  0.0032

24.2817 5.1402

48.5634

0

0

0
le — 04
0.0064
10.2803
97.1267

0
0
0
0
le — 04
0.0127

20.5606
194.2534 |

asymmetric wavelets have the same autocorrelation functions). The matrix in Ta-

ble 3 is not strictly a band matrix although the off diagonal elements do get small

very quickly away from the main diagonal. The Haar wavelets form the beginning

of the sequence of Daubechies’ compactly supported wavelets and the matrices be-

come “increasingly diagonal” and in the limit the matrix is diagonal (this is for the

Shannon wavelet).

It should be mentioned that software is available to compute these and all other

matrices for the Daubechies family of compactly supported wavelets using the
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ipndacw function available fronwww.stats.bris.ac.uk/"wavethresh
Prototype R routines implementing the calculation of the diagonal ofthie-
ner product matrix, the quantities, ¢ and discrete wavelets and autocorrelation

wavelets can be found atww.stats.bris.ac.uk at

“magpn/Eliospub/reports/Wavelets/IPNDACW/ipndacw.html

7 Conclusion

This article introduces a efficient recursive scheme for the construction of the inner
product matrix of discrete a.c. wavelets. Our recursive scheme constructs matrices
usingO(J3) = O((log N)?) operations in comparison to the brute force scheme
which usesO(J27) = O(N log N) operations. If our new algorithm is used in
conjunction with the recursive formula for generating the a.c. wavelets then the
recursive methods requit@(2”/) = O(N) operations in contrast to the expensive
0(2%7) = O(N?) operations required by the brute force approach.

The efficient computation of the discrete a.c. wavelets’ inner product matrix
is vital for the (asymptoticallyynbiasedestimation of the evolutionary wavelet
spectra of locally stationary wavelet processes. Collection of longer time series
(for better estimation) requires computation of inner product matrices of larger
and larger dimension and hence demonstrates the need for efficient methods of

computation.

Acknowledgements

Eckley gratefully acknowledges support from an EPSRC CASE studentship jointly
funded by Unilever Research. Nason was supported by EPSRC Grants GR/M10229,



INNER PRODUCT MATRIX OF DISCRETE AC WAVELETS 25

AF/001664. The authors would like to thank the Associate Editor and Referees for
suggesting several improvements.

A Proofs

Proof of Lemma 1

By Definitions 1 and 2

j-‘rl Zw]—&-l z¢(3+1 l—7) _Zzhl ka]kzhl T— 2m¢jm (36)

Case A: (even argument). Now

Vi(27) = Z Z b2k Z hi—o(rim)y¥jm (thenletr =m +7)
= Z Z hi—ok ik Z hi—2rj(r—r)
= Zw]kzw]r Tzh hm+2k: r)

= Zzpjk quj(r_ﬂak_ho = W,(r) (by (5.1.39) of Daubechies (1992)
k r

Case B: (odd argument). Now

\I/j+1(27' + 1) = Z Z hlkawjk Z hl—l—2(7’+m)¢jm (againletr =m +7.)

l k m

= D Ui > i) > hiokhii—ar
k r l

= > Y Y Vipon®1{2(r — k) +1} (nowletp =r — k)
k r

= Z O (2p+ 1)¥ (T —p).
p
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The summation limits are obtained by considering the supporbs &p + 1) and

V(T —p). O

Proof of Proposition 1

First, consider the case &f; , whenn is even. By definition:

Piopy = Y U(k)W;(k—2p)
k

= ) TRk —2p)+ Y U(k)T;(k — 2p)

k (even) k (odd)
= > WD T20-p) + > T2+ 121 —p) +1).
1 1

Applying Lemma 1, the above expression can be re-written as

Pj’gp = ijl,p + Z Z @1(27" + 1)@1(28 + 1) Z \Ifjfl(l — T’)\I’jfl(l —p— S).
l

T S

Settingg = | — r, we obtain:

Piop = Piap+ > Y ®1@2r+1)®1(25+1)> U 1(q)¥ i 1(g— (s+p—71));
r s q

= =Pj_1,+ Z Z CI)1(2T + 1)@1(28 + 1)%—1,3%4777“-

T S

Finally, on making the substitution= s — r and applying definition 4, the above

can be simplified to

Piopy = Pioip+y D ®1(2r+2¢+1)®1(2r + 1)Pjo1prg;

r q

= Piap+ Z Pj1p+4Qq: (37)
q
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as required.

The odd casel; »,+1, is similar, see Eckley (2001) for further details. O

Proof of Proposition 2

Letj € Z™. From Definition 3, we know that:

Ajrrjrr = (Y, Yjqa)

= > W (2R) W5 (2K) + Y Wy (26 + 1) W4 (2K + 1)
k k
Applying Lemma 1, we obtain:

Ajpign = A+ Y 120+ 1)1(2g+ 1)) Wik —p)¥;(k —q).
p q k

Next, make the substitution= k — p,

Aji1jr1 = AJJ+Z(I)1 2p+1)®1(2g + 1 Z‘I’ i(r+p—q);
P
= Aj; YD 212+ 1)®1(20+ 1)Pjgp. (38)
p q

Finally, we make the substitutian= ¢ — p in (38). This results in

Ajrrger = A+ P Y @120+ 1)1 (2(p+7) +1);

r p

= Aj;+ Y P;,Q, (byDefinition 4.) (39)

as required. O
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Proofs of Proposition 3 and 4

Similar to the proof of Proposition 1 in that we considgy, o, andT} ;. 2,41 Sepa-
rately: the summation is divided into odd and even parts before applying Lemma 1.

For Proposition 4: similar to the proof of Proposition 2 by using the odd/even
division of the summation and then applying Lemma 1

In both cases see Eckley (2001) for further details. O

Proof of Proposition 5

As with earlier proofs, this result can be shown by adopting a divide and conquer

approach. By Definition 7,
Ri, =) i@t q+ 1)) (40)

wherej,l > 0. Dividing the summation in (40) into odd and even valued argu-
ments, applying Proposition 2 and re-arranging the resulting expression, we find

that
l [—2 -2
R, = R+ ®i(2p+ DR 5 gz g (41)
p

The limits of the summation in (40) can be found by considering the support of the

U, and¥; term. (See Eckley, 2001 for further details).



Proof of Proposition 6

Dividing the summation in (11) into odd and eveand using the result®; (27) =

>k 9k9k—2+ = 00 and¥,;(0) = 1 it follows that

A17j+1 =14+ Z \Ifl(Qk + 1)\I/j+1(2k + 1)
k

Using Lemma 1, the above expression may be simplified to

Arjr1 = 1+ Z D(2p+1 R] as required. (42)
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