
A Multi-Class Extension to the Brownboost

Algorithm

Ross A. McDonald

Imperial College London

Idris A. Eckley

Shell Research Ltd.

David J. Hand

Imperial College London

30th January 2003



Abstract

Brownboost is an adaptive, continuous time boosting algorithm based on the

Boost-by-Majority (BBM) algorithm. Though it has been little studied at the

time of writing, it is believed that it should prove especially robust with re-

spect to noisy data sets. This would make it a very useful boosting algorithm

for real-world applications. More familiar algorithms such as Adaboost, or its

successor Logitboost, are known to be especially susceptible to over�tting the

training data examples. This can lead to a poor generalization error in the pres-

ence of class noise, since weak hypotheses induced at later iterations to �t the

noisy examples will tend to be given undue in
uence in the �nal combined hy-

pothesis. Brownboost allows us to specify an expected base-line error rate in

advance, corresponding to our prior beliefs about the proportion of noise in the

training data, and thus avoid over�tting. The original derivation of Brownboost

is restricted to binary classi�cation problems. In this paper we propose a nat-

ural multi-class extension to the basic algorithm, incorporating error-correcting

output codes and a multi-class gain measure. We test two-class and multi-class

versions of the algorithm on a number of real and simulated data sets with arti-

�cial class noise, and show that Brownboost consistently outperforms Adaboost

in these situations.

Keywords: Boost-by-majority, Error-Correcting Output Codes, BrownBoost,

Adaboost, Brownian Motion, Multi-Class Problems.



1 Introduction

Brownboost [9] is a continuous-time adaptive boosting algorithm, developed by

Freund and based on his non-adaptive Boost-by-Majority (BBM) algorithm [8].

It addresses a particular weakness of the widely-studied and popular Adaboost

algorithm and its variants: that the adaptive property that is the key to these

algorithms' success also makes them especially vulnerable to classi�cation noise

(where we take this to mean that a �xed proportion of the data have had their

class labels reassigned at random).

Adaboost-type algorithms work by reweighting the training-set examples at

each iteration in order to force the base learner to focus on those that prove

the hardest to classify. Since these are very likely to be the noisy data, weak

hypotheses induced at later iterations when such examples dominate will tend to

be given undue in
uence in the �nal combined hypothesis, leading to over�tting

and a poor generalization performance. In his empirical comparison of methods

for constructing ensembles of decision trees [5], Dietterich concluded that `the

performance of Adaboost can be destroyed by classi�cation noise'.

The great advantage of Brownboost is that it allows us to pre-specify an

expected base-line error rate (the noise parameter), corresponding to our prior

beliefs about the proportion of class noise in the training data. Because Brown-

boost knows in advance for how much time the algorithm will run, and is guaran-

teed to output a hypothesis with a given error rate, if it �nds particular training

examples especially hard to classify it will in e�ect `give up' on them, and seek

to gain advantage elsewhere. Given a close estimate of the true value of the

noise parameter, Brownboost is likely to ignore the noisy examples entirely when

constructing its output hypothesis.

Brownboost and Adaboost are not unrelated; Freund [9] has demonstrated

that Adaboost may be viewed as the special case of Brownboost when the noise

1



parameter is allowed to tend to zero. Brownboost is also optimal in the sense

that its output hypothesis will combine the smallest number of weak hypotheses

for a given base learner.

Freund's original derivation of Brownboost is restricted to binary classi�-

cation problems. A large proportion (perhaps the majority) of classi�cation

problems will be multi-class in nature. In this paper we discuss a method for

extending Brownboost to the multi-class scenario (where by multi-class we mean

problems with three or more discrete, categorical class labels, as distinct from

binary problems where we have only two).

Multi-class extensions to binary algorithms often amount to breaking a partic-

ular multi-class problem down into a set of parallel binary sub-problems. Rather

than boost each of these sub-problems separately, we propose that the reduction

to binary instead be done at the level of the base-learner. We make the basic

assumption that our base learner can return separate, independent, con�dence-

rated predictions for each class label. In this paper we introduce a novel version

of the Brownboost algorithm that incorporates such predictions, based on a new

multi-class measure of gain. As with the binary version of Brownboost, our out-

put strong hypothesis is constructed using only a single set of hypothesis weights.

In Section 2 of this paper we review the Error Correcting Output Codes

(ECOC) approach for reducing multi-class problems to binary. In Section 2.1 we

brie
y explain Hamming Decoding. Section 2.2 describes how a similar method

can be used to help solve multi-class problems in machine learning, and intro-

duce a new measure of gain (negative loss). Section 3 details the concept of a

continuous-time boosting algorithm, and its relationship with Brownian Motion

(from which the name Brownboost is derived). In Section 3.1 we recap Freund's

insights in the binary case, while in Section 3.2 we recast this argument in the

multi-class scenario, using our new gain function. In Section 4 we conduct some

empirical experiments with Brownboost, adding arti�cial noise to both simulated

2



and real data. At present we are not aware of any other published experimental

results relating to Brownboost. Section 4.1 details a simple simulated experiment,

which graphically illustrates the noise-compensating properties of the binary ver-

sion of Brownboost. In Section 4.2 we report the results of our experiments on

real data. These results are discussed in Section 4.3. Finally, in Section 5 we

summarize our conclusions and suggest directions for future work.

2 Error-Correcting Output Codes

2.1 Hamming Decoding

Error-Correcting Output Codes (ECOC) (see eg. [15]), were originally devel-

oped as a means of accurately transmitting a stream of data in binary form in

situations where a degree of transmission error was expected to occur.

The original data stream consists of a sequence of symbols, drawn from a

set, or alphabet, of labels of size k. For example, the alphabet might consist of

all lower-case letters in the English language, which constitutes a set of size 26.

Before transmission, each of the k labels in the original alphabet is replaced by

a binary codeword of �xed length `, which is a sequence of ` binary digits. This

set of codewords may be written in the form of a k � ` coding matrix, M. For

example, if we chose to replace two labels (k = 2) with codewords of length �ve

(` = 5), we might construct the following coding matrix:

M =

0
@ 0 0 0 0 0

1 1 1 1 1

1
A

The Hamming distance between codewords is de�ned as the number of entries

in which two codewords di�er. So in the above example the distance between

our labels is exactly 5. In order to correct errors e�ciently, we aim to select

codewords that are as widely spaced as possible.

3



Now suppose that we receive a corrupted stream of data containing the se-

quence 01000. Computing the Hamming distance between this vector and each

of the rows of M, we would conclude that the original transmitted sequence

was more likely to signify the �rst class (Hamming distance 1) than the second

(Hamming distance 4). This procedure of choosing the class label in our coding

matrix that is the smallest Hamming distance from the observed data sequence

is known as Hamming decoding. By replacing our class labels with codewords

that are both a reasonable length and a suitable distance apart, we stand a fair

chance of reconstructing the original data stream even in the presence of noise.

