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1 Introduction

References to Proposition 1 and Theorem 1 refer to itemseiratticle Locally stationary
wavelet fields with application to the modelling and anaysi image texture by Eckley,
Nason and Treloar (2010) (henceforth ENT).

2 Proofs

Proposition 1. Let Cr be the autocovariance of a LS2W process,, and C as in
Definition 6 of ENT. Then aR, S — oo

|Cr(z,7) — C(z,7)| = O {min(R, S)_l} , (8]

uniformly inT € Z* andz € (0,1)2.

Proof of Proposition 1
Using the LS2W process representation in equation 5 of ENT,
Cr(z,7) = Cov(X;r), XzR]++)
= E ((X[ZR] - N[ZR})(X[ZRH-T - ,u[zRH-‘r)) :
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However, by Assumption IE(X,) = 0 for all r. Hence,

CR(Z>T) = E(X[ZR}X[ZR}+T)
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for thew; , and they; , are deterministic. Moreover, since

l l
COV(Sj,u? g]g uo) - (Sy,u yo,uo) 5j7j0517l0 51171107
it follows that

Cr@T) = 2 Z_ 2 1w (eR) Y5 ([R] +7), - nextletu =p+ 2R
- Z Z Z |wmp+[zR B T/Jy,er zR]([ZR])wJ p+(ar] ([ZR] +7)
= ZZZ’ l,p+[zR‘ w] p( )T/fg, ( )

We now derive two limit results which are required to comgligtis proof.

Limit result 1 Using the definition of the local wavelet spectrum (ENT: Digifam 5), it
is easily shown thaSj.(z) = ]le.(z)]2 for all z € (0,1)%. Furthermore, Assumption 2 of
ENT states that
Sk(z) = ] |w g |* forz e (0,1)%
By Assumption 2,
l
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sgp‘w%u J (R) ~ max{R,S}
The triangle inequality implies that
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Hence, setting = u/R, we obtain

2 ol C
[w; u|® — Sj(z)‘ =0 (W) 2

Limit result 2 Recall that therl.(z) are assumed to be Lipschitz continuous functions
(with respect to the.;-norm). Hence,

Wiz +7/R) = W)@ < Li|(z+7/R)~z| wherer/R = (r1/R,7/S)
= [Wi(z+7/R) - Wiz)| < Lilir/Rl;
:>|Wl(z+T/R)|—|Wl( )| < Lir /Rl by the triangle inequality
= Wz +7/R)| = [W](z)|+0 (Li|r/R|)
= Wi+ r/R)2 = Wi2)?+0 (Lir/R|)

for 3=, 37, [W}(z)[* < oo and theL! are uniformly bounded iy, /). Hence

Wiz +7/R) = Wiz)2| = O <Ll <|ﬁ| " @»

R S
= Wi+ r/R)P - WP = o <L3 <%)> |
Thus,
. S}z -+ /R)? = S}(2)?| = O ( <%>> X

With the above limit results in place, we are now in a positiorconsider the asymptotic
convergence of'r(z,7) to C(z, 7):

Cr(z,7) = Cz7)| = DD > |whuruml W u(0¥fu(m) = > D Si(z)¥(r)
l j u
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L) — ! ! g Limi
Howevery:(r) = >_,, v ,(0)¥; (7). Hence, using Limit Result 1
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Using Limit Result 2, in conjunction with the modelling asgotions made in Definition
2 of ENT that the Lipschitz constants; and W} are uniformly bounded in,! and that

>0 2% L, <ooandy]; 3. CL < oo, we obtain

[ (@)] [} (0 (7))
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Crizr) = Cam)l = Y330 e [ha(00hu(r)
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Theorem 1. For any compactly supported Daubechies wavelet, the faohitliscrete 2D
autocorrelation wavelet§V, } is linearly independent. Hence,

1. the operatorA is invertible (since all of its eigenvalues are positiveddor each
J € N, the norm|| 4| is bounded above.

2. the LWS is uniquely defined given the corresponding LS2dégs.



Proof of Theorem 1

The structure of the proof for the theorem is similar to thiathe one dimensional case,
considered by NvSK, although added care is required wheimdeaith the zeros ofng(w)
andm;(w). This is due to the addition of directionality,c {h,v,d}, as well as scalej,
within the decomposition.

