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Abstract

In numerous settings in areas as diverse as security, ecology, astronomy, and logistics, it is de-

sirable to optimally deploy a limited resource to observe events, which may be modelled as point

data arising according to a Non-homogeneous Poisson process. Increasingly, thanks to develop-

ments in mobile and adaptive technologies, it is possible to update a deployment of such resource

and gather feedback on the quality of multiple actions. Such a capability presents the opportunity to

learn, and with it a classic problem in operations research and machine learning - the exploration-

exploitation dilemma. To perform optimally, how should investigative choices which explore the

value of poorly understood actions and optimising choices which choose actions known to be of a

high value be balanced? Effective techniques exist to resolve this dilemma in simpler settings, but

the Poisson process data brings new challenges.

In this thesis, effective solution methods for the problem of sequentially deploying resource are

developed, via a combination of efficient inference schemes, bespoke optimisation approaches, and

advanced sequential decision-making strategies. Furthermore, extensive theoretical work provides

strong guarantees on the performance of the proposed solution methods and an understanding of

the challenges of this problem and more complex extensions.

In particular, Upper Confidence Bound and Thompson Sampling (TS) approaches are derived

for combinatorial and continuum-armed bandit versions of the problem, with accompanying analy-

sis displaying that the regret of the approaches is of optimal order. A broader understanding of the
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performance of TS based on non-parametric models for smooth reward functions is developed, and

new posterior contraction results for the Gaussian Cox Process, a popular Bayesian non-parametric

model of point data, are derived. These results point to effective strategies for more challenging

variants of the event detection problem, and more generally advance the understanding of bandit

decision-making with complex data structures.
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Chapter 1

Introduction

With today’s advanced sensor, drone, and satellite technology we are increasingly able to detect

the time and location of interesting events. This capability is useful in many applications such as

ecology, defence, astronomy, logistics, and telecommunications.

Camera traps are used by ecologists to record sightings of endangered species, or document

the locations of unusual behaviours. Astronomers use satellite technology to detect signals that

are indicative of cosmic activity or unknown planets. Supply chain managers are reliant on sensor

technology to detect disruptions in the flow of goods. Military and law enforcement officers use

drone technology to monitor criminal activity such as smuggling or illegal fishing, and to covertly

gather intelligence.

In such settings, efficiency and accuracy of data collection are often paramount. It can be

extremely costly to deploy additional unnecessary resource, and equally every event not detected

can represent a substantial financial loss, information loss, or security risk. Therefore the case for

making optimal decisions with regards to event detection is a strong one.

One may naturally ask “What is an optimal decision?” That will of course vary depending on

one’s objectives and available actions. The ecologist may be happy to observe a subset of the
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population so long as the observations they make are of high quality, while the military objective

may be to minimise the probability of failing to detect an adversary. The supply-chain manager may

choose how many sensors to deploy on different links of a supply network, while the astronomer’s

decision may be on what hours of the day to turn on their expensive technology. In any of the

applications the decision may be a one-off or an adaptable choice that can be revised every hour or

day as more data is collected. Each combination of these factors may lead to an interesting problem

requiring its own bespoke solution.

In this thesis, we will focus on a particular class of problems in optimal decision making for

event detection which poses interesting, new, statistical and mathematical challenges and is relevant

in many of the aforementioned applications.

1.1 Event Detection Maximisation

We consider event detection from the point of view of a decision-maker who has an objective

of maximising (a function of) the number of events detected in a region R ⊂ Rd over some time

window [0, T ]. In formulating this objective we will assume that the detection of an event is a

binary outcome - an event which occurs is either detected or not and there is no notion of quality

of a detection.

We will suppose that the decision-maker is tasked with choosing an optimal allocation of search

resources to maximise event detection. These resources may take numerous forms, for instance

camera-equipped drones, mobile sensors, or human agents. Equally the events may represent the

locations where endangered species cross a camera trap, sites where goods are smuggled over

a border, times when calls arrive to a call centre etc.. The problem formulation is general and

deliberately agnostic to the specific application.

Events will arise stochastically, and be represented as point data on the observable region
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R. We will assume that the distribution of events follows a non-homogeneous Poisson process,

parametrised by a non-negative rate function λ : R → R+. The key consequence of this is that in

any subregion S ⊂ R, the number of events occurring per unit time follows a Poisson distribution

with mean
∫
S
λ(x)dx - the integral of the rate over that subregion.

The decision-maker will have access to an action setA. This defines the possible allocations of

resource the decision-maker may select. An action a ∈ A indexes a subset Sa of S, and choosing

action a is interpreted as deploying resource to search for events in the subset Sa. An action a will

have value, given by its expected reward per unit time r(a), where r : A → R is called a reward

function.

The reward function r may take numerous forms, and at this stage will not assume any particular

one, however some examples are useful for exposition. In the model of Chapter 5, r is specified as

r(a) =

∫
Sa

λ(x)dx−
∫
Sa

Cdx

for some cost C > 0. Here the reward of an action a is the expected number of events occurring in

Sa minus a cost of C per unit area of Sa. In Chapter 4, r is modelled as

r(a) = ϕ(a)

∫
Sa

λ(x)dx

where ϕ : A → [0, 1] is a decreasing function of the size of Sa and captures a phenomenon where

searching a larger area decreases the probability of successfully detecting events.

If λ, r, and A are known by the decision-maker, they have full knowledge of the expected

reward of all their available actions. Determining an optimal action is then a matter of solving the

optimisation problem

a∗ ∈ argmax
a∈A

r(a).

An action a∗ should then be deployed throughout the time window [0, T ] to maximise reward. Com-
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monly however, the decision-maker will have some uncertainty about λ, since their understanding

of λ is likely derived from some finite data. This makes the event detection maximisation task

much more challenging.

1.2 Sequential Event Detection Maximisation

When there is uncertainty about the form of λ, the optimal action a∗ may not be obvious. The

approach the decision-maker takes in the face of this uncertainty will depend on their flexibility to

alter their selected action.

If the decision-maker is bound to selecting a single deployment of resource and using that

throughout [0, T ], then they have two options broadly speaking. They may choose to gamble on

their current information about λ (previously observed data, expert opinions etc.), and use it to form

an estimate of the function λ and choose an action which is optimal with respect to this estimate.

This approach maximises the expected reward with respect to the information available, but may

risk choosing a highly suboptimal action if the uncertainty is large. Alternatively they may prefer

a robust decision which is perhaps not optimal for any likely form of λ but performs reasonably

well across many of the possible forms. Such an approach insures against the uncertainty but does

not attempt to maximise the expected reward. Due to the uncertainty, both methods are unlikely

to identify an optimal action, and will therefore incur some gap between their reward and the best

possible reward, which is proportional to T .

If the decision-maker has the capacity to change their action as data is observed, they have the

opportunity to improve their selected action over time and minimize the gap between their reward

and the best possible. This is because the incoming data - locations of detected events - allow the

decision-maker to increase their confidence in the form of λ and thus reduce their uncertainty in

which actions are optimal. In other words, through the feedback on their actions, the decision-
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maker may learn about the value of actions.

All actions are not, however, created equal, and the success of the decision-maker will depend

on which actions are selected in what sequence. The decision-maker will gain the most information

by playing a mixture of actions, exploring the rate function across the region R and reducing

uncertainty across the entire reward function. However, such an approach is unlikely to maximise

reward, since many of the actions which are being trialled may be highly suboptimal - substantially

increasing the gap between the obtained reward the best possible. The decision-maker must strike

a balance between actions which contribute to learning the reward function (helping to identify

actions with high reward and rule out those with low rewards) and actions which contribute to

the maximisation of reward. This trade-off arises in many sequential problems and is commonly

referred to as an exploration-exploitation trade-off.

It is the sequential version of the event detection maximisation problem that we will consider in

this thesis. Specifically, we consider a round based set-up where at time points t ∈ {1, . . . , T} the

decision-maker selects an action at ∈ A, they then observe event locations and receive a reward.

The event locations can be used to update the decision-maker’s beliefs about λ before they select

an action at the next time step.

This sequential variant of the problem therefore poses challenges to the decision-maker in a

number of dimensions. A strategy to solve the sequential event detection maximisation problem

consists of three main components:

• Inference Scheme: A stochastic model of the generating process for events and detection

probabilities under given actions, coupled with a statistical method for estimating the param-

eters of this model given data. Consideration should be given to the efficiency of the method,

its statistical properties (such as bias, variance etc.), and how readily one can quantify uncer-

tainty in the estimates.

• Optimisation Approach: An approach which can identify an optimal action a∗ given either
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full knowledge of λ or an estimate. The accuracy and expected complexity of the optimi-

sation are important considerations, as any method for the sequential problem may require

frequent use of the optimisation approach.

• Approach to balancing exploration and exploitation: A decision-making rule, which

utilises the inference and optimisation techniques to evaluate actions in terms of their po-

tential for information gain and reward maximisation and choose an action which strikes the

appropriate balance of exploration and exploitation at a given time.

Designing and analysing solution strategies which effectively combine these three components has

been the principal research aim of this PhD project.

The contributions of the research in this thesis are threefold. Firstly, we have provided (to the

best of our knowledge) the first concrete models for sequential event detection problems, which

arise in numerous contexts. Secondly, and perhaps most importantly, we have proposed effective

algorithms for sequential event detection problems, accompanied with theoretical and empirical ev-

idence of their efficacy. Finally, through deriving theoretical results for the sequential event detec-

tion problem we have contributed to the multi-armed bandit and Bayesian nonparametric research

communities. We have advanced the understanding of the efficacy of popular bandit algorithms on

complex problems, and derived new results on the finite time properties of Bayesian models of the

Poisson process.

1.3 Thesis Outline

The thesis considers the analysis of algorithms for the sequential event detection maximisation

problem under various assumptions and the development of tools to aid in this analysis. The main

material is presented in the following six chapters, which contain a review of related literature

(Chapters 2 and 3), new research which has been published or submitted for publication (Chapters
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4, 5, and 7), and results to be developed into a research publication in the future (Chapter 6). Finally

Chapter 8 concludes with a summary and discussion of future work. Each main chapter is briefly

summarised below. We will discuss the contributions of Chapters 4, 5, 6, and 7 in more detail in

Section 3.3 once we have introduced further relevant concepts in Chapters 2 and 3.

Chapter 2: Poisson Processes

The Nonhomogeneous Poisson Process is the assumed underlying stochastic model throughout

the thesis. This chapter introduces the model and discusses the practicalities of inference thereupon.

We introduce simple piecewise constant estimators, frequentist and Bayesian, relevant to Chapters

4 and 5; and the Gaussian Cox Process family of models which is the topic of Chapter 7.

Chapter 3: Multi-armed Bandits and Online Learning

This chapter gives a review of multi-armed bandits and related sequential decision making

problems. We discuss a number of increasingly complex problems, the best achievable performance

for these problems and introduce families of solution approaches. The problems considered in

Chapters 4, and 5 are variants of multi-armed bandits with Poisson (process) rewards and we will

draw on the solution methods described in this chapter to tackle them.

Chapter 4: Combinatorial Multi Armed Bandit Model of Sequential Event

Detection

A version of this chapter has been submitted for publication with co-authors David S. Leslie,

Kevin Glazebrook, Roberto Szechtman, and Adam Letchford.

This chapter considers the sequential event detection maximisation problem with a discretised

action set defined over a grid of cells along a line. Here, the number of cells searched within
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a round affects the probability of successfully detecting events. We formulate the problem as a

combinatorial multi-armed bandit and present upper confidence bound and Thompson sampling

solution approaches to the problem. We provide a theoretical analysis of the upper confidence

bound algorithm, demonstrating it to achieve performance of optimal order, and show the efficacy

of both approaches in an empirical study.

Chapter 5: Continuum Armed Bandit Model of Sequential Event Detection

A version of this chapter has been published in 2019 in the Proceedings of the 36th International

Conference on Machine Learning. It was written with co-authors Alexis Boukouvalas, Ryan-Rhys

Griffiths, David S. Leslie, Sattar Vakili, and Enrique Munoz de Cote.

This chapter considers the sequential event detection maximisation problem in a continuous

action space. We propose a progressive discretisation approach where the size of the action space

and the complexity of the inference model are increased as more data becomes available. We design

a novel Thompson Sampling approach for this problem and derive theoretical guarantees in terms

of Bayesian performance measures.

Chapter 6: Posterior Contraction Rates for Gaussian Cox Processes with

Non-Identically Distributed Data

A version of this chapter has been submitted for publication with co-author David S. Leslie.

This chapter considers Gaussian Cox processes which are doubly stochastic versions of the

Poisson process. Gaussian Cox processes are a useful and flexible model for non-parametric Pois-

son process inference. In particular, we are concerned with the rate of contraction of posterior

distributions under these models. The work in this chapter provides the first bounds on these poste-

rior distributions under non-identically distributed observations. In particular, this gives results on
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the rate of contraction of posteriors when different subsets of an observable region are sampled at

different frequencies.

Chapter 7: Thompson Sampling for Lipschitz Bandits

In this chapter we analyse the performance of Thompson Sampling for more general sequential

decision making problems with smooth reward functions. We provide performance guarantees (in

the form of upper bounds on Bayesian regret) for the case where the reward function may have any

number of Lipschitz smooth derivatives. These results apply to a wide range of problems, and are

useful benchmarks for analysing the most advanced approaches for the sequential decision making

problem.