In 1965 Hamming decoding was used to transmit the �rst photographs of

Mars from the Mariner 4 space probe back to Earth. Since then it has been used

many times to transmit images from space.

2.2 Reducing Multi-Class Problems to Binary

The ECOC approach can also be adapted for multi-class problems in machine

learning. In a typical learning problem, our goal is to �nd an approximation to an

unknown function f(x) given a training set of examples of the form hxi; f(xi)i.
The components of x are known as attributes and in a discrete problem f(x)

de�nes a probability mass function across the set of k distinct class labels.

A great many real-world problems may be formulated in this manner. One

standard example is credit scoring (see eg [14], [25], [18]), employed by banks

and other lending institutions seeking to predict the credit-worthiness of loan

applicants based on information collected via the application procedure and a

training data set comprising past customer records. Customers who default on

repayments are classi�ed bad (class 1), whereas those who repay the loan without

default are classi�ed good (class 0). In this simple form credit scoring amounts

to a binary classi�cation problem with discrete or continuous attribute vectors.

4



Credit scoring closely parallels problems of medical diagnosis, where the aim

is to determine whether an illness is likely to be present using measurements

based on symptoms and knowledge of previous cases.

At the learning stage, a binary model (such as ordinary logistic regression) or

learning algorithm (such as the linear perceptron) uses the set of training data

to construct a model for f(x), known as a hypothesis. When presented with

new data for which the true class labels are unknown, the hypothesis will output

a single real-valued con�dence prediction which is then translated into a class

prediction by �xing a threshold value. By extension, the hypotheses generated

by multi-class models or algorithms (such as the multi-layer perceptron, multi-

class CART or C4.5 regression trees, neural nets or radial basis functions) will

output a separate and independent con�dence prediction for each of the k class

labels. These predictions may be used to classify new examples by, for example,

assigning them to the single class with the highest con�dence level.

For notational convenience, we shall make the following assumption about

the output of our hypotheses:

Assumption 1: Hypotheses output con�dence-rated predictions that take the

form of real values in the range [�1; 1].

This assumption is not restrictive, since if necessary we can map the standard

output of our hypotheses to the interval [�1; 1] via a simple rescaling.

Thus we have two distinct possibilities, according to whether our learner is

of binary type or multi-class type:

Case 1: Our learner is of binary type. Given a binary learning problem it �ts

a hypothesis that outputs a single prediction in the range [-1,1]. The magnitude

of the prediction is its con�dence level, while its sign relates it to one of the two

5



possible classes.

Case 2: Our learner is of multi-class type. For each class label its hypothesis

outputs a separate, independent con�dence prediction in the range [-1,1].

Using Error-Correcting Output Codes, we can transform a binary learner

of the �rst type into a multi-class learner of the second. To illustrate this,

suppose that we have a multi-class problem with k discrete class labels. Following

the ECOC approach, we can replace each of these k class labels with a binary

codeword of length `. Here we modify our notation slightly so that a binary

codeword is a string of symbols drawn from f�1; 1g. As before, we aim to select

these codewords in such a way as to be as far apart from one another as possible

under some chosen measure of distance. Thus each example in our training set

becomes associated with a set of ` binary labels, rather than one single class

label. We can now treat each column of the coding matrix as a separate two-

class learning problem, equivalent to learning a binary partition of the set of all

classes. We call the learner ` times, each time passing to it the complete set

of training data attributes, along with the set of binary labels generated by the

corresponding column of the coding matrix.

For example, suppose that we have a four-class problem. The following coding

matrix corresponds to all contrasts between partitions of the class labels into

subsets of size 2:

M =

0
BBBBBBB@

1 1 1

1 �1 �1
�1 1 �1
�1 �1 1

1
CCCCCCCA

Allwein et al. [2] have proposed a natural extension to the procedure, in

which labels are also allowed to take the value 0. Training examples that are

6



labelled 0 are not passed on to the learner. This has the e�ect of increasing the

range of possible contrasts.

There are many ways to construct a coding matrix. Perhaps the most direct

choice is the one-against-all approach. In this case M is a k � k matrix whose

diagonal entries are all +1 and all other entries -1. We have thus reduced the

multi-class problem to the set of binary problems that correspond to distinguish-

ing each class in turn from every other class. Alternatively, we might use the

all-pairs approach. Here each column of the coding matrix corresponds to the

binary problem that distinguishes a particular class pair. For this columnM has

+1 in the row corresponding to the �rst class, -1 in the row corresponding to

the second class, and 0 in all other rows. M is therefore a k � (k2) matrix. The

columns of a complete coding matrix correspond to all non-trivial partitions of

the set 1; :::; k into two subsets. Thus it is of size k � (2k�1 � 1).

Given a new example we proceed by calculating the distance between the

assigned label set and each row of the coding matrix. But rather than use

Hamming distance, which fails to take the con�dence levels of the predictions

into account, we propose taking the expected value across labels of a measure of

gain. For a given coding matrix M and example with hypothesis outputs hj(x)

for and j = 1; :::; ` we de�ne the gain for class i and label j as follows:

Gi;j = M(i; j)hj(x) (2.1)

Because of Assumption 1, the gain is a value in the range [�1; 1] that is positive
if and only if the prediction was on the correct side of 0, with magnitude equal

to its con�dence level.

We now de�ne distance, di, to be the expected value of the gain across coding

labels, taking care not to include labels in the coding matrix that take the value

0:

di =
1

`� `0i

X̀
j=1

M(i; j)hj(x) (2.2)

7



where

`0i =
X̀
j=1

[[M(i; j) = 0]]

and [[�]] is the identity function that equals 1 when � is true, and 0 otherwise.

The above measure has range [�1; 1], so we can treat the k distances between

the assigned labels and the rows of the coding matrix exactly as we would the

predictions output by a multi-class learner. So to classify a new example, we

would assign it to the single class with the largest prediction value.

For example, suppose that we were using the all-pairs coding matrix for a

three-class problem:

M =

0
BBBB@

1 1 0

�1 0 1

0 �1 �1

1
CCCCA

and for a given example our learner outputs the following con�dence predictions,

each one corresponding to a column of M:

�
0:36 �0:74 �0:98

�
:

Then we can compute our distance values for each class using equation 2.2:

1

2

0
BBBB@

0:36� 0:74 + 0

�0:36 + 0� 0:98

0 + 0:74 + 0:98

1
CCCCA =

0
BBBB@
�0:19
�0:67
0:86

1
CCCCA :

The largest distance value is the third, so we would assign this example to class

3.