Suppose, by way of contradiction, that there exist two specepresentations of the

sameL.S2W process. In other words, assume that there mﬁ,%tandw@) such that

‘w,% — W) (%)( -0 <m> fori=1,2

which also possess the same covariance structure. In otrdsw

) =) S (@)Wy(r) =) 5P (2)¥y(7)
n n

whereC is defined in equation 14 of EN¥z € (0, 1)2, ¥r = Z? andS (z (W,/
fori =1,2.

SettingA,(z) = Sﬁ,l)(z) - S,(f) (z) it therefore follows that to prove this result, we must
show that

0 = D Ay@)Uy(r) Vze (0,1 Vrez?
n
= Ay(z) = 0 Vn,Vz € (0,1)%.

What we actually show is that

0= ZAW(Z)\IIﬁ(T) Vz € (0,1)2, VT € 72,

implies A, (z) = 0, ¥n

i) =n— %547 for
refers to scale.

|| v

1, vz € (0,1)2. HereA,(z) = 27%WA,(z), where
3J. |-| denotes the floor function. Thygn) simply

Before proving the theorem we state the following propoaiti

Proposition 2. Let ¢;(w) and ¢;(w) be the Fourier transforms ofv;r} and {¢; 1}
respectively. Then

L dj(w) = Sy ke~ % = 20/2my (217 1w) [T128 mo(2w),
2. ¢;(w) = 2, djre Wk = 22 TIZ mp(2'w),

wheremy(w) andm; (w) are the usual frequency response functions of the low- agia- hi
pass filters of Daubechies compactly supported wavelets.



Proof of Proposition 2

Part (i) was shown in NvSK, part (ii) can be shown similarlptibare simple consequences
of the scaling relations between wavelets and father weszele

O

To start, recall that the operatdr = (A, ),.>1 is defined byA, , = >V, (7)V, (7).
However, by Parseval’s relation

Ay = S ) (r) = () [ Bt ae @

where@n(w) takes one of the following forms:

[Bo (W) = 2% |ma (27 wn) 2o (27 ws) 2 TTLZG Imo(2Pwn )mo (2Pws) 2
|‘i’§l("’)|2 = 2% |mgo(27 " twr) 2|m1 (27 wo)|? ;{7;?) Imo(2Pw1 )mo(2Pws) |2
|(I\’§'l(w)|2 = 2% |my (27 w) 2 m1 (27 wo)|? ;{7;?) Mo (2Pw1 )mo(2Pws) |2

The above follows as a consequence of the Fourier propetidsscrete father wavelet
filters and discrete wavelets (see for example Lemma 3.1 kieg¢2001), the separability

~ 2 -
of the 2D wavelets and the result that (w) = ‘wé(w)‘ . Thus,0 = 3=, A(2) ¥, (7)
implies that

=0 = > MA@V, (7)Y AT, (r), Vze(0,1)%VreZ’
n v

Hence) = 37, 57, A, (@)A, (2) 5, Wy (1) 0, (7).

Applying Parseval’s relation, (4), we obtain
A X 1 2 ~ ~

_ //dw (ZAn(z)@n(w)y 5)
n

By Definition 4 of ENT, S, (z) is positive, henceS,, (z)| = S,(z). Furthermore, it is
easily shown thaE77 Sy(z) < oo (see Eckley (Property 3.1, 2001) for details), uniformly
inz.  Thus, Y, |A,(z)] < oo and hence}’, 22[A,(z)] < oco. We can infer
that 3", A, (z)¥,(w) is a continuous function fow € [, ]? because2~% T, (w)



is continuous in this domain (it is simply a trigonometriclygmmial in two variables,
uniformly bounded above by 1). Hence, (5) if and only if

0=> A,(2)¥,(w), Ywe [-mx]?Vze(01)>
n

All that remains now is to demonstrate the pointwise impi@aof A, (z) = 0 Vn >
1,Vz € (0,1)2. To achieve this, we use continuity arguments and the inseof the zeros
of |mg(2'w)|? and|m; (2'w))?.