Chapter 2

Poisson Processes

This section is devoted to a discussion of the Poisson process model, which is the assumed

underlying stochastic model for point data throughout the thesis. In Section 2.1 we introduce the

model and some basic schemes for inference. We devote Section 2.2 to a discussion of Gaussian

Cox Processes, a nonparametric Bayesian version of Poisson processes with a Gaussian Process

prior on the functional parameter. Gaussian Cox Processes are important in this thesis as the focus

of Chapter 6 is the posterior contraction of these models.

2.1 Nonhomogeneous Poisson Process

The Nonhomogeneous Poisson Process (NHPP) (see e.g. Kingman (2005)) is a stochastic

model of point process data. It is parameterised by a non-negative rate function or intensity func-

tion λ : X → R+ on some observable region X ⊆ Rd for d ∈ N. A special case of the NHPP is

that with constant rate function λ, called a homogeneous Poisson process (HPP). A realisation of

an NHPP is a counting measure N on X with the following two properties.

1. For any compact set B ⊆ X the number of points, N(B), falling in the set B is Poisson

10
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distributed with mean
∫
B
λ(x)dx.

2. The random variables N(A), N(B) are independent for any disjoint sets A,B ⊂ X .

Commonly, a realisation of an NHPP is represented simply by the points where the counting

process is incremented. For the NHPP with rate λ on X , the likelihood for any set of points

{xk}Kk=1 ∈ X is given as

L({xk}Kk=1|λ) = exp

(
−
∫
X
dxλ(x)

) K∏
k=1

λ(xk). (2.1.1)

In Figure 2.1.1 a realisation of an NHPP on the unit interval is visualised. The intensity function is

given by the red curve (in this case λ(x) = 30(4x5 − 3x4 + x3 − 2x2 + 1) has been used) and the

black dots represent the location of events in a single realisation of the process. Observe that there

are more events occurring where the intensity function is large, and fewer where its value is lower.

Poisson process models are widely used in numerous applications (such as ecology (Heikkinen

and Arjas, 1999), queueing theory (Saaty, 1961), epidemiology (Diggle et al., 2013), etc.), because

of their flexibility and attractive properties such as the superposition property that the union of

events from multiple independent Poisson processes is also distributed according to a Poisson pro-

cess. There is a large literature surrounding methods for inference on the rate function λ. In the

remainder of this chapter we review some of the most important approaches.

2.1.1 Parametric Inference Methods

Without assumptions on λ besides the minimal requirement that it is a non-negative, real-valued

function on X , inference can be understandably challenging. A popular approach therefore is to

assume that λ lies in some smaller class of parametric functions and reduce the task of performing

inference on λ to performing inference on the parameters by which it is assumed to be defined.
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Figure 2.1.1: Example of a Non-homogeneous Poisson process in one-dimension. The intensity
function is given in red, and black dots represent the location of events in a single sample.
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Parametric methods are generally centred around the use of Exponential Polynomial or Expo-

nential Polynomial Trigonometric models. An Exponential Polynomial (EP) rate function (Lewis

and Shedler, 1976) is one of the form (2.1.2), while an Exponential Polynomial Trigonometric

(EPT) rate function (Kuhl et al., 1997) includes the extra terms in expression (2.1.3):

λ(x) = exp

( r∑
m=1

αmx
m

)
, (2.1.2)

λ(x) = exp

( r∑
m=1

αmx
m +

p∑
k=1

γk sin(ωkx+ φk)

)
. (2.1.3)

Both of these classes of model are popular because the EP and EPT functions are convenient means

of modelling any continuous function arbitrarily closely, similarly to a Fourier or wavelet transfor-

mation.

The principal issue with these models, however, is that parameter estimation is neither a fast nor

automatic process. For the more flexible, EPT rate function, the number of trigonometric compo-

nents must be determined either from prior information on the system or by spectral analysis. The

degree of the polynomial component in both models must typically be determined by Likelihood

Ratio testing and then the Maximum Likelihood Estimates are determined by Newton-Raphson

search. This Newton-Raphson search will also only be successful if the initial estimates are suit-

ably close to the values giving the optimal fit. Kuhl and Wilson (2000) offer a method to fit via

Ordinary or Weighted Least Squares which offers some saving on computation, but the process is

still far from automatic, and uncertainty quantification is not straightforward.

2.1.2 Non-parametric Inference Methods

Simpler non-parametric methods are often popular choices. A common approach is to model λ

as a piecewise combination of very simple functions, with the inbuilt assumption that the behaviour
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may change abruptly at certain given points or knots (so named because the different functions are

tied together at these points). For instance, an assumption that λ is piecewise constant,

λ(x) =
M∑
m=1

CmI{km−1 < x ≤ km}, x ∈ X ,

for some constant levels Cm > 0, m ≤M , knot locations k0, . . . , kM , or piecewise linear,

λ(x) =
M∑
m=1

(Cm +Dmx)I{km−1 < x ≤ km}, x ∈ X ,

for suitable Cm, Dm ∈ R, m ≤M or piecewise polynomial (Kao and Chang, 1988),

λ(x) =
M∑
m=1

A∑
a=0

Cm,ax
aI{km−1 < x ≤ km}, x ∈ X

for suitable Cm,a ∈ R,m ≤M,a ≤ A, may be made. An issue with these models however is that if

λ does not truly fit the assumed piecewise form, there will be an unavoidable bias to the estimation.

Gugushvili et al. (2018) propose an adaptive Bayesian form of the piecewise constant model,

where the number of knots is allowed to slowly increase as the number of observations increases.

The unavoidable bias due to enforcing a piecewise constant structure will then decrease since the

model becomes gradually more flexible. The simplest form of their model assumes independence

across the piecewise sections and is specified as follows for X = [0, 1].

Consider t ∈ N realisations of an NHPP having been observed, consisting for mj points

{Xl,j}mll=1, l ≤ t, and partition X into Kt bins of equal width K−1
t . For k ∈ {1, . . . , Kt}, let

Bk,t =

[
k − 1

Kt

,
k

Kt

)
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refer to the kth bin. We then model λ as being of the form

λt(x) =
Kt∑
k=1

I{x ∈ Bk,t}ψk,t, with

ψk,t ∼ Gamma(α +Hk,t, β + t/Kt) ∀k ∈ {1, . . . Kt}

where the ψ parameters all are independent, and Hk,t =
∑t

j=1

∑mj
l=1 I{Xj,l ∈ Bk,t} gives the

number of events observed over the t realisations in a bin k, and α, β are positive hyperparameters

of the conjugate Gamma prior. In Chapter 5, we utilise a version of this model where the Gamma

prior (and thus posterior) is replaced with a Truncated Gamma prior. This is an assumption which

permits theoretical analysis. Gugushvili et al. prove that if Kt : N→ N is defined to be o(t1/(2h+1))

and λ is a h-Hölder continuous function, then the posterior distribution will contract around λ at

the optimal rate.

A second version of the model is also proposed, where the parameters ψk,t are not independent,

but jointly are a realisation of a Gamma Markov Chain. While, this second version is useful for cap-

turing the realistic scenario where λ(x) has some spatial structure, it currently lacks the theoretical

guarantees of the independent model.

In Figure 2.1.2 we illustrate the progression of this model over various values of t. A Gamma

prior with shape parameter α = 30 and scale parameter β = 1 has been used for each ψ parameter.

We see that with few observations the prior dominates, but as the number of observed realisations

increases, the posterior begins to concentrate around the true rate function.

In Chapter 5 we make use of this model in an approach to the sequential event detection prob-

lem. It is particularly suitable because of its computational efficiency, easy quantification of uncer-

tainty through the tractable posterior distributions, and the simplicity of the model lends itself to

tractable analysis of the performance of the resulting algorithm.
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Figure 2.1.2: Evolution of the estimate under the model of Gugushvili et al. (2018) as the number
of observed realisations increases. The red line plots the true intensity function, solid blue lines
show the posterior mean and dashed blue lines indicate a 95% credible interval. Upper left: t = 1
and 8 bins. Upper right: t = 8 and 16 bins. Lower left: t = 64 and 32 bins. Lower right: t = 512
and 64 bins.
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2.2 Gaussian Cox Processes

The Cox Process (Cox, 1955) is a doubly stochastic model of the Nonhomogeneous Poisson

process, where the rate function, λ, is modelled as another stochastic process. Of particular interest

is the Gaussian Cox Process (GCP) family of models where λ is modelled a priori as sample from

a transformation of a Gaussian Process (GP) (see e.g. Williams and Rasmussen (2006)). A GP is

a collection of random variables, any finite number of which have a joint Gaussian distribution. A

GP on X can then be specified by a mean function m : X → R and covariance kernel k : X 2 →

R+. We may then model a real process g(x) as a GP with mean function m(x) = E(g(x)) and

covariance function k(x, x′) = E((g(x)−m(x))(g(x′)−m(x′))). We write

g ∼ GP(m, k),

to represent this model. It is a common choice to fix the mean function to zero, and let all features

of the function be captured through the covariance function.

Three examples of GCPs have been studied extensively. The Log Gaussian Cox Process (LGCP)

(Rathbun and Cressie, 1994) and (Møller et al., 1998) involves modelling λ as the exponential trans-

formation of a zero-mean GP, g,

λ(x) = exp(g(x)), x ∈ X .

The Sigmoidal Gaussian Cox Process (SGCP) (Adams et al., 2009) involves modelling λ as a

logistic transformation of g

λ(x) = λ∗σ(g(x)) = λ∗(1 + eg(x))−1, x ∈ X ,

where λ∗ > 0 is an additional hyperparameter modelling the maximum of λ. Finally, under the
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Quadratic Gaussian Cox Process (QGCP) (Lloyd et al., 2015) λ is modelled as the square of g

λ(x) = (g(x))2, x ∈ X .

Other variants are possible, but the key factor is that the transformation of the GP must ensure λ

only returns values in R+, otherwise it would not be interpretable as an NHPP intensity function.

Combining a GP prior and link function τ (such that we model λ(x) = τ(g(x))) with the like-

lihood (2.1.1) of the NHPP, gives rise to following posterior on g, given observed events {xk}Kk=1

π(g|{xk}Kk=1) =

GP(g) exp

(
−
∫
X τ(g(x))dx

)∏K
k=1 τ(g(xk)))∫

GP(g) exp

(
−
∫
X τ(g(x))dx

)∏K
k=1 τ(g(xk)))dg

.

This posterior distribution is said to be doubly intractable (Murray et al., 2006) due to the presence

of the intractable integral over the observable region X on the numerator and over the GP g on the

denominator. This poses a particular challenge to inference with GCPs.

2.2.1 Inference with Gaussian Cox Processes

Early approaches to inference with GCPs relied on making approximations to the true posterior.

Diggle (1985) uses kernel densities, and Rathbun and Cressie (1994) and Møller et al. (1998) pro-

pose approximations with finite-dimensional proxy distributions for which inference is tractable.

Adams et al. (2009) introduced the first approach that allowed Bayesian inference to be per-

formed on the exact posterior, specifically in the SGCP setting. They achieved this by designing

a Markov Chain Monte Carlo scheme operating on an augemented version of the data. Here, the

augmentation consists of adding additional events to the observed data, to create a sample represen-

tative of a homogeneous Poisson process, for which inference is tractable. The method has since
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been improved by Teh and Rao (2011) and Gunter et al. (2014) but carries a large computational

complexity.

Recently, the literature has turned back towards approximate methods. Variational inference or

Variational Bayes (see e.g. Blei et al. (2017)) is a method designed to offer substantial speed-up

for complex Bayesian inference procedures at the cost of introducing some approximation bias.

Instead of maximising the log-likelihood, which may be too expensive for complex posteriors,

some lower bound (for which inference is more tractable) is maximised. Hensman et al. (2015)

explore variational inference for the LGCP model, Lloyd et al. (2015) and John and Hensman

(2018) provide variational methods for the QGCP, and Donner and Opper (2018) and Aglietti et al.

(2019) provide methods for the SGCP model.

While variational inference methods are attractive since their speed-ups can make inference on

large datasets feasible, a major disadvantage is the lack of theoretical understanding around the

quality of approximations provided by these approaches. Recently some progress has been made

to understand these methods (see e.g. Alquier et al. (2016)) but the knowledge around variational

inference is yet to catch up with the understanding of exact inference. A further open question

is whether the approximation error of the variational approaches is sufficiently smaller (or indeed

is smaller at all) than the approximation error of the simpler non-Cox process methods, to justify

using these more computationally efficient methods.



Chapter 3

Multi-armed Bandits and Online Learning

The multi-armed bandit (MAB) problem, first proposed by Thompson (1933) and later popu-

larised by Robbins (1952), is a simple but powerful model of sequential decision making problems.

The problem and a range of more complex variants were mainly studied in the Operations Research

and Statistics communities throughout the latter half of the 20th century. More recently they have

enjoyed a surge in interest from the Computer Science and Machine Learning fields, due to their

applications in online advertising. This section consists of a discussion of these problems and the

solution methods that have been developed for them.

3.1 Bandit Problems

3.1.1 K-armed Bandits

The K-armed bandit problem is the most useful starting point for our review of online learning

problems. In this problem, which can be originally attributed to Thompson (1933), a decision-

maker is faced with a set of K potential actions (or arms referring to arms of a slot machine or

“bandit” which inspired the problem’s name). In each of a sequence of T ∈ N rounds indexed

20
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by t = 1, . . . , T , the decision-maker must choose an action At ∈ {1, ..., K} ≡ [K] to take or

“play”. The choice of action At = k in round t ∈ [T ] grants the decision maker a stochastic reward

Xt = Xk,t ∈ R.