Thus we have found a way of using a binary learner to solve a multi-class

problem. In the following sections, we explain how this method can be used to

help build a multi-class version of Brownboost.

8



3 Brownboost

3.1 Binary Version

A weak learner is a model or algorithm whose output hypotheses will with high

probability outperform random guessing by a small amount over the training

data under some loss measure. We note in passing that in the binary case we can

always guarantee that our hypothesis performs no worse than random guessing

in terms of error rate, since any hypothesis output h(x) with error � > 1
2
can be

replaced by �h(x) with error rate 1� � < 1
2
.

A strong learner is one that can learn the training data to an arbitrarily high

degree of accuracy (for more rigorous de�nitions of weak and strong learner, see

[22]).

A boosting algorithm is a means of transforming a weak learner into a strong

learner by combining the hypotheses generated on reweighted versions of the

training data. At every iteration of a binary boosting algorithm, the weak (or

base) learner is trained on the weighted training data, and achieves an error rate

(proportion of misclassi�ed examples) of, say, 1
2
�
 for some 
 > 0. The example

weights are then updated in such a way as to bring the error rate of the weak

hypothesis output by the base learner close to 1
2
. The weak hypothesis, weighted

appropriately, is added to the combined hypothesis, and the base learner is called

again.

The Boost by Majority (BBM) algorithm [8] was one of the �rst to be devel-

oped and predates Adaboost. Though it is optimal in the sense that its output

hypothesis will combine the smallest possible number of weak hypotheses, it is

not adaptive, and is disadvantaged by the fact that it is necessary to know in

advance that the weak learner will always achieve a guaranteed training error of

1
2
� 
 for some known 
 > 0 under any possible example reweighting.

9



The weight assigned to a particular training example at iteration i is:

wi
r =

0
@ k
 � i� 1

k

2
� r

1
A (

1

2
+ 
)

k

2
�r(

1

2
� 
)

k

2
�i�1+r; (3.1)

where r is the number of correct predictions made so far for the example and k


is the total number of iterations, which is calculated in advance.

Another important quantity is the potential, which remains constant across

iterations:

�i
r =

k

2
�rX

j=0

0
@ k
 � i

j

1
A (

1

2
+ 
)j(

1

2
� 
)k
�i�j: (3.2)

Brownboost is an adaptive version of BBM, and does not presuppose that

we know the value of 
. It is a true boosting algorithm in the sense that it

outputs a strong hypothesis with a guaranteed training error rate. It is derived

by considering what happens to the BBM algorithm if the example reweighting

is assumed to happen in continuous time. We begin by imagining that at time

0 the base learner outputs a hypothesis with error rate 1
2
� 
 for some 
 > 0

(not necessarily known), and that this hypothesis then remains in play until the

process of continuous reweighting raises its error rate to (very close to) 1
2
. At this

point we consider our hypothesis `tested to destruction', weight its contribution

to the combined hypothesis according to how long it survived, and call the base

learner again. We de�ne the error rate of the hypothesis under a particular

reweighting as 1
2
� � with 0 < � < 
.

We can simulate the e�ect of the continuous reweighting on the weak hypoth-

esis for a given value of � by adding random noise to hypothesis h(x) to construct

a new hypothesis h0(x) as follows:

h0(x) =

8>>>><
>>>>:

h(x);with probability �=


0;with probability (1� �=
)=2

1;with probability (1� �=
)=2

10



The expected error rate of h0(x) with respect to the whole training set is 1
2
��.

We are interested in characterizing the behaviour of the sum of such randomly

altered hypotheses as � ! 0.

If we set time t = �2i and de�ne `location' as

r� = �

[t=�2]X
j=1

h0j(x);

then in the limit � ! 0 this behaviour approximates Brownian Motion with Drift

with mean �(t) and variance �(t) equal to

�(t) =

Z t

0

1


(s)
ds; �2(t) = t: (3.3)

In the limit � ! 0, the weighting function 3.1 reduces to

w(t; r) = exp

�
�(r(t) + c� t)2

c� t

�

where if k� is the total number of iterations run by the discrete algorithm, c is

the limit as � ! 0 of �2k�. The potential function 3.2 becomes:

�(t; r) =
1

2

�
1� erf

�
r(t) + c� tp

c� t

��

where erf is the `error function':

erf(a) =
2

�

Z a

0

e�x
2

dx:

We use these de�nitions of t; r(t); w(t; r) and �(t; r) to construct the binary

version of Brownboost quoted in �gure 1.

There follows a step-by-step explanation of this algorithm.

11



Algorithm Brownboost (Binary Version)

Inputs:

Training Set: A set of m labelled examples: T = (x1; y1); :::; (xm; ym) where xi 2 Rd and
yi 2 f�1;+1g.
WeakLearn { A weak learning algorithm.
c { a positive real valued parameter.
� > 0 { a small constant used to avoid degenerate cases.

Data Structures:
prediction value: With each example we associate a real valued margin.
The margin of example (x; y) on iteration i is denoted ri(x; y). The
initial prediction values of all examples is zero: r1(x; y) = 0.

Initialize `remaining time' s1 = c.
Do for i = 1; 2; :::

1. Associate with each example a positive weight

Wi(x; y) = e�(ri(x;y)+si)
2=c

2. Call Weaklearn with the distribution de�ned by normalizing Wi(x; y)
and receive from it a hypothesis hi(x) which has some advantage over random
guessing

P
(x;y)Wi(x; y)hi(x)y = 
i > 0.

3. Let 
; � and t be real valued scalar variables that obey
the following di�erential equation:

dt
d�

= 
 =

P
(x;y)2T exp(� 1

c
(ri(x;y)+�hi(x)y+si�t)2)hi(x)y

P
(x;y)2T exp(� 1

c
(ri(x;y)+�hi(x)y+si�t)2)

where ri(x; yj), hi(x)y and si are constants in this context.
Given the boundary conditions t = 0; � = 0 solve the set of equations to �nd
ti = t� > 0 and �i = �� such that either 
� � � or t� = si.

4. Update the prediction value of each example to

ri+1(x; y) = ri(x; y) + �ihi(x)y:

5. Update `remaining time' si+1 = si � ti.

Until si+1 � 0
Output the �nal hypothesis,

if p(x) 2 [�1;+1] then p(x) = erf

�PN
i=1 �ihi(x)p

c

�
.

if p(x) 2 f�1;+1g then p(x) = sign
�PN

i=1 �ihi(x)
�
.