We start by fixingz € (0,1)? and setA,, = A, (z) at this fixed pointz. Then,

0 = > AT, (w)
n
I 2J 3
= ZAn‘I'n(w)‘i‘ Z ApWy(w) + Z Ap¥y(w)
n=1 n=J+1 n=2J+1
= > A25my (27 wr) Pmo (27 wa) | T T Imo(2'wy ymo (21ws) P
n—1 1=0
2] ' ' j—2
+ > A2 mg (27 wn) P (27 wo) P T T Imo(2'wr )mo(2'wa) [ (6)
n=J+1 =0
3J . . . j=2
+ Z An227\ml(27_1w1)]2\m1(27_1w2)]2 H ]m0(2lw1)m0(2lw2)\2.
n=2J+1 =0

From Daubechies (1992, Chapter 5) we know thatis a 27-periodic function which is
such thatmg(€)|? + |mo(¢ + 7)|? = 1 and,

Imo(m)]* = 0. (7)

Thus,|m(0)]? = 1. Recall also thapm; (w)|? = 1 — |mg(w)|* for Daubechies compactly
supported wavelets.

To show thatA1, Ay, andA, ., are all zero, consider the following: Let = 7 andws
vary. Then by the construction @In(wl,wg) and using (7) it follows tha@n(w,wg) =0
forn=2,3,...,J,.J+1,...,2J,2J +2,...,3J. However sincém:(r)|> = 1, equation
6 simplifies to

0 = Ad|my(m)*Imo(w2)|* + Aggy1d|my () *[my (w2)|?

= Aylmo(w2)|? + Aggy1mi(we)]?, Vws € [—m, 7] (8)

Now suppose, without loss of generality, that= 0. Then|m;(0)|* = 1 — [mg(0)|* = 0.
Hence,0 = A1|m0(0)|2 + A2J+1|m1 (0) 2 = A1|m0(0)|2 In other wordsA; = 0.



To show thatAQJH is zero, reconsider (8):

0 = Ayfma(m)]?|mo(ws)|* + Agypalma (7)) ma (w2)]?
= Agyir|ma () ma(w2)?, asA; is zero
= Agjpi|mi(wa)* Vws € [—m, 7.
Settingwy = 7, we obtain0 = Ay 1|m1 ()%,
= Aoy = 0. 9)

To conclude this part of the proof, it remains to show that,; = 0. To this end,
reconsider (6) setting, = 7 and lettingw; vary. Then, agmq(7)|?> = 0, it follows
that \ffn(wl,w) = 0 for all n exceptn = J + 1 and2J 4+ 1. However, we have already
shown thatA, ;. = 0. Thus (6) simplifies t® = A ;1 |mq(w1)|? Yw; € [—,7]. Setting
wy =0 (= |mo(wy)|? = 1), we find thatA 5, ; = 0.

We have therefore shown that;, A ;1 andAs s, = 0. Thus (6) simplifies to

J j—2

0 = [mo(w)mo(w2)|* ¢ Y Ap2%|ma(27 wi) Pmo(27 ws) | [T Imo(2'wi)mo (2'ws)|?
n=2 =1
2J ~ _ _ _ Jj—2
+ > A2 g (20 wr) Pma (27 wo) [P T ] Imo(2hwi ymo (2'ws) 2 (10)
n=J+2 =1
3J ~ _ ' ' Jj—2
+ Y A2 ma (20 wr) Plma (20 wa) P T T Imo(2 w1 )mo(2'ws) 2
n=2J+2 =1

As |mg(w)|? and|mq (w)|? are analytic anang(w), m(w), as trigonometric polynomials,
have finitely many zeros, it follows that the (continuous)dtion in the braces must vanish
identically. Settingo; = 7/2 and lettingw, vary, we find thatmg (2w, )|? = |mo(7)> = 0
and|m1(2w1)|? = 1. Hence (10) reduces to

0 = Ag2Ymy(m)*mo(2w2)[* + Aoy yo2t|ma () [*|ma (2w2)
0 = Ag\m0(2w2)]2+A2J+2]m1(2w2)]2 nge[—ﬂ',ﬂ]. (11)

Without loss of generality, leb, = 0. Then asm1(0)|?> = 0, the above simplifies
to Ay = 0. Thus the expression in (11), whegg can takeany value, simplifies to
0= A2J+2|m1(2w2)|2. Settingwg = 7T/2, we obtain0 = A2J+2|m1(7r)|2 = A2J+2.

Finally to show thatA ;.5 = 0, reconsider (10), this time allowing; to vary and setting
we = 7/2.The expression reduces to

0 = AJ+224]m0(2w1)]2\m1(77)\2 + AQJ+224\m1(2w1)\2]ml(ﬂ)]2 butAQJ+2 = 0,

= AJ+2\m)(2w1)]2 Ywy € [—71',7'('].



Settingw; = 0 it follows that 3
Aji2=0.