The decision-maker’s aim is to maximise their cumulative reward

Reward(T ) =
T∑
t=1

Xt

over T rounds, in expectation, by optimising their choice of actions. This task is complicated by

uncertainty. Each action k ∈ [K] is associated with a distribution νk with mean µk. For each

action, rewards Xk,t, t ∈ [T ] are independent identically distributed samples from the respective

νk. The decision-maker knows neither the distributions ν = (ν1, ...νK) nor their expected values

µ = (µ1, ..., µK).

As such, in order to make any serious attempt at maximising expected reward, the decision-

maker must choose actions strategically, balancing those which contribute to learning the unknown

distributions and those which contribute to the collection of large rewards. We often refer to these

two types of action as exploratory and exploitative actions, and say that the K-armed bandit model

is an example of an exploration-exploitation dilemma. The dilemma being to decide how much

exploration and how much exploitation to undertake.

Should the decision-maker spend too much of their time exploring, they will have gained a

lot of information but not maximised their reward as they spent too much time learning about

suboptimal actions. Should the decision-maker spend too much of their time exploiting, they may

fail to maximise their rewards due to focussing on actions which are not truly optimal, since they

lacked the information to realise this.

Beyond the formulation of this simple model, much of the literature on multi-armed bandits has

focussed on the design and analysis of policies or algorithms. A policy (or algorithm) is a rule for

selecting actions. Given a history of actions and observed rewards Ht−1 = {A1, X1, . . . , At−1, Xt−1}
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over t− 1 rounds, a policy prescribes an action At to be selected in the following timestep t. This

mapping from Ht−1 to At may be deterministic or stochastic. In Section 3.2 we outline popular

policies for K-armed and more complex bandit problems.

While the decision-maker’s aim is to maximise their expected cumulative reward, an equivalent

performance measure is typically considered within the literature. The expected pseudoregret,

typically referred to simply as regret, of a policy quantifies the difference between the expected

reward obtained by an oracle policy that repeatedly plays the optimal arm, and the expected reward

obtained by the policy. It may be written as follows:

Reg(T ) = Tµ∗ −
T∑
t=1

E(XAt,t), (3.1.1)

where µ∗ = maxk∈[K] µk is the maximal expectation among the arms. Notice, that minimising

regret is equivalent to maximising expected cumulative reward. Theoretical analysis of regret is

typically more feasible than of reward, which is the primary reason we consider regret as our

performance measure.

Theoretical assessment of the quality of an algorithm can be conducted by considering the rate

at which its regret grows. As the formula for regret (3.1.1) involves many complicated stochastic

dependencies (since At is dependent on Ht−1 for t > 1) it is typically infeasible to compute any

closed form value for regret, but upper and lower bounds on regret can be very informative.

The performance of different policies will vary, and typically our understanding of this per-

formance will be expressed through an upper bound on regret - see Section 3.2 for more details.

However, all problems have a best achievable performance (in terms of the asymptotic scaling of

regret) which can be derived independently of particular algorithms. For a particular instance of

the K-armed bandit problem, given by univariate reward distributions ν with expectations µ, Lai

and Robbins (1985) demonstrated that the best achievable expected regret is bounded below by an
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expression that is logarithmic in the horizon of the problem. They have the following asymptotic

result,

lim
T→∞

inf
Reg(T )

log(T )
≥

∑
k:µk<µ∗

µ∗ − µk
Kinf(νk, µ∗)

(3.1.2)

which holds for (so-called) consistent policies. A consistent policy (sometimes called a uniformly

good policy) is one that satisfies limT→∞Reg(T )/Tα = 0 for all α > 0. The quantity

Kinf(ν, µ) = inf{KL(ν, ν ′) : ν ′ ∈ D and E(ν ′) > µ} (3.1.3)

captures the difficulty of the problem. The quantity Kinf (ν, µ) is the minimum KL-divergence

between an arm distribution ν and distributions with expectation greater than µ in a distributional

family D to which all reward distributions are assumed to belong. The result in (??) was later

extended to multi-parameter reward distributions by Burnetas and Katehakis (1997). An algorithm

is said to be asymptotically order-optimal if it can be shown that its regret satisfies

lim
T→∞

inf
Reg(T )

log(T )
≤ C

for some constant C > 0 and asymptotically optimal if the constant C is
∑

k:µk<µ∗
µ∗−µk

Kinf(νk,µ∗)
, the

constant in the lower bound (3.1.2). In Section 3.2 we will discuss certain asymptotically order-

optimal and optimal policies.

Stochastic bandits have applications in many real world problems where decision-makers wish

to learn the optimal action among several options. In clinical trials, bandit arms may model poten-

tial treatments, with rewards being the success or failure of the treatment (Berry, 1978; Berry and

Eick, 1995; Villar et al., 2015; Williamson et al., 2017). In website optimisation, web designers

may model different content or aesthetic choices as bandit arms and model the problem of adapt-

ing these to maximise the clickthrough rate as a bandit problem (Hauser et al., 2009). Similarly,
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advertisers, news sites or search engines may model the problem of which recommendations to

present to users as a bandit problem (Li et al., 2010; Lu et al., 2010; Li et al., 2016). There are

further applications in queueing control, optimal patrolling, resource planning, inventory routing,

optimal exploration, and a growing list of other applications - the references above are illustrative

but certainly not exhaustive.

In the remainder of this section we introduce more complex learning problems which have

arisen as extensions of the K-armed bandit model.

3.1.2 Combinatorial Multi-armed Bandits

The Combinatorial Multi-armed Bandit (CMAB) problem is an extension of the K-armed ban-

dit to the setting where multiple actions can be selected simultaneously. Study of this variant of the

problem can be traced back to Anantharam et al. (1987). A more general version of the problem is

formalised by Chen et al. (2013).

An instance of the CMAB problem is specified by K reward distributions ν (as in the K-armed

bandit case), an action set S ⊂ P([K]), and a stochastic reward function R : S → R. Here P([K])

denotes the power set of [K]. The action set contains the combinations of arms that may be played

simultaneously in a single round. The reward function maps from the observations from individual

arms to an overall reward obtained by the decision-maker for a single round.

The problem setup is as follows. In each round t ∈ [T ], the decision-maker selects a set of arms

St ∈ S. Observations Xk,t are generated for all k ∈ St and a reward R(St) is received. In a setting

called semi-bandit feedback the decision-maker sees the values Xk,t for all k ∈ St and R(St). In

an alternative setting called bandit feedback the decision-maker sees only the reward value R(St).

The bandit feedback version of the CMAB problem is naturally more challenging.

As in the K-armed bandit problem, the decision-maker’s objective is to minimise regret. Let

r(S) = E(R(S)) denote the expected reward of an action S ∈ S. The regret for a CMAB problem
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can then be written

Reg(T ) = T max
S∈S

r(S)−
T∑
t=1

E(R(St)).

A special case of the CMAB is the multiple play bandit where the reward function is the sum

of the base arm rewards, R(St) =
∑

k∈St Xk,t. If reward distributions are supported only on R+

then the problem is trivial if is possible to play all the arms simultaneously. In such a case the

optimal action is clearly to play all arms simultaneously. For this reason, the multiple play bandit is

typically studied under the constraint that at most m < K arms can be played at once, i.e. |S| ≤ m

∀S ∈ S. Combes et al. (2015) demonstrate that regret also has a logarithmic order lower bound for

the multiple play bandit, specifically,

lim
T→∞

inf
Reg(T )

log(T )
≥ c(µ) (3.1.4)

where c(µ) is defined as the solution to an optimisation problem, involving the mean parameters

and, again the KL-divergence function. Kveton et al. (2014) show a similar result for a CMAB with

linear reward function. The problem of determining a non-trivial lower bound (regret of zero is a

always a trivial lower bound) for more general reward functions is technically-speaking still open,

however since there exist algorithms with logarithmic order upper bounds it is generally understood

that the lower bound is logarithmic order for these problems also.

The CMAB problem has applications in many of the same areas as the K-armed bandit prob-

lem. For instance in web advertising, decisions may involve selecting multiple adverts to show at

once, or optimising over several aesthetic features of a website simultaneously. In clincial trials,

the MAB model where a single arm is selected for each patient may be inappropriate for mod-

elling combination therapies where several drugs are used simultaneously. In Chapter 4 we use a

CMAB problem to model the sequential event detection problem, letting arms represent subsets of

the observable region and allowing the decision-maker to select several at once.
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Some authors have considered a variant of the CMAB where playing a subset of arms S may

trigger a play from further arms not in S, and an additional contribution to the reward from these

arms. This variant, called the CMAB with probabilistically triggered arms is studied by Chen et al.

(2016b), and Wang and Chen (2018). This version of the CMAB is used as a model of problems in

influence maximisation, where advertisers select which members of a social network to target with

information to best spread it through a group.

3.1.3 Continuum armed Bandits

The continuum-armed bandit (CAB) problem (also known as the X -armed bandit or infinitely

many armed bandit) is relevant to Chapter 5. In a continuum armed bandit problem, the set of

available actions is generalised to some compact set A ⊂ Rd of (potentially infinitely many) arms.

Often, results are presented for A = [0, 1]d, with d ∈ N.

The decision-maker sequentially selects single actions at ∈ A over rounds t ∈ [T ]. The reward

r(at) for selecting action at ∈ A in round t is a random pertubation of some fixed reward function

r : A → R. Typically, sub-Gaussian noise is assumed via a model Rt = r(at) + εt where εt is a

zero-mean sub-gaussian random variable. As in the K-armed and combinatorial bandit problems,

the objective remains to minimize regret, which can be written as

Reg(T ) = T max
a∈A

r(a)−
T∑
t=1

E(R(at)).

Without further assumptions on the smoothness and domain r, this problem is arbitrarily dif-

ficult, as there may exist reward functions such that no algorithm can be expected to randomly

chance upon the an optimal action in finite-time. For instance, the reward function could contain an

atom with the optimal reward value, which an algorithm would fail to discover in finite-time almost

surely. For this reason, the CAB problem is studied under the assumption that the reward function
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belongs to some well-behaved class. For instance we may assume that r is α-Hölder smooth for

some α > 0. This assumption says that there exists a constant L > 0 such that

|r(a)− r(a′)| ≤ L||a− a′||α, a, a′ ∈ A. (3.1.5)

Commonly || · ||will be the Euclidean distance in Rd, although this may be generalised to give other

notions of smoothness. Note that α = 1 implies r is Lipschitz smooth with Lipschitz constant L,

and any α > 1 implies r is constant. Particular attention has been devoted to the Lipschitz case

(sometimes referred to as a Lipschitz bandit).

As the CAB problem is clearly more challenging than the problems mentioned previously, the

lower bounds on regret are of a higher order. In the setting with solely the assumptions described

so far, Kleinberg (2005) showed that the best achievable regret is of order Ω(T 2/3). With further

(relatively complex) assumptions on the smoothness and convexity of the reward function Bubeck

et al. (2011) showed that Ω(
√
T ) is achievable for certain problems. Upper bounds on the regret

tend to be specified as worst case results for any r in a certain set or class, rather than being tied

to particular parameters (or being “problem dependent”) as is typical in the K-armed bandit and

CMAB cases.

3.1.4 Further Variants

Many further bandit-type problems have been introduced and studied by varying and relaxing

the modelling assumptions of the above problems. We provide a brief discussion of a few of

these below, but refer the interested reader to the reviews of Bubeck and Cesa-Bianchi (2012),

Lattimore and Szepesvári (2018), and Slivkins (2019) and their references for a wider picture of

this substantial field.
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Linear Bandits

The linear bandit problem (Auer, 2002; Dani et al., 2008; Rusmevichientong and Tsitsiklis,

2010; Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2013) is a variant where the reward func-

tion r is linear in a d-vector of unknown parameters θ ∈ Rd. The decision maker must choose a

d-dimensional action xt in each round and receives a reward rθ(xt) = θT · xt + η, where η is a

noise term. Generally, it is assumed that the noise term η is sub-Gaussian and as a result the conver-

gence of least squares estimators of θ is well-understood, allowing authors to derive closed form

results. Linear bandits have applications in fields such as online advertising (Li et al., 2010) and

personalisation of health interventions (Tewari and Murphy, 2017) where the different dimensions

of xt represent components of some complex action.

Non-stationary bandits

A key component of all the preceding (and succeeding) results on regret is the assumption of

stationarity of the reward distributions. In many, if not all, of the previously mentioned applications

of bandit problems the reward distributions may change through time. For instance, in online

advertising, customer preferences may be seasonal or the appeal of a product may diminish as

it becomes outdated. This poses a challenge for the learner, as information they have previously

gathered may become uninformative. Applying standard approaches for stationary problems can be

highly suboptimal as they concentrate decisions on actions that are presumed to be well understood

and profitable over time - but they will not necessarily detect changes in the underlying parameters

and therefore regret.

Recent treatments of this problem have considered variants where the reward distributions

change abruptly at a bounded number of changepoints (Kocsis and Szepesvári, 2006; Garivier and

Moulines, 2011), where the reward parameters change smoothly (e.g. through Brownian motion)

(Slivkins and Upfal, 2008), or where the parameters may change arbitrarily but subject to a bound



CHAPTER 3. MULTI-ARMED BANDITS AND ONLINE LEARNING 29

on the overall variation over some horizon (Besbes et al., 2014).

