A slot allocation model with queuing constraints based on the server-always-busy approximation

OR60, 13th September 2018
Jamie Fairbrother Rob Shone Konstantinos Zografos Kevin Glazebrook
1 Introduction

2 Queuing Model

3 Optimization Model

4 Numerical Tests

5 Conclusions
Airport congestion

- In many airports around the world, demand to use the airport infrastructure exceeds available capacity
- This leading to congestion-related delays or infeasible slot scheduling
- The expansion of infrastructure is not possible in the short to medium term and so congestion must be mitigated through the management of demand.
Slot Allocation

- Outside of the US, demand is managed through the allocation of slots under the IATA Worldwide Slot Guidelines.
- A slot is a time interval during which an aircraft can use an airport infrastructure for the purposes of landing or take-off.
- A *coordinator* proposes an initial allocation for slots to airlines based on their requests.
- The quality of a schedule is often measured through the schedule displacement.

<table>
<thead>
<tr>
<th>Requested Slot</th>
<th>Assigned Slot</th>
<th>Schedule Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Airport Capacity

- A key parameter in the problem of allocating slots is the *declared capacity* which limits the number of slots that can be allocated over time.
- The declared capacity should take into consideration physical constraints of an airport:
 - Runway capacity
 - Terminal capacity (number of passengers)
 - Available apron stands

Key Issue

Capacity and allocation of slots should also take into account *operational delays* which arise from *queueing*.
Queuing and Slot Allocation

- [JO15] developed a scheduling algorithm which incorporated queuing constraints:

 - Schedule Optimisation
 - Minimise approximate queue lengths subject to constraints on maximum displacement

 - Evaluate Queueing Delays
 - Calculate expected queue lengths via stochastic model

 - Are the queueing delays acceptable?
 - YES
 - Finish
 - NO
 - Adjust Model
 - Relax constraints on maximum displacement

Issues:
- Bounding expectation does not effectively mitigate against possibility of large queues
- Reducing queue lengths by controlling maximum displacement may lead to more displacement than necessary
Aims

- Development of slot allocation model:
 - Directly incorporate stochastic queuing dynamics into slot allocation optimization model
 - Constrain *probability* of large queues rather than expectation

Warning - under development

We do not implement IATA WSG
1 Introduction
2 Queuing Model
3 Optimization Model
4 Numerical Tests
5 Conclusions
Set-up

- Airport runway usage often modeled as a queueing system [JOW17]
- We suppose that arriving and departing aircraft can be managed separately (e.g. separate runways) and consider queuing delays for arriving aircraft
- We concentrate on the management of aircraft arrivals
- The term *arrival* refers to both the arrival of an aircraft, and the arrival of a customer in the abstract queueing model
• Assume time is discretized into time periods \(\{1, \ldots, T\} \)
• We model arriving aircraft at an airport as the following queueing system:
 \[
 \text{GI}/E_k/1
 \]
• We assume that arrival distributions are known
• Service rate is \(\mu_t \) in time period \(t \), that is service time in period \(t \in T \) is assumed to be distributed as \(\text{Erlang}(k, \mu_t) \)
Probability of long queues

• Let X_t be the length of the queue after time period t
• We would like to construct a schedule with low probability of long queues, that is such that

$$\mathbb{P}(X_t \leq n) \geq p \quad \text{for each } t = 1, \ldots, T$$

where n and $0 < p < 1$ are specified tolerances.
Arrival Distribution Approximation

Let

\[A_t = \text{number of arrivals by end of period } t \]
\[F_m^t = \text{probability that } m \text{ arrives by the end of time period } t \]

Then,

\[\mathbb{E} [A_t] = \sum_m F_m^t \]
\[\text{Var} [A_t] = \sum_m F_m^t (1 - F_m^t) \]

Assuming independent and numerous arrivals, we can approximate \(A_t \) by the central limit theorem:

\[\tilde{A}_t \sim \text{Normal} \left(\mathbb{E} [A_t], \text{Var} [A_t] \right) \]
Departure Distribution Approximation

If the server is always busy, then the number of Erlang service stages completed is Poisson distributed:

\[D_t \sim \text{Poisson} \left(k \sum_{s=1}^{t} \mu_s \right) \]