Figure 1: The two-class Brownboost Algorithm (quoted from [9])

12



Inputs

The algorithm takes as input a training data set of size m and a weak learner,

as already discussed. It also inputs a small constant, � > 0, used to avoid

degenerate cases when solving the di�erential equation, and a parameter c, which

is equal to the total time for which the algorithm is to be run. As explained in

[9], this constant also relates to Brownboost's ability to ignore noisy training

examples. If we de�ne the loss of a particular training example as 1�h(x)y then

the expected loss of the strong hypothesis over all examples in the training data

set can be written as

1� 1

m

mX
j=1

p(xj)yj

Note that the loss is a value in the range [0; 2], though we do not expect it to

exceed 1 in practice since this would imply that we have made no improvement

on average over random guessing. If we prefer to measure error in the range [0; 1]

we simply have to divide by 2.

It can be shown that the parameter c can be related to the training loss � of

the strong hypothesis by

� = 1� erf(
p
c) (3.4)

Thus by selecting a value of c we are also specifying the proportion of class noise

that we expect to �nd in the training data. Since the noisy examples should

generally be the hardest to learn, it is likely that the Brownboost algorithm will

not attempt to �t them.

Data Structures

For each example in the training data set, Brownboost maintains a cumulative

quantity known as the margin, de�ned as follows:

r1(x; y) = 0;

ri+1(x; y) = ri(x; y) + �ihi(x)y

13



where �i is the weight that the boosting algorithm assigns to the weak hypothesis

at iteration i. The margin is therefore a positive or negative real value which

tells us, for a particular example, whether that example will be correctly classi�ed

under the current strong hypothesis. A positive margin value tells us that the

example is being correctly classi�ed, a negative value signi�es the converse. A

margin of 0 tells us that our hypothesis is no more informative for this example

than random guessing. The magnitude of our margin value can therefore be

viewed as a measure of how much better (or worse) our hypothesis is performing

than random guessing. The margins are used in the weight update step.

Step 1

This is the weight update step as de�ned by equation 3.1.

Step 2

This is the pivotal step of the algorithm, where the weak learner is passed

the training data and the vector of example weights, and returns a hypothesis

function with weighted gain 
i.

Step 3

At this step we compute the hypothesis weight �i and the time step size

ti. The hypothesis weight is taken to be the mean of the Brownian motion, as

de�ned in 3.3, across the time interval. This means that to determine �i and ti

we must solve the following di�erential equation:

dt

d�
= 
 = 0:

given the boundary condition �(0) = 0. This equation can be solved via numer-

ical methods. For suggested means of doing so, see Section 7 in [9].

Step 4

This is the margin update step.

Step 5

14



The parameter s keeps track of the remaining time. It is initially set to c,

and at each iteration i an amount equal to ti is subtracted from it.

Output

The output takes the form of either a con�dence measure in the range [�1; 1]
or a label drawn from f�1; 1g.

In the �rst case, the exact form of p(x) is chosen such that the predictions on

the training data have an expected loss of exactly �, where � is de�ned in terms

of c as in 3.4. This result is derived by equating the potential at the start and

end of the algorithm (see Theorem 2 in [9] for more details). This explains why

the error function emerges in the de�nition of p(x) (the error function is in e�ect

simply a non-linear mapping back to the range [�1; 1]).
In the second case, we return a straightforward binary prediction by taking

the sign of the sum of the weighted weak hypotheses.

3.2 A Multi-Class Extension to Brownboost

In this section we bring together the ECOC approach and the binary version of

Brownboost to create a multi-class extension to the basic algorithm.

Recall that there are two distinct possibilities, depending on whether we are

boosting a binary or a multi-class base learner:

Case 1: Our base learner is of binary type. Given a binary learning problem

it �ts a hypothesis that outputs a single prediction in the range [-1,1]. The mag-

nitude of the prediction is its con�dence level, while its sign relates it to one of

the two possible classes.

Case 2: Our base learner is of multi-class type. For each class label its

hypothesis outputs a separate, independent con�dence prediction in the range [-

1,1].

15



In the �rst case, as already discussed we can construct a k�` coding matrix to

break the multi-class problem down into a set of binary discrimination problems.

In the latter case we would expect a perfect hypothesis to assign a con�dence

value of +1 to the correct class, and -1 to the others. We can therefore associate

our output with the coding matrix that corresponds to the one-against-all ap-

proach, that is, the k � k matrix whose diagonal entries are +1 with all other

entries -1. The length of the codewords is ` = k.

In either case, our boosting algorithm communicates with the base learner

via a k � ` coding matrix which maps each of k discrete classes to a set of `

binary labels.

The binary version of Brownboost maintains a weight for each of the m ex-

amples in the training data set. In our multi-class extension, we maintain a

separate weight for each example and for each binary label associated with that

example. Thus we could write the full set of example weights in the form of an

m� ` matrix.

We also have to introduce a new measure of the gain of a hypothesis over

random guessing, 
. We take this to be the weighted expectation, across all

examples and labels, of the gain as de�ned in equation 2.1. So if the true labels

for a particular example are denoted �j; j = 1; :::; `, and the hypothesis prediction

for label �j is denoted hj(x), then we de�ne the overall gain as follows:


 = EWhj(x)�j (3.5)

where EW means expectation across the full matrix of example weights. This is

a value in the range [�1; 1] which measures how informative our hypothesis is

with respect to random guessing.

We de�ne the pseudo-loss of a set of hypotheses to be 1� 
 and the pseudo-

error (analogous to the binary error in the 2-class case) to be 1
2
� 1

2

.

Under 3.5, an uninformative hypothesis (one with zero gain and pseudo-error

16



1
2
) is no better than random guessing. Otherwise, we can always ensure that

the hypothesis output by the base learner will be more informative than random

guessing, since any hypothesis h(x) with pseudo-error � > 1
2
may be replaced by

�h(x) with pseudo-error 1� � < 1
2
.

By analogy with the binary argument, we can suppose that we are combining

hypotheses of the form:

h0(x) =

8<
: h(x);with probability �=


Any uninformative hypothesis with probability (1� �=
)

so that now h0(x) has pseudo-error of exactly 1
2
� �.

Our multi-class version of the Brownboost algorithm is shown in �gure 2. For

details of how various theorems and proofs in [9] can be modi�ed to accommodate

this extension, see Appendix B.

There follows a step-by-step explanation of the multi-class version of Brown-

Boost.

Inputs

The multi-class extension is based on the coding matrix M with entries in

f�1; 0; 1g. The rows of M correspond to the original set of classes, while the

columns represent the binary partitions of this set that are to be distinguished

by the base learner. There are many possible choices for M, ranging from the

one-against-all approach to the complete coding matrix. For more details, see [6]

and [2].