Continuing with this scheme fgi(n) = 3,4, 5, ... leads to the result that
A,(z) =0 Vn,Vz € (0,1)%

Hence the LWS are uniquely defined given the correspondi®y\_Brocess. Furthermore,
since we have shown that = 3, A, (z)¥,(7) if, and only if A;(z) = 0, we have
that {0, ()}72, are linearly independent. Moreover, sindeis the Inner Product (or
Gram) matrix of the¥,, A is clearly symmetric and also positive definite. Consedjye

the eigenvalues ofl are positive.

O
Corollary 1. The inverse formula of equation 14 of ENT is
Si(z) =) _Ayn Y C(z,7)0y, (7). (12)
m T

Proof of Corollary 1

This proof is identical to that of the one-dimensional casasa@ered by Nasoet al.
(Proposition 2, 2000). Consider,

Z AL Z C(z, )T, (1)
m T

By definition,C(z,7) =), S, ¥, (7). Hence

S AL S O v, () = ZA;;lz{Zsy(z)%(T)}WT)
m T m - >
= > AL D S,(2)D ] W)Wy, (7).
m v .

The order of the summations may be changed abov fo6, (z) < oo Vz whilst the sum
overr is finite. By definition) " ¥, (7)V,, (1) = A, = A, - Hence,

> A 2O m)y(r) = DALY Su(@) Ay,
m T m v
= ZSV(Z) ZA;}?IAWLV
14 m

= Z Sy(2)0n,y
= Sy(2).
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Theorem 2. Letz = (21, 22), R = (R, S) and [zR] = ([z1 R], [z25]) whereR = 27, S =
2K for someJ, K € N. Further, assume that th, - } are Gaussian. Then,

1
) = E A te) 0 (s ) 49

Proof of Theorem 2
Let p=zR]. By definition,

E(llp) = E[(d,)?]

= E |:<Zr: sz,z);,p(r))Z] :

As {X,} is assumed to be a LS2W process, we obtain

- 2
st = o[ oot} )]
i l,j,u

- (Z Z Jl u11/}117u1 rl)g]l U1¢JP(I‘1)

r1 lp,ji,u1

Z Z J2,u2¢32,u2 r2)§]2 ugwj, (r2))]

ra lz,j2,uz

= D NS> wl w2 wl L )n, L, (o) () et () E(ER €2 .

ry1,r2 ly,le j1,j2 u1,u2

By the orthonormality of the increment sequence and Assiam, it follows that
l l !
COV(fjl u; 5]27112) = E(gjlhul 53’3,112)
= 5j1,j2 5117125111,112'

Hence,

E(ljp) = Y (w), Zwﬁ, (e0) s p(r) DU w(m2)el y(ra). (14)

l1,51,u
Upon making the substitution = x + p we obtain:

2
E(IJZ,P) = Z J17X+P {Zwﬁ,X-ﬁ-p wjp( )}

l17j17

2
- Z J17X+p {ijl,x-i-p rl/}j,p—r} : (15)

l17j17

10



As the sum ovex ranges ove{x = (x1,x2) : x1.29 € Z}, it follows thatp in the final
summation of equation (15) becomes redundant. Hence,

DN SUT) TR }

h 51 x
It is easily shown that
l
2 l * ‘ < L
‘|w] aRj+xl 5 <Z * R) ~ max{R, S}
See the proof of Proposition 1 for further details. Hence
Ct
! 2 ! X J
: _ S )< —J
|w37[ZR}+X| 5 <Z + R) ~ max{R, S}

In other words,

I
I 2 ol X+ p C]l
|wj1,x+p| - Sj1 < R > +0 (maX{R, S}) :

Thus
x ch i
E(Il,) = ;;;( gh < +p> +0 (7111&}({]]%,5})) {th,x . }

S (55 St ] o ()

i j1 X

Aside: The remainder term can be brought out because

1. the number of terms in the wavelet prod%@ q,z)h xp ¥ .7_r} is finite and bounded

as a function ok due toj being fixed and the fact that discrete wavelets have compact
support.

2. andasy; >, Cf < occ.