Best Arm Identification

Minimisation of cumulative regret is not always a decision-maker’s aim. Numerous works

consider the setting where the decision maker wishes to maximise their probability of identifying

the optimal arm after T rounds or minimise their instantaneous regret in the final of T rounds by

selecting an action as close to optimality as possible. Jamieson and Nowak (2014) provide a survey

of some popular methods in this large literature. These problems are often called Pure Exploration

problems, because the exploitation of high-reward actions to maximise cumulative reward is not

present. Chen et al. (2014) study a CMAB version of the problem and Valko et al. (2013) study a

CAB version of the problem. The best arm identification problem has links to other problems in

Statistics and Operational Research such as Ranking and Selection (Kim and Nelson, 2007) and

Ordinal Optimization (Ho et al., 2008). The CAB version of this problem has links to the field of

Bayesian Optimisation (Shahriari et al., 2016).

Non-stochastic Bandits

All of the problems we have described so far where rewards are generated stochastically ac-

cording to stationary reward distributions (or that change in a stochastic manner) can be considered

under an alternative paradigm where this is not the case. In non-stochastic or adversarial bandit

problems (Auer et al., 1995) worst-case performance is typically of interest, as decision-makers

wish to design algorithms that will perform well even when reward sequences are designed to min-

imize the reward obtained (i.e. by an adversary). The algorithms and theoretical analyses in these

problems are quite different to those used in stochastic settings, and are beyond the scope of this

thesis. The interested reader is referred to Lattimore and Szepesvári (2018) and references within

for a discussion of non-stochastic problems.
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3.2 Solution Methods

Having introduced a range of learning problems, and outlined the challenges involved we will

now describe families of solution approaches. We will generally introduce these ideas in the con-

text of the K-armed bandit problem and highlight where they may be extended to more complex

variants.

3.2.1 Exact Approaches

It is possible to “solve” certain bandit problems exactly - i.e. for certain bandit problems, there

exist particular known policies which achieve the global maximum (in expectation) of particular

objectives. While such known policies are not available for the problems considered in this thesis,

they represent an important part of the sequential decision making literature, and we include a short

discussion of them here. A much more detailed overview is given in Gittins et al. (2011).

In the regret minimization framework, rewards of the same magnitude are valued equally re-

gardless of when they are received. An alternative view is that rewards received sooner are more

valuable, and that the value of a reward decreases the further in to the future it is obtained. This idea

can be captured by discounting the reward sequence, according to a discount parameter β ∈ (0, 1).

Under this “discounted reward maximisation” framework (Bellman, 1956) we take the view that

there is a Markov chain {X i
t}∞t=0 called a bandit process associated with each arm i ∈ [K], taking

states in a space X . The decision-maker’s objective is to choose a policy g = {gt}∞t=0 maximising

the expected infinite discounted sum of rewards:

Eg
( ∞∑

t=0

βt
K∑
i=1

ri(Xt)I{At = i}|X0 = x0

)
,

where x0 = (x1
0, . . . , x

K
0 ) ∈ XK is an initial state.
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One approach to such a problem is to formulate it as a Markov decision process and derive

a solution using Markov decision theory (Puterman, 2014), however this approach does not scale

well. An important observation of (Gittins and Jones, 1974) was that this problem (and others) can

be solved exactly by an index approach. Such an approach for this problem (Gittins, 1979; Gittins

and Jones, 1979) yields the Gittins’ index for each arm i, νi, defined by

νi(xi) = max
τ>0

E
(∑t

t=0 β
tri(X i

t)|X i
0 = xi

)
E
(∑τ

t=0 β
t|X i

0 = xi
)

where τ is a {σ(X i
1, . . . , X

i
t)}∞t=1-measurable stopping time. The β-discounted maximal reward is

achieved by choosing at each decision epoch t an arm with maximal Gittins’ index. This result

provides an analysis of classical multi-armed bandits for which the optimisation of a Bayes β-

discounted reward over an infinite horizon is the objective. Gittins’ index based policies have found

applications in many of the previously mention areas such as queuing control, optimal patrolling,

and resource planning.

A number of different proofs of the optimality of Gittins’ Indices exist (Whittle, 1980; Weber,

1992; Tsitsiklis, 1994; Bertsimas and Niño-Mora, 1996). Much of the subsequent literature fo-

cusses on efficient schemes for calculating Gittins’ indices for various distributional assumptions

and for more complex bandit models. Some recent works have looked at the idea of approximating

the Gittins index, to permit its application in problems with long horizons (Gutin and Farias, 2016)

or in the regret minimization framework (Lattimore, 2016).

NB: In the remainder of this chapter we return to thinking about the regret minimization frame-

work.
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3.2.2 Upper Confidence Bound Algorithms

Upper confidence bound (UCB) algorithms are not exactly optimal solutions to bandit prob-

lems. Rather they are myopic heuristic approaches. Here, myopic means that, in contrast to Git-

tins’ indices, they do not explicitly “look-ahead” when considering the value of an action in the

current round. However, the major advantage of UCBs and the rest of the methods described in

the remainder of this chapter is that they are usually more readily implementable than Gittins’

Index-type approaches which are infeasible computationally challenging in many contexts.

UCB algorithms apply the principle of optimism in the face of uncertainty. The basic idea is

to select actions based on optimistic estimates of their mean rewards. This is usually achieved by

creating an index for each action which is the upper limit of some confidence interval on the true

mean reward of that action. An action with the maximal index is then selected.

Intuitively speaking, this approach is sensible because it is likely to choose actions falling into

two categories - those with high uncertainty and those with high estimated mean. The upper limit

of a confidence interval will either be large because of a high variance, indicating that the action to

which the confidence interval pertained has high exploratory value, or because the mean estimate

is large, indicating it is an action worth exploiting.

The choice of method used to construct such a confidence interval is an important one. Gener-

ally speaking the confidence intervals should be designed to contract quickly enough to ensure the

algorithm shifts from exploratory actions to exploitative ones as time progresses, but also not so

quickly that insufficient exploration is performed. A number of methods for designing appropriate

UCB indices have been proposed and we will explore these in the remainder of this subsection.

(Frequentist) UCB

The initial idea of UCB algorithms can be attributed to Lai (1987), however the first widely-

used algorithm accompanied with finite-time regret guarantees is from Auer (2002). The algorithm
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applies the optimism in the face of uncertainty principle using simple high probability confidence

intervals.

Consider a K-armed bandit problem with reward distributions ν whose support is on the inter-

val [0, 1]. Let At denote the action selected by an algorithm in round t, Xk,t be the reward received

from arm k in round t (let this be 0 if At 6= k), and define Nk,t =
∑t

s=1 I{As = k} as the number

of plays of action k in t rounds. We also use µ̂k,t = N−1
k,t

∑t
s=1 Xk,t as the empirical estimate of µk

after t rounds.

Auer et al. (2002) propose the UCB1 algorithm for this problem, which is given as Algorithm

1. The key component of this algorithm is the calculation of indices µ̄UCB1
k,t (3.2.6) which consist

of the current estimate of the mean value µk plus an inflation term which is decreasing in Nk,t.

The logarithmic component of the inflation term ensures that the index for each arm will always

eventually become large enough to force a play of that arm. However, the inflation terms will

become dominated by their Nk,t−1 components as t becomes large, ensuring that the UCB1 starts

to make exploitative actions based on the empirical means once the variance in these estimates

becomes small.

Algorithm 1: UCB1 (Auer et al., 2002)

Initialisation Phase: For t ∈ [K]

• Select action At = t

Iterative Phase: For t = K + 1, K + 2, ...

• Calculate indices

µ̄UCB1
k,t = µ̂k,t−1 +

√
2 ln(t)

Nk,t−1

(3.2.6)

• Select an action At = argmaxk∈[K] µ̄
UCB1
k,t .

Auer (2002) demonstrates that the regret of UCB1 is of logarithmic order. Specifically they
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have the result that there exists a known constant C > 0 such that

RegUCB1(T ) ≤
∑
k/∈k∗

8 log(T )

(µ∗ − µk)
+ C (3.2.7)

for a specific instance of the K-armed bandit problem with mean rewards µ = (µ1, ..., µK), where

k∗ = argmaxµk, and reward distributions have bounded support on [0, 1]. Recall that as shown

by Lai and Robbins (1985), log(T ) is the optimal order for problem specific regret scaling, but

note that the coefficient on the logarithmic term of this guarantee is suboptimal. Nevertheless as

the first readily implementable policy with provably asymptotically order optimal regret, the UCB1

algorithm was a landmark development in the MAB literature.

In particular, this bound is achievable because the inflation terms are chosen based on the fol-

lowing property of the empirical means for s ≤ t:

P
(
|µk − µ̂k,t−1| >

√
2 log(t)

s

∣∣∣∣ Nk,t−1 = s

)
≤ 2t−3.

This result is a consequence of Hoeffding’s inequality. The basic idea of the proof of (3.2.7) is that

UCB1 selects a sub-optimal arm k 6∈ k∗ for one of three broad reasons: 1) that the UCB inflation

term of arm k is large enough to make it seem like the best arm, 2) that the over-estimation of µk

is sufficiently large (due to the noise in the observed data) to make k seem like the best arm, or 3)

that the under-estimation of µ∗ is sufficiently large (due to the noise in the observed data) to make

k seem like the best arm. The expected number of times these three events happen can be bounded:

1) since the inflation term is a deterministic function of the number of plays, and once Nk reaches

a certain number its impact will be negligible, and 2) and 3) because the over/under-estimation can

be bounded by Hoeffding’s inequality. The inflation terms are chosen carefully with reference to

Hoeffding’s inequality, so as to balance forced exploration with exploration due to chance. The

bound follows from combining this intuition with the observation that regret can be expressed in
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terms of the number of times sub-optimal arms are selected.

By extending this idea of choosing inflation terms such that the probability of the UCB indices

being far from the true means is small, other authors have been able to extend the UCB principle

to K-armed bandits without less restrictive assumptions on the reward distributions (other than

their being bounded in [0, 1]]), and provably logarithmic order regret. In particular, Cowan et al.

(2017) present versions for sub-Gaussian reward distributions, Bubeck et al. (2013) give a version

for distributions where the second moment is bounded and Lattimore (2017) gives a version for

distributions where the fourth moment is bounded. Where the UCB1 indices are derived by an

inversion of Hoeffding’s inequality (which holds for sub-Gaussian distributions), these methods

derive their indices by inverting alternative concentration results (which hold for heavier-tailed

distributions).

The UCB algorithm’s principle has been extended to a version for CMABs in the so-named

CUCB algorithm (Gai et al., 2012; Chen et al., 2013). The CUCB algorithm, given as Algo-

rithm 2 uses the same underlying indices as the UCB1 algorithm (where Nk,t is now calculated as

Nk,t =
∑t

s=1 I{k ∈ Ss}, but for action selection it passes these to a combinatorial optimisation

algorithm. This then selects the best action with respect to optimism on the mean rewards of all

arms. Forming optimistic estimates at the base arm level and passing these to the combinatorial

optimisation algorithm should be much more efficient than forming optimistic estimates of the re-

ward of each S ∈ S separately - providing the optimisation algorithm is efficient. Like the UCB1

algorithm for MAB problems, the CUCB algorithm achieves logarithmic order regret when applied

to CMAB problems and is therefore asymptotically order optimal.

The UCB principle can also be extended to CABs. One example is the Hierarchical Optimistic

Optimization (HOO) algorithm of Bubeck et al. (2009). In the HOO algorithm, the action space,

A, is partitioned into disjoint regions, each with an associated UCB, whose form is similar to the

UCB1 index. In each round an action in the region with the largest UCB is selected and that
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Algorithm 2: CUCB (Gai et al., 2012)

Initialisation Phase: For t ∈ [K]

• Select a random action St ∈ S such that t ∈ St

Iterative Phase: For t = K + 1, K + 2, ...

• Calculate indices

µ̄UCB1
k,t = µ̂k,t−1 +

√
2 ln(t)

Nk,t−1

, k ∈ [K]

• Select an action St = argmaxS∈S rµ̄UCB1
t

(S).

region is further discretised into two disjoint halves each with their own UCB for the next round.

The HOO algorithm is designed to be applied to a variant of the CAB where the reward function

satisfies particular smoothness and convexity properties. Under this assumption HOO can be shown

to have O(
√
T ) regret in the problem horizon T , which is asymptotically order optimal for such a

problem.

KL-UCB

An alternative method, originally proposed by Lai (1987) and presented with the first finite-

time analysis by Garivier and Cappé (2011), is the so-called Kullback-Leibler UCB (KL-UCB)

algorithm. The indices of the KL-UCB algorithm take the form of maximisers of a function of

empirical KL-divergence. They can also be thought of as an inversion of a Chernoff bound, rather

than of Hoeffding’s inequality. We explain the indices in the context of a K-armed bandit below.

Consider a K-armed bandit whose reward distributions are bounded in [0, 1] with mean µk for

each k ∈ [K]. Let Nk,t and µ̂k,t be as defined in the previous sub-section. For p, q ∈ [0, 1]2 let

d(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
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denote the Bernoulli KL-divergence. The KL-UCB index for an arm k in round t is then calculated

as

µ̄KLk,t = max

{
q ∈ [0, 1] : Nk,t−1d(µ̂k,t−1, q) ≤ log(t) + c log(log(t))

}
,

where c is a variable parameter chosen equal to 3 in the theoretical analysis. The KL-UCB algo-

rithm then has the same form as UCB1, except the indices µ̄UCB1 are replaced with µ̄KL indices.