17



Algorithm Brownboost (Multi-Class Version)

Inputs:
ECOC Matrix: The k � ` coding matrix M.
Training Set: A set of m labelled examples: T = (xn; yn); n = 1; :::;m where xn 2 Rd and
yn 2 fy1; y2; :::; ykg. Each yn is associated via the matrix M with a set of ` binary labels f�n1 ; :::; �

n
` g,

where �nj 2 f�1; 1g,j = 1; :::; `.

WeakLearn { A weak learning algorithm.
c { a positive real valued parameter.
� > 0 { a small constant used to avoid degenerate cases.

Data Structures:
prediction value: With each example we associate a set of real valued margins.
The margin of example (xn; yn) for label �nj on iteration i is denoted ri;j(xn; yn). The

initial value of all margins is zero: r1;j(xn; yn) = 0; n = 1; :::;m; j = 1; :::; `.

Initialize `remaining time' s1 = c.
Do for i = 1; 2; :::

1. Associate with each example and label a positive weight

Wi;j(xn; yn) = e�(ri;j(xn;yn)+si)
2=c; n = 1; :::;m; j = 1; :::; `;

2. Binary base learner: Call Weaklearn ` times j = 1; :::; `, each time passing it the
weight distribution de�ned by normalizing Wi;j(xn; yn) for �xed j, and the training
data set alongside the binary labels de�ned by column j of the matrix M.
Multi-class base learner: Call Weaklearn, passing it the training data and
the full set of weights.

Receive from Weaklearn a set of ` hypotheses hi;j(x) which have some advantage
over random guessing

Pm
n=1

P`
j=1 Wi;j (xn;yn)(hi;j(xn)�

n
j )

P
m
n=1

P
`
j=1 Wi;j(xn;yn)

= 
i > 0:

3. Let 
; � and t be real valued
variables that obey the following di�erential equation:

dt
d�

= 
 =
Pm
n=1

P`
j=1 exp(�

1
c
(ri;j(xn;yn)+�hi;j(xn)�

n
j +si�t)2)hi;j (xn)�

n
j

P
n
n=1

P
`
j=1

exp(� 1
c
(ri;j(xn;yn)+�hi;j(xn)�

n
j
+si�t)2)

where ri;j(xn; yn), hi;j(xn) and si are constants in this context.
Given the boundary conditions t = 0; � = 0 solve the set of equations to �nd
ti = t� > 0 and �i = �� such that either 
� � � or t� = si.

4. Margin update: ri+1;j(xn; yn) = ri;j(xn; yn) + �ihi;j(xn)�nj :

5. Update `remaining time' si+1 = si � ti.

Until si+1 � 0

Output Final hypotheses: pj(x) = erf

�PN
i=1 �ihi;j (x)p

c

�
, j = 1; :::; `.

Figure 2: The Multi-class Brownboost Algorithm

18



If our base learner already outputs multi-class predictions, we assume that

our coding matrix is the k�k matrix whose diagonal entries are 1, with all other

entries -1.

We also input c, the noise parameter estimate related to the accuracy of

the output hypothesis via equation 3.4, and �, a small constant used to avoid

degenerate cases in solving the di�erential equation.

Data Structures

We now associate a margin with every example and label in the training data

set. The margins may be written in the form of an m� ` matrix.

Step 1

The weight update step. We associate a separate weight with each example

and label. The weights could thus also be written in the form of an m�` matrix.

Step 2

At this step we either call the weak learner ` times if it is binary, or once if

it is multi-class. In either case we receive from it a hypothesis that given a new

example outputs a prediction in the range [�1; 1] for each of the ` labels.

Step 3

Here the di�erential equation is solved to determine the values of the hypoth-

esis weight � and the time step t. To solve this equation, we can use slightly

modi�ed versions of the same numerical methods as in the binary case (see Ap-

pendix B for more details).

Step 4

The margin update step.

Step 5

The `remaining time' update step.

Output

The outputs take the form of a set of label predictions in the range [�1; 1]. We

can use these predictions to classify a new example by calculating the expected

19



gain across each row of the ECOC matrix as in equation 2.2. We predict the

class with the highest gain.

4 Experiments

4.1 Simulated Data

In this �rst example we aim graphically to demonstrate the noise-compensatory

properties of the two-class version of the Brownboost algorithm on a simulated

two-dimensional data set.

To construct the initial data, a set of 300 two-dimensional uniform random

variates, fx1;x2g, were generated in the range [�1; 1]�[�1; 1]. The class division
is de�ned via a smooth decision surface as follows:

yn =

8<
: 0 if 3

4
sin (�xn1 ) < xn2

1 if 3
4
sin (�xn1 ) � xn2

; n = 1; :::; 300:

Note that in this idealized example the partition between our classes is clearly

delineated, without any ambiguity. We do not expect this to be re
ected in many

real-world situations.

This initial data are shown plotted in Figure 3, panel (1).

Next we �t Adaboost to these data, allowing the algorithm to run until the

training error rate is exactly 0, at which point it terminates naturally. The

version of Adaboost used in all our experiments is detailed in Appendix A. Our

chosen base learner is a simple algorithm that outputs con�dence-rated binary

stumps (these are decision trees with only one split - see [4] for more details).

The combined hypothesis output by Adaboost unambiguously maps every point

in the example space to one of the two classes, as illustrated in Figure 3, panel

(2). We observe that the �tted partition is a fair approximation to the shape of

the true decision boundary.

Now we introduce class noise, which we de�ne as follows (note that some

authors adopt a di�erent de�nition):

20



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(1)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(2)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(3)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(4)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(5)

Figure 3: Plots for the sine wave example. (1) 300 data points in 2 dimensions
mapped to 2 classes via a decision boundary. (2) Adaboost �tted to the non-
noisy data. (3) The same data with 20% class noise. (4) Adaboost �tted to the
noisy data. (5) Brownboost �tted to the noisy data. See Section 4.1 for a fuller
explanation of panels.

21



De�nition: x% class noise means that x% of the examples are assigned a

randomly chosen incorrect label. In a binary problem, this means that x% of

examples have their class label swapped.

We construct a data set with 20% class noise by swapping the class labels of

one in �ve of examples in the original data set. This new data are shown plotted

in Figure 3, panel (3).

Since we know a priori that 20% of the class assignments in the new data are

inherently misleading, we run Adaboost only until it yields a training error rate

of 0.2. The partition �tted by the output hypothesis is that shown in Figure 3,

panel (4). Here we see a clear illustration of Adaboost's vulnerability to class

noise. The `patchiness' of the strong hypothesis is the result of over�tting. This

happens because the Adaboost algorithm is designed in such a way as to focus

the attention of the base learner at an early stage on those examples that are

the most di�cult to classify. This means that the algorithm attempts to �t the

noisy data �rst, to the overall detriment of the combined output hypothesis.