Moreover, as we show in the proof of Proposition 1, if weset (21, z2) andr = (11, 72),
then

S(Zl—l-Tl/R 22+T2/S) (21,22)‘ = O<Ll <’2’+’T—;‘>>
Thus,
l Aml+ Il
S (Z1 —I—Tl/R ZQ—I—TQ/S) (Zl,ZQ)—I—O( min{R,S}> . (16)

11



Incorporating this Lipschitz property of tr{eS]l-}, (16), we obtain

B - SEX(s1(8) o)) { e 1"}

i j1 X

0 (st

S5 (s () {S et oo (i)

i Jj1 X
again due tc{z q,z)h - é r} being finite and the summaubility of the Lipschitz constants
Ll
J:

Expanding the squared wavelet product term yields

1
J,P ZZZSh (_> {th,x rlwl}—rl %:1/};11#—1?21/};_"2}4_0 <min{R, S}) .

i j1 X

Upon making the substitution= r, — r; we obtain

E(IJIEP) = Zzzsll <_> {th,x r1¢l}—r1 21/}]13 s— rlwl}—s—m}

L 51 x

1
© <min{R S})
- Zzsh( >ZZ¢J7 rlwl7 —s—n Zd}]l,X ry 317X ri—s

O(W)-

By recognition, this last summation is simply the discrete \ahavelet,\llé.l1 (s). Thus,

B = XS (B) w0 et e 40 (s )

1 J1 —r

= Y Y5 (w )Z\If +0<m>. (17)

1 J1

Settingn = (4,1) andn; = (j1,{1), and recalling thap >, ¥, (s)¥,(s) = A, ,,, €quation

(17) reduces to:
1
Inp) ZAnmSm< )+O<m>a

as required.

12
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Theorem 3. Assume that th§,, .} are again Gaussian. Then the covariance bew\@gg
and/ Jli q Mmay be expressed as follows:

Iy gl2 _ Z Z Z 2 11710 l2,lo
Cov(Ij; 173 o) = Wi o)y, (P, o) a5 (g, ap)
0

lo  Jo

Thus the correlation between these quantities decreadhsingireasing distance between
location p at scale-direction(j;,1;) and the locationq at (j2,l2). In particular, when

Jj1 = j2, the covariance is zero whejp — q|| exceeds the overlap of the corresponding
wavelets support. Moreover

Var(Il ) = 2E(I},)?

2 i)
= 2 (ZAnmsmqp/RD) +0 (ﬁ) a8)

m

wherej(n) =n — L"—}lJJ simply denotes the scale element)©f, [).

Proof of Theorem 3

Variance: The variance of a wavelet periodogram,

Var(Ijl-p) = Var ((d§'7p)2>

= E((@) ~E(,)?)

We already know the asymptotic form Ef((dé.,pﬁ) . We therefore focus on

4
E((dp)!) = E (Zm;,pu))
= E ZZZZ Wit J1,u1 Kﬁ,mw (r)

r I 51 wm

= E HZZZZ Wy ]zvuz gJzuﬂpy,p( ri)

=1 r; l; Ji g
= HZZZZ &€ ) W (1) p (10):
- J17111 32,112 J3,u3>j4,u4 Ji Wi 7 Jis g
=1 ry I gy g

13



Consider the territ (5

Ji,u1

gle gls  cla ).Usingaresult due to (Isserlis, 1918),

J2,U2373,U3>74,U4

l l l l l l l l
E (&) 062 wlnabiin) = E (8 utum) B (6wt
[ [ 1
+E <£J1 ug EJ'Ja,u3> E <£jz,u2£jiu3)
l l l
TE (€0 8t ) E (62 a8l e) + 0

wherer is the fourth order cumulant of the distribution pEl! €72 &% s €5, |-

Moreover when{giu} is Gaussian, as in this case, = 0. (See Priestley (Section 5.3,
1981) for further details.)

Using this quadravariate decomposition, the expressidh (c(ﬂg’p)“) simplifies to

EMJ)=H;ZZ;MWMWbU{@ﬁ%ﬁ@h%ﬁ
< Ji,ul 23,113 j’z,uz Ja,us + J1,u1>ja,uy j2,u25]3,u3
+E (60068 ) B (62 ) +E (6006 ) B (2
= L+ 1)+ I,

where, for example,

HZZZZMMWQM%ﬁ@%me%Mﬂm

=1 r; l; ]7, u;

By construction

[ [ l
E (&) win) = Cov(E 0,82 0,)

- 53'1 \J2 5U17u2 511712'

14



Hence (19) simplifies as follows:

2
L= I > ot ) (0B (€ 4,802 )

=1 Tl g W

XHZZZZL%Mzw<>@$mJ

=3 T; ll Ji u;
l
- ZZ ( 1,m Z%im 1"17/) (r1 Z%iul r2w p(r2)
i 5 1
I
DD Wy Z%im (r3)0f p(r3) Z%i,ug (ra)¥f p(ra)
l3 js3 us r3 ry

- ZZZ Jlﬂll Zwﬁ ug rl th u1 w]p (r2)

i 71 wm
= E(I jl-p)2 (by recognition from formula (14))
= I, and Is.