The KL-UCB algorithm has stronger regret guarantees than the UCB1 algorithm (Algorithm

1). Indeed, for any reward distributions ν supported on [0, 1] with expectations µ the KL-UCB

algorithm has

lim
T→∞

sup
Reg(T )

log(T )
≤

∑
k:µk<µ∗

µ∗ − µk
d(µk, µ∗)

, (3.2.8)

which matches the lower bound of Lai and Robbins (1985) - meaning it is asymptotically optimal.

The proof of this result (Cappé et al., 2013) is rather more complex than that of the regret bound

for UCB1, but again ultimately relies on bounding the number of plays of suboptimal arms.

Combes et al. (2015) consider the extension of the KL-UCB to multiple play bandits, and show

that logarithmic order regret can be achieved. Again the asymptotic performance is superior to

that of the UCB1 based algorithm. However, the drawback of their algorithm is its computational

complexity as they form a KL-UCB index on every possible combination of base arms rather than

each base arm individually as in CUCB.

Bayes-UCB

As its name suggests, Bayes-UCB (Kaufmann et al., 2012a; Kaufmann, 2016) takes a Bayesian

approach to calculating UCB indices. In this algorithm the decision making indices are quantiles

of posterior distributions on the mean rewards. We will illustrate the algorithm for the class of

K-armed bandit problems with one-parameter exponential family reward distributions. This class

includes problems with Bernoulli rewards, Poisson rewards, and Gaussian rewards with known
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variance.

For reward models in such a class, let πk,n,µ̂ denote the posterior distribution on µk, given n

observations with empirical mean reward µ̂, for k ∈ [K]. Defining Q(a, π) as the a quantile of the

distribution π, for a ∈ [0, 1], the Bayes-UCB indices can be written

q̄B−UCBk,t = Q

(
1− 1

t(log(t))c
, πk,Nk(t−1),µ̄k(t−1)

)
,

where c ≥ 7 is a real parameter chosen in such a range to guarantee theoretical results, and µ̄k(t−1)

is the restriction of µ̂k(t− 1) to a range [µ−, µ+], which again is a requirement to obtain theoretical

results. The Bayes-UCB algorithm then has the same form as UCB1 except the indices µ̄UCB1 are

replaced with q̄B−UCB indices.

The asymptotic regret of Bayes-UCB matches that of KL-UCB, i.e. equation (3.2.8) holds

for Bayes-UCB also, as shown by Kaufmann (2016). Intuitively, the approach works because the

quantiles of the posterior distribution are high probability upper limits on the true mean. As more

data is collected, the posteriors will contract, and eventually even when high quantiles are taken,

the optimal arms will be preferred, more often than not.

GP-UCB

In the CAB problem, when the unknown parameter may be infinite-dimensional, one cannot

apply the previous parametric methods. An alternative which captures the same principles is the

GP-UCB method (Srinivas et al., 2010). In this Bayesian algorithm the reward function is modelled

a priori as a Gaussian Process (GP) (Williams and Rasmussen, 2006). An upper confidence bound

on the entire reward function is generated by computing a function of the posterior mean and

variance of the GP model of reward. The properties of the GP mean that the variance function will

take larger values in regions where fewer actions have been taken.
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The GP-UCB algorithm is given as Algorithm 3. Actions are selected according to the rule

at ∈ argmax
a∈A

µt−1(a) +
√
βtσt−1(a),

where µs(a) and σs(a) denote the posterior mean and standard deviation functions at location a ∈ A

of the GP after s rounds. The values {βt}t∈N are a slowly increasing sequence of constants chosen

with reference to the covariance kernel of the GP to minimise the regret. The maximisation step is

typically approximate and performed by evaluating the index on a fine grid of values.

Algorithm 3: GP-UCB (Srinivas et al., 2010)

Iterative Phase: For t = 1, 2, . . .

• Select an action at ∈ argmaxa∈A µt−1(a) +
√
βtσt−1(a).

• Observe yt = r(at) + ηt

• Perform Bayesian update to obtain µt and σt

Srinivas et al. (2012) provide high-probability bounds on the regret of GP-UCB using infor-

mation theoretic arguments. In particular they consider a setting where A ⊂ [0, r]d is compact

and convex with r > 0 and d ∈ N. They show that with sub-Gaussian reward noise, the re-

gret is Õ(
√
dTγT ) with high-probability where γT is a the maximum information gain - a concept

from information theory (see e.g. Cover and Thomas (2012)) which quantifies the mutual informa-

tion between the reward function and observed rewards. The maximum information gain may be

bounded depending on the kernel function of the GP and adds only logarithmic terms to the regret

for common choices such as the Matern covariance (Williams and Rasmussen, 2006).
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3.2.3 Thompson Sampling Algorithms

Thompson Sampling (TS) is a simple and widely applicable, but effective heuristic approach

to exploration-exploitation problems. It is a Bayesian method, specified by a prior over the reward

generating distributions for available actions. Actions are selected according to the posterior prob-

ability that they are optimal, with the posterior distribution being repeatedly updated as new data is

observed.

Typically, one can avoid explicitly calculating the posterior probability of each action being

optimal. Action selection according to the TS principle can be achieved by sampling reward gen-

erating parameters from the posterior and selecting actions that are optimal with respect to these

parameters. In theK-armed bandit case, this corresponds to drawing one sample from the posterior

on the reward distribution of each arm and playing the arm with the largest sample. We give the TS

approach for a K-armed Beta-Bernoulli bandit as Algorithm 4.

Algorithm 4: Thompson Sampling (K-armed Bernoulli Bandit)

Iterative Phase: For t = 1, 2, ...

• Sample indices

µ̄TSk,t ∼ Beta(α0 +
t−1∑
s=1

Xk,t, β0 +Nk(t− 1))

• Select an action At = argmaxk∈[K] µ̄
TS
k,t .

In Figures 3.2.1a, 3.2.1b, and 3.2.1c we display how the posterior distributions on arm rewards

evolve as the TS algorithm progresses on a 3-armed Bernoulli bandit problem. Here the Bernoulli

distributions for arms 1, 2, and 3, have parameters 0.55, 0.5 and 0.65 respectively and indepen-

dent Beta(1, 1) priors are used for each unknown parameter. Figure 3.2.1a displays the posterior

densities after 5 rounds, there has been little exploration so far and the densities are all (relatively

speaking) quite flat. In Figure 3.2.1b 50 rounds have passed and the posterior distributions are
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becoming more concentrated around the true parameter values. There is an increasing chance that

the sampled index from arm 3 will be larger than arm 2, and since there is little information on

arm 2, there is still a lot of variability in its sampled index. Finally, in Figure 3.2.1c, the posteriors

following 500 rounds are displayed. As the posteriors become more concentrated it is apparent that

the probability of a sample from the posterior on the mean associated with arms 1 or 2 being larger

than a sample from that associated with arm 3 becomes increasingly small. Intuitively, this is why

TS works. Exploration occurs initially because the flat posteriors will produce variable samples.

Then as the algorithm progresses, the posteriors will contract and more often the arms with large

expected rewards will be favoured.

TS was originally proposed by Thompson (1933) but received little academic interest until

fairly recent empirical studies such as that of Chapelle and Li (2011) demonstrated its effectiveness

and May et al. (2012) proved its asymptotic consistency. Unlike UCB approaches, whose indices

are deterministic functions of the observed data (except in the case of ties), TS is a randomised

algorithm. The additional stochasticity brought in by the action selection typically makes the regret

of TS harder to analyse than that of UCB algorithms. Often it is easier to analyse a Bayesian version

of the regret.

Consider any bandit problem with reward function rθ, parameterised by θ and action setA. Let

At be the action selected at time t ∈ [T ]. The Bayesian regret is then defined as

BReg(T ) =
T∑
t=1

Eθ0
(

max
a∈A

rθ(a)− rθ(At)
)

(3.2.9)

where the Eθ0 denotes that expectation is taken with respect to the prior π0(θ) on the parameters θ

of the reward distribution. Published results on TS are a mixture of those on Bayesian regret and
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(a) Results after T = 5 rounds, N1,T = 2, N2,T = 1, and N3,T = 2.
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(b) Results after T = 50 rounds, N1,T = 20, N2,T = 5, and N3,T = 25.
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(c) Results after T = 500 rounds, N1,T = 78, N2,T = 33, and N3,T = 389.

Figure 3.2.1: Posterior distributions on parameters associated with reward distributions in a 3-
armed Bernoulli bandit. Arm 1 has µ1 = 0.55, arm 2 has µ2 = 0.5, and arm 3 has µ3 = 0.65.
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the standard (frequentist) regret, given in this setting as

Reg(T, θ) =
T∑
t=1

E
(

max
a∈A

rθ(a)− rθ(At)
∣∣∣∣ θ),

where θ is fixed and the expectation is with respect to the reward noise and stochasticity in the

action selection only.

Results on the frequentist regret of TS were found first, and relatively recently compared to

those on UCB algorithms. Agrawal and Goyal (2012) and Kaufmann et al. (2012b) demonstrated

TS to be an asymptotically optimal approach for a Bernoulli K-armed bandit with Beta prior dis-

tributions, in a similar fashion to the proof of asymptotic optimality for KL-UCB. Later, Korda

et al. (2013) extended these results to the K-armed bandit with one-parameter exponential family

reward distributions. Beyond these simple distributions, the answer to the question of asymptotic

optimality is not clear-cut. Honda and Takemura (2014), for instance, demonstrated that for Gaus-

sian distributions with unknown mean and variance (a two-parameter exponential family model)

certain priors yield asymptotic optimality and others do not. For distributions that are well under-

stood, the analysis has been extended to demonstrate the order-optimality of TS for multiple play

bandits (Komiyama et al., 2015) and CMABs (Wang and Chen, 2018).

Contrastingly, results on the Bayesian regret can be obtained with almost no assumptions on

the prior, thanks to one special property of TS (Russo and Van Roy, 2014). Conditional on a

given history of actions and observations over t − 1 rounds, Ht−1, the posterior distributions of

the optimal action and the action selected in round t by the TS approach are the same. Define,

A∗ = arg maxA∈A rθ(A), as the optimal action, and let ATSt be the action chosen by TS. The key

result is that

P(A∗ = · | Ht−1) = P(ATSt = · | Ht−1). (3.2.10)

As a result of (3.2.10) the Bayesian regret, as defined in (3.2.9), may be decomposed as follows,
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for any sequence of deterministic functions {Ut : A → R}Tt=1,

BReg(T ) =
T∑
t=1

E
(
rθ(A

∗)− rθ(ATSt )

)

= E

[
T∑
t=1

E
(
rθ(A

∗)− rθ(ATSt )

∣∣∣∣ Ht−1

)]

= E

[
T∑
t=1

E
(
rθ(A

∗)− Ut(ATSt ) + Ut(A
TS
t )− rθ(ATSt )

∣∣∣∣ Ht−1

)]

= E

[
T∑
t=1

E
(
rθ(A

∗)− Ut(A∗) + Ut(A
TS
t )− rθ(ATSt )

∣∣∣∣ Ht−1

)]

= E

[
T∑
t=1

E
(
rθ(A

∗)− Ut(A∗)
∣∣∣ Ht−1

)
+ E

(
Ut(A

TS
t )− rθ(ATSt )

∣∣∣ Ht−1

)]

= E

[
T∑
t=1

(
rθ(A

∗)− Ut(A∗)
)

+
(
Ut(A

TS
t )− rθ(ATSt )

)]
, (3.2.11)

where the fourth equality is a result of (3.2.10) and the final equality uses the tower rule for expec-

tation.

The consequence of (3.2.11), is that the task of bounding the Bayesian regret can be reduced to

finding a sequence of functions such that
∑T

t=1(rθ(A) − Ut(A)) is bounded with high probability

for any A ∈ A. Functions with this property are upper confidence functions, of the type used to

form indices in the previous section. Notice, however, that the TS algorithm itself does not actually

utilise this upper confidence bound sequence it is only introduced for the analysis. Notice also

that the decomposition above holds for many choices of these functions. TS may therefore enjoy

performance determined by the best performing upper confidence bound sequence without having

to specify said sequence in advance.

In Russo and Van Roy (2014) this technique is deployed to derive order-optimal instance-

independent bounds on the Bayesian regret of TS for MAB problems, linear bandits and CAB
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problems where the reward function can be modelled as a realisation of a GP. Note that in each of

these analyses it is assumed that the reward noise has a sub-Gaussian distribution, but it is possible

to extend beyond this setting, as we will demonstrate in Chapter 6. The general technique has since

been deployed in other settings, such as bandit recommender systems (Kawale et al., 2015), and

reinforcement learning (Osband et al., 2013), and we also utilise it to prove the strong performance

of our TS approach for a CAB in Chapter 5.

3.2.4 Further Variants

Many further approaches can be constructed. Popular simple choices are ε-greedy approaches

(derived from reinforcement learning (Sutton and Barto, 1998)), which choose an action randomly

with small probability ε ∈ [0, 1] and the action currently having highest expected reward other-

wise, and explore-then-commit strategies (which can be traced back as far as Robbins (1952) and

Anscombe (1963)), which perform a fixed amount of exploration and then settle on a single action

for the remaining rounds. The Knowledge Gradient technique (Frazier et al., 2008; Ryzhov et al.,

2012) is a compromise of sorts between UCB and Gittins indices which assigns indices to arms

based on a one-step look ahead, rather than the full horizon calculation used in Gittins indices.

Some weaknesses in the performance of Knowledge Gradient methods for MABs are exposed in

Edwards et al. (2017)

3.3 Extensions to Poisson Process Bandits

Having introduced Poisson processes and a range of bandit problems, we are in a position to

describe the challenges of the sequential event detection problem more fully. The sequential event

detection problem, as described in the Introduction, is a CAB problem.