Finally, we �t Brownboost to the noisy data. In order to do this, we require

a good estimate of the noise parameter, c. Since we know that 20% of class

assignments are misleading, we aim for a combined classi�er with a training error

rate of 0.2. This corresponds to a pseudo-loss of 0.4 (since in the binary case the

pseudo-loss is simply twice the error rate). This leads us, via equation 3.4, to

the choice of c = 0:3541. In a situation where the noise level was not known in

advance, we would need to search for an appropriate choice of c, possibly via the

binary search method described in [9].

The combined hypothesis output by Brownboost with this choice of noise

parameter is shown in Figure 3, panel (5). Note that except at the peaks of the

sine curve, where a high concentration of noisy data seems to have led to some

distortion, the �nal classi�er strongly resembles the original decision surface.

22



This is because Brownboost e�ectively assigns diminishing weight to examples

that it is unlikely to classify in the time available, and so proves robust to the

class noise.

Cross-validatory tests were carried out on the original and noisy versions of

this data to determine approximate test error rates for the two algorithms. The

results are detailed in the next section.

4.2 Real Data, Arti�cial Noise

We conducted a series of tests using the six data sets summarized in Table 1.

The Sine data is the simulated example described in the previous section. All of

the remaining data sets, with the exception of Credit were taken from the UCI

Machine Learning Repository [1].

King-Rook vs King-Pawn (KRKP) is a two-class data set based on chess

endgames.

The Credit data set is a credit scoring data set of the type described in Section

2.2. Details of these data have been omitted from Table 1 for commercial reasons.

Wisconsin is the well-known diagnostic data set for breast cancer compiled

by Dr William H. Wolberg, University of Wisconsin Hospitals [17].

The Wine data, based on a chemical analysis of Italian wines, and Balance

data, which records the results of a psychological experiment, are three-class data

sets which have been included to test our multi-class extension to Brownboost.

In order to ensure algorithmic convergence in the time available, the KRKP

and Credit data sets were curtailed to 500 examples apiece. Indicator variables

were substituted for categorical variables in both of these data sets (see [13],

Section 9.7 for more details).

We constructed a noisy version of each data set by assigning a randomly

chosen, incorrect class label to 20% of training examples.

Each experiment consisted of 100 trials. At each trial, one third of the data

23



examples were selected at random and set aside as a test set. The remaining

two thirds of examples were used to train the algorithm. We recorded the �nal

pseudo-loss and error rates of the output hypothesis on both the training and

test data.

We trained Adaboost on the original data sets to give us a benchmark for

our comparison. Both algorithms were trained on the noisy data, using the same

randomly chosen training and test sets. For each of the 100 trials performed for

each algorithm on the noisy data, we noted which algorithm achieved the lowest

test error rate. These results are set out in Table 2.

In all trials Adaboost was allowed to run until its training loss matched the

expected training loss rate of that data set, or for a maximum of 100 iterations.

The version of Adaboost used was that detailed in Appendix A.

For Brownboost, we calculated an appropriate value for c using equation 3.4.

For the two-class data (Sine, KRKP, Wisconsin and Credit) an error rate of

20% corresponds to a loss rate of 0.4, since loss is measured in the range [0; 2].

For the three-class data (Wine and Balance) we have to be more careful, since

the expected pseudo-loss will be dependent on our coding matrix. We used the

one-against-all approach on these data sets, so our coding matrix was as follows:

M =

0
BBBB@

1 �1 �1
�1 1 �1
�1 �1 1

1
CCCCA

Since each row of the coding matrix has one label in common with every

other, randomly reassigning 20% of class assignments only amounts to changing

two thirds that proportion of coding labels. Thus our expected pseudo-loss rate

will be 0:2667, and this leads us to the choice of c = 0:6169.

The training and test loss and error rates for each trial are recorded for a

95% con�dence interval in Tables 3, 4 and 5. Figures 4 and 5 are box plots of

the test error rates in Tables 4 and 5.

24



Data Total Categorical Continuous Binary Class
Set Entries Attributes Attributes Attributes Attributes Classes Distribution

Sine 300 2 0 2 0 2 143,157

KRKP 500 36 2 34 0 2 276,224

Wisconsin 699 9 0 9 0 2 241,458

Credit 500 { { { { 2 {

Wine 178 13 0 13 0 3 59,71,48

Balance 625 4 0 4 0 3 288,49,288

Table 1: Summary table for the data sets used in experiments.

Data Set BrownBoost - Ties - Adaboost

Sine 87 { 8 { 5

KRKP 86 { 3 { 11

Wisconsin 57 { 9 { 34

Credit 67 { 8 { 25

Wine 65 { 13 { 22

Balance 98 { 1 { 1

Table 2: Number of cross-validatory samples on which each algorithm achieved the

lowest test error rate (Total = 100).

25



Adaboost - 0% Class Noise

Data Set Training Loss Training Error Test Loss Test Error

Sine 0:00110 � 0:00084 0:00055 � 0:00042 0:08840 � 0:00765 0:04420 � 0:00383

KRKP 0:06066 � 0:00365 0:03033 � 0:00182 0:10132 � 0:00580 0:05066 � 0:00290

Wisconsin 0:06747 � 0:00334 0:03373 � 0:00167 0:09579 � 0:00511 0:04790 � 0:00255

Credit 0:15647 � 0:00379 0:07823 � 0:00189 0:21084 � 0:01084 0:10542 � 0:00542

Wine 0:00000 � 0:00000 0:00000 � 0:00000 0:06942 � 0:00512 0:04136 � 0:00472

Balance 0:13944 � 0:00235 0:07619 � 0:00164 0:66475 � 0:01315 0:18490 � 0:00516

Table 3: Loss and error rates for Adaboost on the original data sets, 95% con�dence
intervals, 0% class noise.

Adaboost - 20% Class Noise

Data Set Training Loss Training Error Test Loss Test Error

Sine 0:41270 � 0:00674 0:20635 � 0:00337 0:62180 � 0:01646 0:31090 � 0:00823

KRKP 0:43270 � 0:00708 0:21635 � 0:00354 0:53711 � 0:01030 0:26855 � 0:00515

Wisconsin 0:44695 � 0:00439 0:21618 � 0:00309 0:47614 � 0:01067 0:23807 � 0:00533

Credit 0:47820 � 0:00643 0:23910 � 0:00321 0:63193 � 0:02018 0:31596 � 0:01009

Wine 0:19555 � 0:00071 0:08815 � 0:00321 0:46701 � 0:00900 0:28661 � 0:00838

Balance 0:43615 � 0:00394 0:21365 � 0:00299 0:81912 � 0:00579 0:33707 � 0:00605

Table 4: Loss and error rates for Adaboost on the noisy data sets, 95% con�dence

intervals, 20% class noise.