Thus, (changing tg(j, ) notation)

Var(fmp) = 3E([n7 )2_E(In,p)2
= 2E(In

However, from Theorem 2, we know that

o= 550 (8) o 0 i)

Hence,

Val"(]mp) = QE(In7p)2

- f et ) e)]

From the work of Nasort al./ (2000) it is known tha@;(T) = O(1), uniformly in 7.
Hence it follows that

AnGbnGi ) Z ‘Ifl \I'll = 0(223'(77)).

Thus, ag; is fixed

2 .
p 924 (n)
Var(I,p) =2 {Z A S <ﬁ) } +0 (W '
m 7

15



Covariance:
Cov(Ile I» )y = C de \* (dv )
OV( a,P’ " Jb,q ) - ov ( ja,p> ’( jb,q>

: E<<d;z,p>2<dz-z,q>2> J(CORCRY

(1) ()") = 2 ((Sxtote) (S

2
- ( (Z Z Z Z J17u1 J1 up )6%71111[);2,1)(1')

h 5

lo Iy
Z Z Z Z Wiz us 22,112 é332,112 wjb7q(s)

la j2 u2

2
- HZZZZ i Juuz ¢éa,p(r)

'L' Ji u;

4
HZZZZ Wi Jz,uZ wél;q(si)

=3 S; i ]z u;
11 l2 I3 lg
£ <§j1 u1 sz ,u2 gj37u3 §j47U4>

Using Isserlis’ theorem, together with the fact that therflowrder joint cumulant of
Gaussian random variables is zero, we can expand the abpression as follows:

@mowj)=nzzzzh%m Do (e

=1 ry I Ji W

ly )
HZZZZ Juuz Juuz 1ﬁ]bq(sl)
1=3 Si Iy  Ji Wi

{E (€82 ) B (€5 aabitnn) +E (€088 ) E (€2 g

[ [ [
E (&) B (€2 uablins ) }
= L +1+1Is.

Now recall that by constructloﬁ(gj1 ulgé‘; wy) = 0j1.j20uyuy01y 1+ It therefore follows
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that:

2
L= JIDD 00w w (vl 5(ra)

=1 ri I g W
4
|1 DD IR A MO Y
JisWs ¥ Ji,us \TV Vg, g\
=3 Si l; Ji W
E ( 51'1 fl-Q ) E (gl;s fl-4 >
Ji,u1>j2,u2 J3,u35j4,u4q

= ZZZ J1 U1 Zwﬁ ug Jap (r1) Z/l/}‘jl w ya p(r2)

i 71 wm

ZZZ JS,US Zwys,ug jbq (s3) ijg us (s4)¥ b, q(s4)

I3 Jj3 us
However, recall from equation (14) that

E(Ilz Z Z Z J17111 Z ¢;11 u; ¢.§a p Z ¢;11 u; fo (1'2)

i Jj1 uw

Hence,l; = E(Il* )E(I} ). Furthermore,

2
o= T332 wf wty el (o)

=1 r; l; ji  u;
4
l; l; l
[ID.20 0 i wtm (5005,0(5)
=3 S; l; Ji W
l1 13 12 l4
E <£j1 u1£j3 U‘s) E <£j2 uy £j47U4)

_ 51 1 Iy
- Z Z Z J17111 Z ¢]17111 ]mp Z ¢]1 u S3 Q’Z)Jb q(S3)

h j1 wm

ZZZ Jz,uz ijz,uz japr2 Z¢2u2 (s4) ]bq(54)

la j2 u2

- Z Z Z ]17111 Z 1/}]1,‘11 Ja p Z w,?l,ul ]b q(r2)

b 5

Finally, it is easily shown thafs = I5.
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Drawing our expressions fdi, Io and /s together we find that,

la l _
Cov(lle 1% ) = E(

e 1 ) =Bl EIP )

JasP™ 76,4 Jb,4

= I +12 + 13— B(Il E(IY )
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