For the purpose of tractability, we will use the following Normal approximation which is valid for Poisson distributions with a large mean:

\[\tilde{D}_t \sim \text{Normal} \left(k \sum_{s=1}^{t} \mu_s, k \sum_{s=1}^{t} \mu_s \right) \]
SAB Approximation

- Under the assumption that there is a small probability that the queue is ever empty, X_t can be approximated by $kA_t - D_t$
- This is called the Server Always Busy (SAB) approximation
- For tractability, we use our Normal approximations in the SAB approximation

$$\tilde{X}_t = k\tilde{A}_t - \tilde{D}_t$$

- The constraint on long queue probabilities can now be written as follows:

$$\mathbb{P}(X_t \leq n) \geq p$$

$$\Leftrightarrow \Phi \left(\frac{n + 0.5 - \mathbb{E}[\tilde{X}_t]}{\sqrt{\text{Var}[\tilde{X}_t]}} \right) \geq p$$
Deterioration of SAB approximation

- The SAB approximation becomes invalid in periods of low demand:
Conditional Queuing Constraints

• The SAB approximation will grossly underestimate queue lengths in periods of low demand
• We therefore use stronger constraints conditioned on the queue length being zero:

\[P(X_v > n \mid X_u = 0) \leq p \quad \text{for all } 1 \leq u \leq v \leq T \]

• There are \(O(T^2) \) conditional constraints rather than \(O(T) \) constraints
1 Introduction

2 Queuing Model

3 Optimization Model

4 Numerical Tests

5 Conclusions
Set-up

- Define the following set of binary decision variables:

\[x_m^t = \begin{cases}
1 & \text{if request } m \text{ allocated slot } t \\
0 & \text{otherwise}
\end{cases} \]

- And the following set of known parameters:

\[\mu_s = \text{Erlang rate parameter for time period } s \]
for service time distribution

\[q_{uv}^t = \text{probability that request scheduled for time } t \]
arrives between beginning of \(u \) and end of \(v \)
• The parameters q_{uv}^t can be calculated from specified distributions.

• The arrival time distribution of a flight with time slot t is assumed to be

 $\text{Normal}(t - 0.5, \sigma)$

truncated to $[0, T]$.

Arrival Distributions
Auxiliary Variables

- We introduce the auxiliary decision variables F_{uv}^t to represent probability that movement m arrives between beginning of movement u and end of period v:

$$F_{uv}^m = \sum_{s=1}^{T} q_{uv}^s x_m^s \quad \text{for each } m \in \mathcal{M}, (u, v) \in \mathcal{T}^2 \text{ (with } u < v)$$

- Using SAB approximation, the mean and variance of queue lengths at end of time v assuming empty at beginning of time u are:

$$\mu_{X_{uv}} = k \sum_{m \in \mathcal{M}} F_{uv}^t - \sum_{s=u}^{v} \mu_s \quad \text{for } (u, v) \in \mathcal{T}^2 \text{ (with } u < v)$$

$$\Sigma_{X_{uv}} = k^2 \sum_{m \in \mathcal{M}} F_{uv}^t (1 - F_{uv}^t) + \sum_{s=u}^{v} \mu_s \quad \text{for } (u, v) \in \mathcal{T}^2 \text{ (with } u < v)$$
Standard Deviation and Queueing Constraints

- Standard Deviation can be defined with following non-convex quadratic constraints:
 \[\sum_{uv} X \leq (\sigma^X_t)^2 \quad \text{for each} \quad (u, v) \in T^2 \quad \text{(with} \quad u < v) \]

- The queueing constraints are now formulated as follows:
 \[\Phi \left(\frac{(n + 0.5) - \mu^X_{uv}}{\sigma^X_{uv}} \right) \geq p \]
 \[\iff \mu^X_{uv} + \sigma^X_t \Phi^{-1}(1 - p) \leq n + 0.5 \quad \text{for each} \quad (u, v) \in T^2 \quad \text{(with} \quad u < v) \]
Full Model - Notation