The main difference between our problem and existing treatments of the CAB problem is that
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our information structure is richer. In the “traditional” CAB problem, the feedback in a given

round t ∈ N is in the form of a scalar reward observation - which is a noisy evaluation of the reward

function r at a selected action at. In our setting of sequential event detection, we receive feedback in

the form of a noisy evaluation of the reward function, but we will typically also receive information

on the locations of any observed events. This information is useful to the decision-maker, as it

will ultimately allow λ to be estimated more accurately more quickly. However, quantifying the

expected reduction in uncertainty is much more complicated than in the setting where only Rt is

observed. As a result, standard techniques for analysing the performance of algorithms for CAB

problems do not readily apply.

A further point to note is that the Poisson distribution is not sub-Gaussian. A very common

assumption in the bandit literature is that the noisy reward observations follow a sub-Gaussian dis-

tribution (or are bounded which implies the same concentration properties). Guarantees on the per-

formance of bandit algorithms typically depend on tight concentration or martingale inequalities,

and those which hold for sub-Gaussian distributions typically do not hold for the Poisson distribu-

tion. Therefore, we must consider the additional factor of incorporating alternative concentration

results when adapting existing results to our problem.

Throughout the remainder of the thesis we investigate solution methods for the sequential event

detection problem, and derive theoretical results related to the performance of these methods. In

Chapters 4 and 5 we consider specific models of the problem and propose and analyse solution

methods based on relatively simple inference schemes. In Chapters 6 and 7 we derive theoretical

results to support the analysis of algorithms incorporating more sophisticated inference, which

ultimately is necessary to make the best use of the event location data and potential spatial structure

in the rate function.

Specifically, in Chapter 4 we study the sequential event detection problem under the imposition

of a fixed discretisation on the action set and inference scheme. That is to say, that for ease of
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inference, action selection and the design of an appropriate sequential decision-making policy, we

split the observable domain into bins. We then model the rate function as being constant over these

bins and only consider actions which ensure each bin is either fully covered or not covered at all.

This choice may introduce an unavoidable contribution to regret thanks to this discretisation, since

the true optimal action may not be one which coincides with the chosen cell endpoints. However,

it is also a choice that may often be made in practice as decisions may be made to some level of

rounding. The simplicity of the model means that we can also study the effects of filtering, where

events in a region that we choose to observe are detected according to a probability which is a

function of the size of the region we choose to observe. This introduces an additional stochastic

component making the analyses more involved. We show that a UCB approach specialised to the

problem achieves O(log(T )) regret with respect to the optimal action in the discretised action set.

In Chapter 5, we tackle the CAB version of the problem, through progressive discretisation.

As in Chapter 4 we discretise the observable region into bins and thus introduce an unavoidable

contribution to regret. However, by allowing the number of bins to increase with the number of

rounds, this unavoidable regret per round shrinks as the algorithm progresses. By choosing the rate

at which the number of bins increases carefully, we can show that a TS algorithm, based on the

Bayesian inference model of Gugushvili et al. (2018) has Õ(T 2/3) Bayesian regret.

The solution methods proposed in Chapters 4 and 5 are both based on simple inference schemes

which assume independence across bins. In many situations, the rate function λ will have some

smooth form, implying some spatial structure to the function, which we could exploit to improve

an algorithm’s performance. In Chapter 2 we mentioned that Gaussian Cox Processes are a fam-

ily of nonparametric Bayesian models which can often successfully model smooth rate functions.

In Section 3.2.3 we described how the TS approach can be readily deployed in scenarios where

a Bayesian model is tractable. A TS approach built upon a GCP model is therefore a sensible

proposition to tackle the CAB version of the sequential event detection problem while exploiting
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assumed spatial structure in the rate function.

To analyse the performance of such an approach, we need to consider the rate of concentra-

tion of the inference model. In Chapter 6, we consider the contraction of GCP models based on

partial realisations of an NHPP. Kirichenko and Van Zanten (2015) derive a result showing the

SGCP model is asymptotically consistent and the model’s posterior mass contracts around the true

intensity function at the optimal rate, given independent, full realisations of a fixed NHPP. This re-

sult was an important contribution to the understanding of asymptotic properties of nonparametric

NHPP models, but does not extend so far as to be usable in deriving finite-time performance guar-

antees for sequential decision making using GCP models. In Chapter 6 we move further towards

this aim, deriving finite-time results on the posterior contraction of the SGCP and QGCP models

given partial realisations of an NHPP.

An alternative, less direct approach towards the analysis of a TS algorithm based on a GCP

model is to utilise the idea that TS inherits the performance of the best UCB approach. In Russo and

Van Roy (2014), it is observed that the least squares estimator has known concentration properties

which can be generalised across many function classes. In Chapter 7 we present ongoing work

which investigates results on TS for Lipschitz bandits with sub-exponential rewards (a broader

class that the sequential event detection problem can be seen as fitting in to).



Chapter 4

Combinatorial Multi Armed Bandit model

of Sequential Event Detection

A version of this chapter has been published as Grant, J.A., Leslie, D.S., Glazebrook, K.,

Szechtman, R., and Letchford, A. (2020). Adaptive Policies for Perimeter Surveillance Problems.

European Journal of Operational Research. 283 (1): pages 265-278.

The proof of Theorem 4.7.1 is thanks to Adam Letchford and is included for completeness,

rather than under the assertion that it is my own original work.

In this chapter we introduce our first formal model of the sequential event detection problem

as a combinatorial multi-armed bandit. We then propose and analyse the performance of an upper

confidence bound approach.

4.1 Introduction

Many common surveillance tasks concern the detection of activity along a border or perimeter.

Monitoring the movements of endangered or migratory species through crossings using camera

49
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traps, covertly tracking illegal fishing in territorial waters via adaptive satellite technology, and

quantifying traffic across a border using drone technology are a few among many examples of

important potential aims in this domain. Equally, a number of common scheduling challenges

involve events arising through time. For instance, scheduling call center staff to meet random

arrivals, or deciding what times traffic cameras should be in operation to catch speeding drivers.

Approaches to the optimal design of observation strategies are invaluable not only at the opera-

tional level, but also at the strategic level because they can inform decision makers about expected

outcomes for different budget scenarios and policies. In each of these tasks the notion of optimality

can be equated to maximising the rate of detection of events, or equivalently, detecting as many

events as possible over some fixed time horizon.

These surveillance problems coincide with the sequential event detection problem as described

in Chapter 1. In this chapter we will derive a precise model of a version of the problem and propose

and analyse solution approaches.

We consider a scenario where observations are made by a team of searchers (representing cam-

eras, sensors, human searchers, etc.), coordinated by a central agent referred to as the controller

who chooses which segments of a line segment each searcher will observe. As the line segment

may be thought of as indexing space or time, the formulation captures a wide range of examples

(we will discuss the spatial problem in what follows for ease of exposition). We will assume that

events arise along the line segment according to a Poisson process and the likelihood of an event

being detected depends on the allocation of resource chosen by the controller. We will, of course,

be interested in a scenario where the rate of the Poisson process is unknown and the controller may

update the allocation of searchers as information is gathered.

To permit analysis of this problem we shall assume two discretisations to simplify the con-

troller’s action set. We will consider that opportunities to update the allocation of searchers occur

only at particular time points t ∈ N. Thus, the problem can be thought of as taking place over a
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series of rounds. We will also suppose that the search space has been divided into a number of cells

such that each searcher is allocated a connected set of cells in which to patrol, disjoint from those

allocated to other searchers. Imposing this discrete structure on the problem is useful as it allows

us to draw on a large literature concerning combinatorial multi-armed bandit (CMAB) problems,

as introduced in Chapter 3, when designing and analysing solutions to the problem.

CMAB problems are relevant to this sequential resource allocation problem because they pro-

vide a framework for studying exploration-exploitation dilemmas, which is the principal challenge

faced by the controller here. In order to reliably make optimal actions, data must be collected from

all cells to accurately estimate the expected number of detections associated with an action - i.e. the

action space should be explored. However, data is being collected on a live problem - real events

are passing undetected when sub-optimal actions are played. As such there is a pressure to exploit

information that has been collected and select actions which are believed to yield high detection

rates over those with more exploratory value. A balance must be struck. One may suppose that

this is a trivial issue which can be resolved by simply searching in all cells in all rounds. However,

searching more cells will not necessarily lead to more accurate information or a higher detection

rate. Under the formulation in this chapter searchers become less effective at detecting events the

more cells they are allocated, because events may be undetected if a searcher is aiming to detect

over too large a region. Indeed, an optimal action may well be to assign each searcher to just a

single cell.

4.1.1 Related Work

We select a Poisson process, as introduced in Chapter 2, as the data generating model for our

problem. We recall that there is a large literature on inference for Poisson processes, which has led

to a variety of sophisticated techniques, such as those involving Gaussian processes (Adams et al.,

2009; John and Hensman, 2018) or kernel-based smoothing (Diggle, 1985). However, we also
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recall that the theoretical properties of the more complex methods are typically only understood

asymptotically (Helmers et al., 2005; Kirichenko and Van Zanten, 2015; Gugushvili et al., 2018)

and therefore in the interest of developing tight guarantees on the performance of sequential deci-

sion making algorithms, we favour a simple piecewise-constant frequentist model for the Poisson

process rate in this chapter. More complex inference schemes will be considered in later chapters.

Search theory has its origins in WWII with the study of barrier patrols during the Battle of

the Atlantic (Koopman (1946)). The works of Stone (1976) and Washburn (2002) present a much

broader and more contemporary range of applications in search theory and detection, and are by

now the classic references on the subject. More closely related to our work is Szechtman et al.

(2008), who study the perimeter protection problem when the parameters of the arrival process are

fully known, for mobile and fixed searchers. Carlsson et al. (2016) study the problem of optimally

partitioning a space in R2 to maximise a function of an intensity of events over the space. Their

problem bears resemblance to the full information version of our problem though our solution

method is quite different due to our discretisation of the problem. Our work is, to the best of our

knowledge, the first to tackle the learning aspect of such a problem.

The CMAB problem models a framework where the decision-maker may select multiple actions

in each round and the reward is a function of the observations from the underlying distributions

associated with the selected actions. Chen et al. (2013) consider a setting where this function may

be non-linear. As described in Chapter 3, a number of alternative models, such as the multiple-play

bandit (Luedtke et al., 2016) and CMAB with probabilistically triggered arms (Chen et al., 2016b),

have been studied since, however the model of Chen et al. (2013) is the work closest to ours as the

later developments model features that are not present in our setting. The fundamental differences

between our model and theirs are that we consider heavy tailed rewards and a setting where reward

distributions depend on the selected action.

For bandit-type problems, it has famously been shown that under certain assumptions optimal
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policies can be derived by formulating the problem as a Markov Decision Process and using an

index approach (Gittins et al., 2011). In CMAB problems however, these approaches are inappro-

priate, not least, since the combinatorial action sets induce dependencies between rewards gener-

ated by distinct actions which invalidates Gittins’ theory. See also Remark 1 in Section 4.2. We

will therefore focus on upper confidence bound (UCB) algorithms. We recall that these are heuris-

tic methods which balance exploration and exploitation by selecting actions based on optimistic

estimates of the associated expected rewards and can be applied to a range of bandit problems.

Auer (2002) originally proposed a UCB approach for multi-armed bandits (MAB) with underly-

ing distributions whose support lies entirely within [0, 1]. Chen et al. (2013) extended the principles

of this algorithm to a version suitable for CMAB problems with nonlinear rewards. Broader classes

of unbounded distributions have been considered by other authors. Cowan et al. (2017), Bubeck

and Cesa-Bianchi (2012), Bubeck et al. (2013), and Lattimore (2017) give UCB algorithms suitable

for use with unbounded distributions, studying distributions that are Gaussian, have sub-Gaussian

tails, known variance and known kurtosis respectively. Luedtke et al. (2016) have studied multiple-

play bandits (a special case of CMABs) with exponential family distributions. However for CMAB

problems with non-linear reward functions attention has focussed on the [0, 1] case. Accompany-

ing each of these proposals of UCB algorithms is a corresponding proof which demonstrates the

performance of that algorithm achieves the optimal order, albeit with a sub-optimal coefficient.

Stronger performance guarantees (i.e. those with improved leading-order coefficients) have

been obtained in MAB problems using Thompson Sampling (TS) type approaches (Kaufmann

et al., 2012b; Agrawal and Goyal, 2012; Russo and Van Roy, 2016; Wang and Chen, 2018) and

approaches which utilise the KL divergence of the reward distributions (Cappé et al., 2013; Kauf-

mann, 2016). Combes et al. (2015) have successfully extended the KL divergence based results to

multiple play bandits with bounded rewards. However extending these results to the framework of

our problem presents a significant analytical challenge, and therefore in this work we focus on the
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theoretical analysis of a more standard UCB approach. A TS alternative is presented and evaluated

numerically in Section 4.5.

4.1.2 Key Contributions

This chapter makes a number of contributions to the theory of multi-armed bandits and broader

online optimisation. Simultaneously, we give a practically useful solution to a real problem en-

countered in many applications. We summarise the headline contributions below:

• Introduction of a formal model for sequential event detection problems and an efficient inte-

ger programming solution to the full-information version of the problem;

• Introduction of the filtered feedback model for combinatorial multi-armed bandits;

• Development of a bespoke treatment of combinatorial bandits with Poisson rewards, leading

to a new martingale inequality for filtered Poisson data and an accompanying UCB approach;

• Regret analysis yielding an optimal order upper bound on finite time regret of the UCB

algorithm and a problem-specific lower bound on asymptotic regret for any uniformly good

algorithm.