26



Brownboost - 20% Class Noise

Data Set Training Loss Training Error Test Loss Test Error

Sine 0:40613 � 0:00108 0:17335 � 0:00170 0:55601 � 0:01159 0:26130 � 0:00628

KRKP 0:40840 � 0:00050 0:18213 � 0:00135 0:51195 � 0:00815 0:24349 � 0:00448

Wisconsin 0:40025 � 0:00043 0:18824 � 0:00094 0:47419 � 0:00684 0:22961 � 0:00412

Credit 0:39898 � 0:00087 0:17686 � 0:00156 0:59015 � 0:00861 0:28910 � 0:00488

Wine 0:25919 � 0:00132 0:16513 � 0:00279 0:41989 � 0:01038 0:25492 � 0:01056

Balance 0:27005 � 0:00020 0:15832 � 0:00198 0:62421 � 0:00712 0:28029 � 0:00574

Table 5: Loss and error rates for Brownboost on the noisy data sets, 95% con�dence

intervals, 20% class noise.

27



0.
15

0
0.

22
5

0.
30

0
0.

37
5

0.
45

0

Sine_Ada Sine_BrB KRKP_Ada KRKP_BrB Wisc_Ada Wisc_BrB

T
es

t e
rr

or

Figure 4: Box plot of the test error rates in Tables 4 and 5 for Sine, KRKP and
Wisconsin data.

0.
15

0
0.

22
5

0.
30

0
0.

37
5

0.
45

0

Cred_Ada Cred_BrB Wine_Ada Wine_BrB Bal_Ada Bal_BrB

T
es

t e
rr

or

Figure 5: Box plot of the test error rates in Tables 4 and 5 for Credit, Wine and
Balance data.

28



4.3 Discussion of Experimental Results

Broadly speaking, the results of the previous section bear out claims that Ad-

aboost is especially susceptible to class noise, while providing strong evidence

that Brownboost is particularly robust in such situations.

It is immediately evident from the test error rates in Tables 3 and 4 that

the introduction of class noise to real data seriously impairs the generalization

performance of Adaboost. This would appear to tally with the observations made

by Dietterich in [5].

We �nd that Brownboost is much better able to cope with the presence of

noise. The tally counts in Table 2 show that on all the data sets in the experiment,

Brownboost yielded a superior test error rate in the majority of trials. The box{

plots of in Figures 4 and 5 tell us that in two cases, for the Sine and Balance

data sets, there was no overlap between the 95% con�dence intervals on the test

error. This allows us to say with good justi�cation that Brownboost proved the

better option in these particular instances. However, we can see fair evidence

that Brownboost is consistently outperforming Adaboost on all the data sets in

our trials.

We can speculate that the fact that the greatest improvements were seen

in the Sine and Balance data sets may well re
ect the fact that both had a

comparatively very small number of attribute vectors. This may indicate that the

`patchiness' due to over�tting (as seen in Figure 3, panel (4)), is more disparate in

high-dimensional domains, and so has less of an adverse e�ect on generalization

performance.

Of course, in a real situation we would be very unlikely to know the level of

class noise in advance. In our experiments we were able to calculate the value of

c directly given our prior knowledge. It remains to be seen how di�cult it would

prove to estimate c in practice.

29



5 Conclusions and Future Work

In this paper we have shown how the method of Error-Correcting output codes

can be used to derive a natural and workable multi-class extension to the Brown-

boost algorithm. This puts it on a level-footing with Adaboost, for which many

multi-class variants already exist, and greatly broadens its range of potential

applications.

In our experimental trials, we were able to provide good evidence that Brown-

boost does indeed outperform Adaboost in the presence of systematic class noise,

while in all other respects retaining the advantages of that algorithm.

One potential weakness of the Brownboost algorithm at present is its lack of

a cost-sensitive variant. There exist certain classes of problem involving unequal

initial distributions and assymetric loss functions for which the overall error rate

is not necessarily the best measure of loss. For example, a credit-scoring data

set will typically contain fewer than 10% defaults. Thus a learning algorithm

based only on the error rate can achieve a 90% success rate simply by assigning

all examples to class 0. To overcome this, we must reward the algorithm more

for correctly identifying the defaulters. Additionally, we may wish to distinguish

between the two di�erent types of error that the classi�er can make. The in-

correct classi�cation of a good customer is sometimes referred to as a Type 1

error or false negative, while the misclassi�cation of a defaulter is designated a

Type 2 error or false positive. From the lender's point of view, a Type 2 error is

generally more serious in terms of the loss incurred from a bad debt than a Type

1 error, which results only in the loss of potential pro�t. Thus the algorithm

should assign higher loss to Type 2 errors. In practice the lender will often �x

a proportion of the overall population to accept, and then seek to minimize the

Type 2 error rate. Cost-sensitive variants of Adaboost already exist (see [7]),

but so far there is no analogous version of Brownboost.

30



In our experiments, we have thus far tested Brownboost on arti�cial data with

arti�cial class noise, and real data with arti�cial class noise. It remains to be

seen how the algorithm would respond to real data with real class noise, though

it seems very probable that Brownboost would perform well in these situations.

It would also be interesting to know whether Brownboost's ability to learn

a data set to a �xed level of accuracy could be used to account for attribute

noise. In the real world we very rarely encounter data sets with clearly de�ned

class boundaries. From a statistical perspective, we would generally model the

uncertainty at the interface between classes in terms of overlapping distributions.

In the machine learning community, the uncertainty at the overlap is designated

attribute noise, and its e�ects are often ignored. But it is possible that the choice

of parameter c would compensate for this in the same way as class noise. If this

proves to be the case, then Brownboost's built-in ability to avoid over�tting

should prove advantageous in a wide variety of situations.

Acknowledgements

We would like to acknowledge Yoav Freund's work in developing the two-class

version of Brownboost, and the enormous contributions of Yoav Freund and

Robert Schapire to the �eld of boosting in general.

RAM was supported in this work by Shell Research Ltd. and research grant

number 0130322X from the Engineering and Physical Sciences Research Council.

31



Appendix A - Adaboost

The following algorithm is the version of Adaboost used in the experiments of

Section 4, and is equivalent to Adaboost.MH as described in [24].

Algorithm Adaboost (Multi-Class Version)

Inputs:
ECOC Matrix: The k � ` coding matrix M.
Training Set: A set of m labelled examples: T = (xn; yn); n = 1; :::;m where xn 2 Rd and
yn 2 fy1; y2; :::; ykg. Each yn is associated via the matrix M with a set of ` binary labels f�n1 ; :::; �

n
` g,

where �nj 2 f�1; 1g, j = 1; :::; `.