<table>
<thead>
<tr>
<th>Sets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{M}</td>
<td>set of slot requests</td>
</tr>
<tr>
<td>$T = {1, \ldots, T}$</td>
<td>set of coordination time intervals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Erlang shape parameter for service time distribution</td>
</tr>
<tr>
<td>μ_s</td>
<td>Erlang rate parameter for time period s for service time distribution</td>
</tr>
<tr>
<td>t_m</td>
<td>requested time for movement m</td>
</tr>
<tr>
<td>q_{uv}^t</td>
<td>probability that request scheduled for time s arrives between beginning of u and end of v</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{mt}</td>
<td>indicates whether movement m is assigned slot t</td>
</tr>
<tr>
<td>F_{uv}^t</td>
<td>probability request m arrives in interval $[u-1, v]$</td>
</tr>
<tr>
<td>μ_{uv}^X</td>
<td>expected queue length at end of time period v given empty queue at beginning of time period u</td>
</tr>
<tr>
<td>Σ_{uv}^X</td>
<td>variance of queue length at end of time period v given empty queue at beginning of time period u</td>
</tr>
<tr>
<td>σ_{uv}^X</td>
<td>standard deviation of queue length at end of time period v given empty queue at beginning of time period u</td>
</tr>
</tbody>
</table>
Full Model - Formulation

minimize \(\sum_{m \in \mathcal{M}} |t - t_m| x^t_m \) \hspace{1cm} \text{(minimize total displacement)}

subject to \(\sum_{t=1}^{T} x^t_m = 1 \) \hspace{1cm} \text{(allocate a slot to every arrival)}

\[F^m_{uv} = \sum_{s=1}^{T} q^s_{uv} x^s_m \] \hspace{1cm} \text{for each } m \in \mathcal{M}, \ (u, v) \in \mathcal{T}^2 \ (\text{with } u < v)

\[\mu^X_{uv} = k \sum_{m \in \mathcal{M}} F^t_{uv} - \sum_{s=u}^{v} \mu_s \] \hspace{1cm} \text{for each } (u, v) \in \mathcal{T}^2 \ (\text{with } u < v)

\[\Sigma^X_{uv} = k^2 \sum_{m \in \mathcal{M}} F^t_{uv} (1 - F^t_{uv}) + \sum_{s=u}^{v} \mu_s \] \hspace{1cm} \text{for each } (u, v) \in \mathcal{T}^2 \ (\text{with } u < v)

\[\Sigma^X_{uv} \leq (\sigma^X_t)^2 \] \hspace{1cm} \text{for each } (u, v) \in \mathcal{T}^2 \ (\text{with } u < v)

\[\mu^X_{uv} + \sigma^X_t \Phi^{-1}(1 - p) \leq n + 0.5 \] \hspace{1cm} \text{for each } (u, v) \in \mathcal{T}^2 \ (\text{with } u < v) \hspace{1cm} \text{(queue length constraint)}

\[\sigma^X_{uv} \geq 0 \] \hspace{1cm} \text{for each } (u, v) \in \mathcal{T}^2 \ (\text{with } u < v)

\[x^t_m \in \{0, 1\} \] \hspace{1cm} \text{for each } m \in \mathcal{M}, \ t \in \mathcal{T}
Remarks

- Due to the non-convex quadratic constraints, this model is a mixed integer non-linear program (MINLP).
- Model would be linear if we did not use σ_{uv}^X decision variables.
1 Introduction

2 Queuing Model

3 Optimization Model

4 Numerical Tests

5 Conclusions
Set-up

- Model solved using SCIP solver [Ach09]
- $T = 12$, $\mu = 4.5$, $\sigma = 0.5$, $k = 3$, $p = 0.8$
- Randomly generated requests:

![Aggregate Demand Graph]
• We solve model for \(n = 12, \ldots, 3 \):
Introduction

Queuing Model

Optimization Model

Numerical Tests

Conclusions
Conclusions

- Proposed new slot scheduling model which incorporates stochastic queueing dynamics
- Model is MINLP and based on “Server always busy” approximation of queues
- Demonstrated model is tractible for small instances
Future Work

- Implement model with arrivals and departures
- Develop more efficient exact and heuristic solution algorithms
- Compare use of model to one which uses deterministic queueing dynamics ([JO15])
- Test model on real request data and investigate trade-off between displacement and operational delay
- Investigate whether model can be incorporated into a model which implements full IATA scheme (e.g. through decomposition)
Bibliography I

T. Achterberg.
Scip: solving constraint integer programs.

A. Jacquillat and A.R. Odoni.
An integrated scheduling and operations approach to airport congestion mitigation.

A. Jacquillat, A.R. Odoni, and M.D. Webster.
Dynamic Control of Runway Configurations and of Arrival and Service Departure Rates at JFK Airport Under Stochastic Queue Conditions.