We also present extensive numerical work which displays the robustness of the UCB approach in

contrast to its competitors.

4.1.3 Chapter Outline

The remainder of the chapter is structured as follows. Section 4.2 introduces a model of the

sequential problem. In Section 4.3 we solve the full information problem (the non-sequential re-

source allocation problem where the rate function of the arrival process is known). The proposed
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integer programming solution forms the backbone of the proposed solution methods for the sequen-

tial problem. In Section 4.4 we introduce a solution method, the Filtered Poisson Combinatorial

Upper Confidence Bound algorithm, for the sequential resource allocation problem, and derive a

performance guarantees in the form of upper bounds on expected regret of the policy. Here, we

also derive a lower bound on the expected regret possible for any policy and thus show that our

algorithm has a bound of the correct order. We conclude in Sections 4.5 and 4.6 with numerical

experiments and a discussion respectively.

4.2 The Model

Before introducing solution methods we give a mathematical model of the problem. Throughout

the paper, for a positive integer W let the notation [W ] represent the set {1, 2, ...,W}.

The observation domain (line segment) comprisesK cells which can be searched byU searchers.

We write

ak = u, k ∈ [K], u ∈ [U ]

to denote the deployment of searcher u to cell k, while

ak = 0, k ∈ [K]

is used when cell k goes unsearched. An action a := (a1, a2, ..., aK) ∈ {0, 1, ...U}K describes a

deployment of the searchers across the line. We impose the requirement that a ∈ A, the action set,

where

A = {a : ai = aj = u⇒ ak = u, ∀i, j, k ∈ [K] : i ≤ k ≤ j, i < j, and ∀u ∈ [U ]}.

This definition of A ensures that under any action a ∈ A searchers are assigned to disjoint
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connected sub-regions of the perimeter. The actions are uniquely defined by indicator variables

aiju ∈ {0, 1} for i, j ∈ [K], i < j and u ∈ [U ] such that

aiju = 1⇔ agent u is assigned to the cells {i, i+ 1, ..., j} only,

which will be useful for the specification of the optimisation problem in the following section.

Each action a ∈ A gives rise to a certain detection probability γk(a) ∈ [0, 1] in all cells

k ∈ [K]. The detection probabilities capture the effectiveness of each searcher in observing an

event in a specific cell. We write γ(a) for the K-vector whose kth component is γk(a). The

detection probabilities are structured such that for any a,b ∈ A and i ≤ j,

aiju = biju = 1⇒ γk(a) = γk(b), ∀k such that i ≤ k ≤ j.

Hence, the detection probability in a cell depends only on the sub-region assigned to the single

agent searching that cell and is unaffected by the sub-regions assigned to other searchers. We

assume that if a cell is searched there will be some non-zero probability of detecting events that

occur. That is to say for any k ∈ [K], γk(a) > 0 for any a ∈ A such that ak 6= 0.

We consider two cases with respect to knowledge of the detection probabilities:

(I) The detection probabilities γ(a) are known for all a ∈ A. This scenario occurs when the

controller knows γ(a) from the past.

(II) The functions γ have a particular known parametric form but unknown parameter values.

This case is realistic when properties of the detection probabilities are dictated by physical

considerations, such as the searchers’ speed, the visibility in particular locations or the time

for which an event is observable.

Our sequential decision problem may now be described as follows:
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1. At each time t ∈ N an action at = (a1t, . . . , aKt ∈ A is taken, inducing a detection probabil-

ity γk(at) in each cell k ∈ [K];

2. Events are generated by K independent Poisson processes, one for each cell. We use Xk to

denote the number of events in cell k (whether observed or not) occurring during the period

of a single search. We have

Xk ∼ Pois(λk), k ∈ [K]

where the rates λk ∈ R+ are unknown, and write λmax ≥ maxk∈[K] λk for a known upper

bound on the arrival rates. We use Xkt for the number of events generated in cell k during

search t.

3. Should action at be taken at time t, a random vector of events Yt = {Y1t, Y2t, ..., YKt} ∈ NK

is observed. Events in the underlying X-process are observed or not independently of each

other. We write

Ykt|Xkt, at ∼ Bin(Xkt, γk(at)), k ∈ [K].

It follows from standard theory that

Ykt|at ∼ Pois(λkγk(at)), k ∈ [K],

and are independent random variables. It follows that the mean number of events observed

under action a is given by

rλ,γ(a) := γ(a)>λ,

where > denotes vector transposition and λ is the K-vector whose kth component is λk.

4. We write

Ht = {a1,Y1, ..., at−1,Yt−1}
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for the history (of actions taken and events observed) available to the decision-maker at time

t ∈ N. A policy is a rule for decision-making and is determined by some collection of

functions
{
πt : Ht → A, t ∈ N

}
adapted to the filtration induced by Ht. In practice a

policy will be determined by some algorithm A. We will use the terms policy and algorithm

interchangeably in what follows.

The goal of analysis is the elucidation of policies whose performance (as measured by the mean

number of events observed) is strong uniformly over λ,γ and over partial horizons {1, 2, ..., n} ⊆

N. We write

EA

( n∑
t=1

rλ,γ(at)

)
for the mean number of events observed up to time n ∈ N under algorithm A. If we write

optλ,γ := max
a∈A

rλ,γ(a),

then it is plain that, for any choice of A

n · optλ,γ ≥ EA
( n∑

t=1

rλ,γ(at)

)
,

with achievement of the left hand side dependent on knowledge of λ. Assessment of algorithms

will be based on the associated regret function, the expected reward lost through ignorance of λ,

given for algorithm A and horizon n by

RegAλ,γ(n) := n · optλ,γ − EA
( n∑

t=1

rλ,γ(at)

)
, (4.2.1)

which is necessarily positive and nondecreasing in n, for any fixed A. In related bandit-type prob-

lems the regret of the best algorithms typically grows at O(log(n)) uniformly across all λ. We will
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demonstrate both that this is also the case for the algorithms we propose and that the best achievable

growth for this problem is also O(log(n)).

Remark 1: An alternative, indeed classical, formulation uses Bayes sequential decision theory.

Here the goal of analysis is the determination of an algorithm A to maximise

Eρ

[
EA

( n∑
t=1

rλ,γ(at)

)]

where the outer expectation is taken over some prior distribution ρ for the unknown λ. A standard

approach would formulate this as a Markov Decision Process (MDP) with an informational state

at time t taken to be some sufficient statistic for λ. The objections to this approach in this context

are many. First, any serious attempt to derive such a formulation which is likely tractable will

require strong assumptions on the prior ρ including, for example, independence of the components

of λ. These would each typically have a conjugate gamma prior. Even then the resulting dynamic

program would be computationally intractable for any reasonable choices of K and n. Second, the

realities of our problem (and, indeed, many others) are such that specification of any reasonably

informed prior is impractical. Confidence in the analysis would inevitably require robustness of

the performance of any proposed algorithm to specification of the prior. Indeed, our formulation

centred on regret simply seeks robustness of performance with respect to values of the unknown

λ. Third, the MDP approach would require up front specification of the decision horizon n. This

is practically undesirable for our problem. Moreover, the value of n is not unimportant. It will

determine the nature of good policies in important ways. For example, the “last” decision at time n

is guaranteed to be optimally “greedy” since there is no further need to learn about λ at that point.
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4.3 The Full Information Problem

In order to develop strongly performing policies, it is critical that we are able to solve the full

information optimisation problem

optλ,γ := max
a∈A

rλ,γ(a)

for any pre-specified λ ∈ (R+)K . A naive proposal for a policy addressing the problem outlined

in the previous section would choose an action at at time t to solve the full information problem

for some estimate λt of the unknown λ available at time t. While such a proposal would fail to

adequately address the challenge of learning about λ, we will in the succeeding sections develop

effective algorithms which choose allocations determined by solutions of full information problems

for carefully chosen λ-values.

A challenge to the solution of the full information problem is the non-linearity in a of the

objective rλ,γ(a) inherited from the non-linearity of the detection mechanism γ(a). To develop

efficient solution approaches we produce a formulation as a linear integer program (IP) in which

this non-linearity is removed by precomputing key quantities. In particular we write

qλ,γ,iju =

j∑
k=i

γk(aiju)λk

for the mean number of events detected when agent u is allocated to the subregion {i, i + 1, ..., j}

where aiju is any a ∈ A such that aiju = 1. Efficient solution of the full information problem relies

on precomputing these qλ,γ,iju for all 1 ≤ i ≤ j ≤ K, and u ∈ [U ]. We now have that

optλ,γ = max
{aiju,1≤i≤j≤K,u∈[U ]}

K∑
i=1

K∑
j=i

U∑
u=1

qλ,γ,ijuaiju (4.3.2)
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such that
K∑
i=1

K∑
j=i

aiju ≤1, u ∈ [U ]

k∑
i=1

K∑
j=k

U∑
u=1

aiju ≤1, k ∈ [K]

aiju ∈{0, 1}, 1 ≤ i ≤ j ≤ K, u ∈ [U ].

The first constraint above guarantees that each searcher u is assigned to at most one sub-region

while the second constraint guarantees that each cell k is searched by at most one searcher. We

view the solution of (4.3.2) as the optimal allocation strategy and the optimal value function as the

best achievable performance for an agent with perfect knowledge of γ and λ.

When we require solutions to the full information problem for the implementation of algorithms

for the problem described in the preceding section, we solve an appropriate version of the above

IP (ie, for suitably chosen λ) by means of branch and bound. While it can be shown that the

IP (4.3.2) belongs to a class of problems which is NP-hard (see Section 4.7.1) we find that the

solution of this IP is very efficient in practice. We believe that this is because the solution of the

Linear-Programming-relaxation of (4.3.2) often coincides with the exact solution of the IP. Indeed,

in empirical tests this occurred more than 90% of the time and in the remaining instances the gap

between the two solutions was always less that 1%. For all problem sizes considered in this paper

the pre-processing and solution steps can be completed in less than a second using basic linear

program solvers in the statistical programming language R on a single laptop.

4.4 Sequential Problem

In the sequential problem, the controller’s objective is to minimise regret (4.2.1) over a sequence

of rounds. To do so the controller must construct a strategy which balances exploring all cells to

accurately estimate the underlying rate parameters λ, while also exploiting the information gained
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to detect as many events as possible. In this section we introduce and analyse two upper confidence

bound (UCB) algorithms as policies for the case of fully known detection probabilities (case (I))

and the case where only the nature of the scaling of detection probabilities is known (case (II)).

The model we introduced in Section 4.2 is closely related to the Combinatorial Multi Armed

Bandit problem (CMAB) model of Chen et al. (2013). We recall that the CMAB problem models

a scenario where a decision-maker is faced with a set of K basic actions (or arms) each associated

with a random variable of unknown probability distribution. In each round t ∈ N, the decision-

maker may select a subset of basic actions to take (or arms to pull) and receives a reward which

is a (possibly randomised) function of realisations of the random variables associated with the

selected basic actions. The decision-maker’s aim is to maximise the cumulative reward over a

given horizon. Chen et al. study a CMAB problem where the decision-maker receives semibandit

feedback on the selected actions, meaning both the overall reward and realisations of the random

variables associated with the selected arms are observed. Realisations of the random variables are

identically distributed for a given arm and independent both across time and arms.

In our sequential event detection problem, electing to search a cell k in a round t, i.e. setting

akt 6= 0, is the analogue of pulling an arm k. The total number of events detected in a round is

the analogue of reward. The fundamental, and non-trivial difference between our model and that

of Chen et al. lies in the feedback mechanism. Our framework is more complex in two important

regards. Firstly, we do not by default observe independent identically distributed (i.i.d.) realisations

of the underlying random variable of interest Xkt each time we elect to search a cell. We observe

a filtered observation Ykt whose distribution depends on the action at selected in that round. This

introduces complex dependencies within the sequence of rewards meaning standard concentration

results for independent observations do not apply. Secondly, because of the U possibly heteroge-

neous searchers, we can have multiple ways of searching the same collection of cells. While this

is implicitly permitted within the framework of Chen et al., it is not explicitly acknowledged nor to
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the best of our knowledge are any problems with such a structure explored in related work .

Our analytical challenge is to extend earlier work in order to meet these novel features. Specif-

ically we will propose a UCB algorithm for both cases of our problem and derive upper bounds on

the expected regret of these policies. UCB algorithms apply the principle of optimism in the face of

uncertainty to sequential decision problems. Such an algorithm calculates an index for each action

in each round which is the upper limit of a high probability confidence interval on the expected

reward of that action and then selects the action with the highest index. In this way the algorithm

will select actions which either have high indices due to a large mean estimate - leading it to exploit

what has been profitable so far - or due to a large uncertainty in the empirical mean - leading it

to explore actions which are currently poorly understood. As the rounds proceed, the confidence

intervals will concentrate on the true means and fewer exploratory actions will be selected in favour

of more exploitative ones.

4.4.1 Case (I): Known detection probabilities

In our first version of the problem, case (I), the only unknowns are the underlying rate param-

eters λ. We assume that detection probability vectors γ(a) are known for all a ∈ A. Therefore

we do not need to explicitly form UCB indices for every action separately. It will suffice to form a

UCB index on each unknown λk for k ∈ [K]. Optimistic estimates of the value of each action will

then arise by calculating the qλ,γ,iju quantities with the optimistic estimate of λ in place of known

λ.