Weights: An m� ` vector of initial weights, say, W1;j(xn; yn) =
1
m`

, n = 1; :::;m, j = 1; :::; `
WeakLearn { A weak learning algorithm.

Do for i = 1; 2; :::; T

1. Binary base learner: Call Weaklearn ` times j = 1; :::; `, each time passing it the
weight distribution de�ned by normalizing Wi;j(xn; yn) for �xed j, and the training
data set alongside the binary labels de�ned by column j of the matrix M.
Multi-class base learner: Call Weaklearn, passing it the training data and
the full set of weights.

Receive from Weaklearn a set of ` hypotheses hi;j(x) which have some advantage
over random guessing

Pm
n=1

P`
j=1 Wi;j (xn;yn)(hi;j(xn)�

n
j )P

m
n=1

P
`
j=1 Wi;j(xn;yn)

= 
i > 0; n = 1; :::;m; j = 1; :::; `.

2. Select �i =
1
2
ln
�
1+
i
1�
i

�
.

3. Weight update: Wi+1;j(xn; yn) =
Wi;j(xn;yn)exp(��i`nj hi;j(xn))P

m
n=1

P
`
j=1 Wi;j(xn;yn)

:

Output Final hypotheses: pj(x) = sign
�PN

i=1 �ihi;j(x)
�
, j = 1; :::; `.

Figure 5: A Multi-class Adaboost Algorithm

32



Appendix B - Theorems and Proofs

The section headings refer to the lemmas, theorems and proofs in [9].

Lemma 1

We can still write our di�erential equation in the form shown, provided we re-

de�ne our index. So for instance, we could sum across l = (n � 1)` + j, for

l = 1; :::; m`. The proof holds as before.

Theorem 2

For a single example and class, within an iteration, we get

d

dt
�(x;j)(t) =

2

c�
W(x;j)(t)

�
hi;j(x)�j

d�

dt
� 1

�

We know that

d�

dt
=

1



:

Plugging in the de�nition of 
, and averaging over all examples and classes,

we get:

d

dt

1

m`

X
(x;y)

X̀
j=1

�(x;j)(t) =
2

cm`�

2
41



X
(x;y)

X̀
j=1

(W(x;j)hi;j(x)�j)�
X
(x;y)

X̀
j=1

W(x;j)(t)

3
5

=
2

cm`�

" P
(x;y)

P`
j=1W(x;j)(t)P

(x;y)

P`
j=1(W(x;j)(t)hi;j(x)�j)

X
(x;y)

X̀
j=1

(W(x;j)(t)hi;j(x)�j)�
X
(x;y)

X̀
j=1

W(x;j)(t)

3
5

= 0:

33



Thus we have shown that Brownboost's key property, the guaranteed �nal

error rate, still holds in the multi-class case for the equivalent pseudo-error.

Theorem 3 and Corollary 4

The proof of this theorem still holds, provided we bear in mind that expectation

is now taken across examples and labels. This means that where previously a

summation was written
Pm

i=1, we now write
Pm

n=1

P`
j=1, and instead of dividing

by m, we divide by m`.

Theorem 5

Begin by considering the potential for a single example and label and remember

to sum as for Theorem 3 when calculating the average potential. Remember to

use the de�nition of 
i as given in 3.5, and to replace hi(x)y with hi(x)�j.

Solving the Di�erential Equation

We can still use either method, provided we make the same modi�cations as for

Theorem 3.

References

[1] UCI Machine Learning Repository. http://www.ics.uci.edu/~mlearn/

MLRepository.html.

[2] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary:

A unifying approach for margin classi�ers. Journal of Machine Learning

Research, 1:113 { 141, 2000.

34



[3] E. Bauer and R. Kohavi. An empirical comparison of voting classi�cation

algorithms: Bagging, boosting and variants. Machine Learning, 36:105 {

142, 1999.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation

and Regression Trees. Wadsworth, U.S., 1984.

[5] T. G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomization.

AI Magazine, 18:97 { 136, 1997.

[6] T. G. Dietterich and G. Bakiri. Solving multi-class problems via error-

correcting output codes. Journal of Arti�cial Intelligence Research, 2:263 {

286, 1995.

[7] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacost: Misclassi�ca-

tion cost-sensitive boosting. In 16th International Conference on Machine

Learning, 1999.

[8] Y. Freund. Boosting a weak learning algorithm by majority. Information

and Computation, 121, 1995.

[9] Y. Freund. An adaptive version of the boost by majority algorithm.Machine

Learning 43, 3:293 { 318, 2001.

[10] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. In Second European Conference on

Computational Learning Theory, 1995.

[11] Y. Freund and R. E. Schapire. A short introduction to boosting. Journal

of Japanese Society for Arti�cial Intelligence, 14:771 { 780, 1999.

[12] J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:

A statistical view of boosting. The Annals of Statistics, 28:337 { 374, 2000.

35



[13] D. J. Hand. Construction and Assessment of Classi�cation Rules. John

Wiley & Sons, Chichester, 1997.

[14] D. J. Hand and W. E. Henley. Statistical classi�cation methods in consumer

credit scoring: A review. Journal of the Royal Statistical Society, Series A,

160:523 { 541, 1997.

[15] R. Hill. A First Course in Coding Theory. Clarendon Press, Oxford, 1986.

[16] W. Jiang. Some results on weakly accurate base learners for boosting regres-

sion and classi�cation. In Proceedings of the First International Workshop

on Multiple Classi�er Systems, pages 87 { 96, 2000.

[17] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear pro-

gramming. SIAM News, 23(5):1 { 18, 1990.

[18] E. Mays, editor. Credit Risk Modeling, Design and Application. GPCo,

1998.

[19] J. R. Quinlan. The e�ect of noise on concept learning. In R. S. Michal-

ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An

Arti�cial Intelligence Approach, volume 2, San Mateo, CA, 1986. Morgan

Kau�mann.

[20] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[21] J. R. Quinlan. Bagging, boosting and c4.5. AAAI/IAAI, 1:725 { 730, 1996.

[22] R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197

{ 227, 1990.

36



[23] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin:

A new explanation for the e�ectiveness of voting methods. The Annals of

Statistics, 26:1651 { 1686, 1998.

[24] R. E. Schapire and Y. Singer. Improved boosting algorithms using

con�dence-rated predictions. Machine Learning, 37:297 { 336, 1999.

[25] L. C. Thomas. A survey of credit and behavioural scoring; forecasting �-

nancial risk of lending to consumers. Journal of Forecasting, 16:149 { 172,

2000.

37