Our proposed approach to the sequential search problem in case (I), the FP-CUCB algorithm

(Filtered Poisson - Combinatorial Upper Confidence Bound), is given as Algorithm 5. The algo-

rithm consists of an initialisation phase of length K where allocations are selected such that every

cell is searched in some capacity at least once. Then in every subsequent round t > K, a UCB
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index

λ̄k,t =

∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

+
6 max(1,

√
λmax) log(t)∑t−1

s=1 γk,s
+

√
6λmax log(t)∑t−1

s=1 γk,s
, (4.4.3)

is calculated for each cell k, where γk,s is the filtering probability applied to cell k in round s. This

λ̄k,t gives an upper bound for λk with high probability and is derived from the theory of martingale

concentration. A full derivation of this term is given in the proof of the following theorem.

The algorithm then selects an action which is optimal with respect to the K-vector of inflated

rates λ̄t = (λ̄1,t, ..., λ̄K,t) by solving the IP (4.3.2) with λ̄t in place of λ. The inflation terms

involve a parameter λmax ≥ maxk∈[K] λk. This is necessary to construct UCBs which concentrate

at a rate that matches the concentration of Poisson random variables, which is defined by the mean

parameter.

Algorithm 5: FP-CUCB (case (I))

Inputs: Upper bound λmax ≥ λk, k ∈ [K].
Initialisation Phase: For t ∈ [K]

• Select an arbitrary allocation a ∈ A such that at 6= 0

Iterative Phase: For t = K + 1, K + 2, ...

• Calculate indices

λ̄k,t =

∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

+
6 max(1,

√
λmax) log(t)∑t−1

s=1 γk,s
+

√
6λmax log(t)∑t−1

s=1 γk,s
, k ∈ [K]

• Select an allocation a∗
λ̄t

such that rλ̄t,γ(a∗
λ̄t

) = maxa∈A rλ̄t,γ(a).

To analyse the regret of this algorithm we must first introduce some additional notation for

optimality gaps, the differences in expected reward between optimal and suboptimal actions. For
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k ∈ [K] define,

∆k
max = optλ,γ − min

a∈Ak
rλ,γ(a),

∆k
min = optλ,γ −max

a∈Ak
rλ,γ(a),

where Ak = {a ∈ A : ak 6= 0, a /∈ optλ,γ} for k ∈ [K], and ∆max = maxk∈[K] ∆k
max, and

∆min = mink:∆k
min>0 ∆k

min. The quantity ∆max is then the difference in expected reward between

an optimal allocation of searchers and the worst possible allocation, while ∆min is the difference

in expected reward between an optimal allocation and the closest to optimal suboptimal allocation.

The quantities ∆k
max and ∆k

min are the largest and smallest gaps between the expected reward of an

optimal allocation and allocations where cell k is searched in some capacity. All ∆ terms depend

on λ,γ but we drop this dependence in the notation for simplicity.

Upper bound on regret

Now, in Theorem 4.4.1 we provide an analytical bound on the expected regret of the FP-CUCB

algorithm in n rounds.

Theorem 4.4.1. The regret of the FP-CUCB algorithm with λmax applied to the sequential surveil-

lance problem with known γ satisfies

RegFP-CUCB
λ,γ (n) ≤

∑
k:∆k

min>0

24K2λmax,1c0,k

γk,min∆k
min

log(n) + 5K∆max, (4.4.4)

where λmax,1 = max(1, λmax), γk,min = mina:ak 6=0 γk(a), and c0,k are known constants depending

on K, ∆k
max, and ∆k

min.

The full expression for each c0,k may be found within the proof, but the expression above

captures the main dependencies of the bound. We notice that small detections probabilities may
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lead to a large regret bound, since the algorithm may take longer to learn. Further, because the

bound is derived via bounding the number of sub-optimal actions, small optimality gaps ∆k
min may

also lead to a large regret bound since the algorithm may take a very long time to differentiate

between the optimal actions and those that have only slightly lower reward.

To give a proof of this theorem we must introduce a new way of thinking about the action

space. Consider that while we have previously (for ease of exposition) defined actions in terms

of allocations of searchers to cells, a ∈ A, the real impact on reward comes from the vectors

of detection probabilities, γ(a), which arise from these allocations. As multiple allocations may

give rise to the same vector of detection probabilities (if, for instance, two searchers have identical

capabilities, then switching their assignments would have no impact on the quality of the search) the

set G = {γ(a), ∀a ∈ A} of possible detection probability vectors most parsimoniously describes

the set of possible actions in this problem.

For an element g = (g1, ..., gK) = G we then have expected reward gT · λ and optimality gap

∆g = optλ,γ − gT · λ. Let Gk be the set of vectors g with gk > 0 and Gk,B ⊆ Gk be the set of

vectors in Gk with sub-optimal expected reward - i.e. Gk,B = {g ∈ Gk : ∆g > 0}. Let Bk = |Gk,B|

and label the vectors in Gk,B as g1
k,B,g

2
k,B, ...,g

Bk
k,B in increasing order of expected reward. We use

the following notation for optimality gaps with respect to these ordered vectors

∆k,j = optλ,γ − (gjk,B)T · λ j ∈ [Bk], k ∈ [K] (4.4.5)

and thus the gaps defined previously can be expressed as ∆k
max = ∆k,1 and ∆k

min = ∆k,Bk . We

introduce counters Dk,t =
∑t

s=1 gk,s for k ∈ [K], t ∈ N where gs is the detection probability

vector selected in round s. These allow us to keep track of the total detection probability applied

to a cell up to the end of round t.

The central idea in proving Theorem 4.4.1 is that if for a certain sub-optimal action g : ∆g > 0,

all the cells k with gk > 0 have been sampled sufficiently, the mean estimates ought to be accurate
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enough that the probability of selecting that sub-optimal action again before horizon n is small.

We show that this sufficient sampling level is O(log(n)) and the “small” probabilities of selecting

the sub-optimal action after sufficient sampling are so small as to converge to a constant. Thus by

re-expressing expected regret as a function of the number of plays of sub-optimal actions, we can

bound it from above as the sum of a O(log(n)) term derived from the sufficient sampling level and

a constant independent of n.

To count the plays of sub-optimal actions we maintain counters Nk,t, which collectively count

the number of suboptimal plays. We update them as follows. Firstly, after the K initialisation

rounds we setNk,K = 1 for k ∈ [K]. Thereafter, in each round t > K, let k′ = arg minj:gj,t>0Nj,t−1,

where if k′ is non-unique, we choose a single value randomly from the minimising set. If gTt · λ 6=

optλ,γ then we increment Nk′ by one, i.e. set Nk′,t = Nk′,t−1 + 1. The key consequences of these

updating rules are that
∑K

k=1 Nk,t provides an upper bound on the number of suboptimal plays in t

rounds, and Dk,t ≥ γk,minNk,t for all k and t.

Proof of Theorem 4.4.1: We prove the theorem by decomposing regret into a function of the

number of plays of suboptimal arms, up to and after some sufficient sampling level. We then

introduce two propositions which give bounds for quantities in the decomposition which are then

combined to give the bound in (4.4.4). The proofs of these propositions are reserved for Section

4.7.3.

Let N l,suf
k,t , N l,und

k,t for l ∈ [Bk] be counters associated with elements of Gk,B for k ∈ [K]. These

counters are defined as follows:

N l,suf
k,n =

n∑
t=K+1

I{gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 > hk,n(∆k,l)}, (4.4.6)

N l,und
k,n =

n∑
t=K+1

I{gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ≤ hk,n(∆k,l)}, (4.4.7)

where hk,n(∆) = 12b(∆) log(n)K2

γk,min∆2 . A cell k is said to be sufficiently sampled with respect to a choice
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of detection probabilities glk,B if Nk,t−1 > hk,n(∆k,l), and thus N l,und
k,n , N l,suf

k,n count the suboptimal

plays leading to incrementing N l
k,n up to and after the sufficient level, respectively.

From the definitions (4.4.6) and (4.4.7) we haveNk,n = 1+
∑Bk

l=1(N l,suf
k,n +Nund

k,n ). The expected

regret at time horizon n can also be bounded above using this notation as

Regλ,γ(n) ≤ E

[
K∑
k=1

(
∆k,1 +

Bk∑
l=1

(N l,suf
k,n +N l,und

k,n ) ·∆k,l

)]
(4.4.8)

where ∆k,1 arises as a worst case view of the initialisation. We can derive an analytical bound on

regret by bounding the expectations of the random variables in (4.4.8).

Firstly, for the beyond sufficiency counter we have

Proposition 4.4.2. For any time horizon n > K,

E

(
K∑
k=1

Bk∑
l=1

N l,suf
k,n

)
≤ π2

3
·K. (4.4.9)

The full proof of Proposition 4.4.2 is given in Section 4.7.3, but it depends in particular on

the following Lemma describing the concentration of filtered Poisson data. The derivation of the

concentration result for the observations Y1, ..., Yt requires careful treatment as the parameters of

these distributions, and therefore the observations themselves, are not independent. The stochastic

dependencies between the sequence of random variables γ1, ..., γs may be highly complex, so rather

than attempt to quantify these relationships exactly, we appeal to martingale theory which allows

us to derive the concentration result without assuming independence. We provide the necessary

concentration result in the lemma below.

Lemma 4.4.3. Let Y1, ..., Ys be any sequence of Poisson random variables with means γ1λ, ...γsλ

respectively, such that the sequence {Zj}sj=1 is a martingale whereZj =
∑j

i=1(Yi−E(Yi|Yi−1, ..., Y1)).
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Then, given parameters t ≥ s and λmax ≥ λ the following holds:

P

(∣∣∣∣
∑s

j=1 Yj∑s
j=1 γj

− λ
∣∣∣∣ ≥ 6 max(1,

√
λmax) log(t)∑s

j=1 γj
+

√
6λmax log(t)∑s

j=1 γj

)
≤ 2t−3. (4.4.10)

The proof of this Lemma is given in Section 4.7.2. The consequence of this Lemma is that the

UCB indices (4.4.3) are of the correct form to guarantee that the probability of making suboptimal

plays beyond the sufficient sampling level is small.

For the under sufficiency counter we have the following proposition, also proved in Section

4.7.3,

Proposition 4.4.4. For any time horizon n > K and k : ∆k
min > 0,

Bk∑
l=1

N l,und
k,n ∆k,l ≤ hk,n(∆k,Bk)∆k,Bk +

∫ ∆k,1

∆k,Bk

hk,n(x)dx. (4.4.11)

Combining the decomposition (4.4.8), with the bounds (4.4.9) and (4.4.11) we have

Regλ,γ(n) ≤ E
( K∑

k=1

(
∆k,1 +

Bk∑
l=1

(N l,suf
k,n +N l,und

k,n )∆k,l
))

= E

(
K∑
k=1

(
∆k,1 +

Bk∑
l=1

N l,suf
k,n ∆k,l

))
+ E

(
K∑
k=1

Bk∑
l=1

N l,und
k,n ∆k,l

)

≤ K∆max + E

(
K∑
k=1

Bk∑
l=1

N l,suf
k,n ∆k,l

)

+
∑

k:∆k
min>0

(
hk,n(∆k,Bk)∆k,Bk +

∫ ∆k,1

∆k,Bk

hk,n(x)dx

)

≤
(π2

3
+ 1
)
K∆max +

∑
k:∆k

min>0

(
hk,n(∆k

min)∆k
min +

∫ ∆k
max

∆k
min

hk,n(x)dx

)
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=
∑

k:∆k
min>0

12K2

γk,min

[
b(∆k

min)

∆k
min

+

∫ ∆k
max

∆k
min

b(x)

x2
dx

]
log(n) +

(
π2

3
+ 1

)
K∆max. �

In the remainder of this section we show that the bound obtained in Theorem 4.4.1 is of optimal

order, by deriving a lower bound on the expected regret of the best possible policies. We also

proceed to show a second upper bound of sub-optimal order with respect to n but that has the

advantage of holding for any problem instance, and therefore does not depend on the optimality

gaps, ∆k
min and ∆k

max, ∀k ∈ [K].

Lower Bound on Regret

To analyse the performance of the best possible policies, we introduce the notion of a uniformly

good policy. A uniformly good policy (Lai and Robbins, 1985) is one where

E

( n∑
t=1

I{gt = g}
)

= o(nα) ∀ α > 0

for every g : ∆g > 0 and every λ ∈ RK
+ . Clearly, then all uniformly good policies must eventu-

ally favour optimal actions over suboptimal ones - with the suboptimal actions being necessary to

accurately estimate λ. For a given rate vector λ we define the set of optimal actions as

J(λ) = {g ∈ G : gT · λ = optλ,γ}.

We write S(λ) = G\J(λ) to be the set of suboptimal actions. The difficulty of a particular problem

depends on the particular combination of λ and γ. We define

I(λ) = {k : ∃ g ∈ J(λ) s.t. gk > 0}
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as the set of arms which are played in at least one optimal action and

B(λ) = {θ ∈ RK
+ : gT · θ < optθ,γ ∀g ∈ J(λ) and θk = λk ∀k ∈ I(λ)}

as the set of mean vectors such that all actions in J(λ) are suboptimal but this cannot be discerned

by playing only actions in J(λ). The larger the set B(λ), the more challenging the problem is. If

I(λ) = [K], then one can simultaneously play optimal actions and gather the information neces-

sary to affirm that these actions are optimal. In such a case the lower bound on expected regret is

simply 0.

We have the following lower bound on regret for any uniformly good policy. A key consequence

of this result is the assertion that policies withO(log(n)) regret are indeed of optimal order and thus

that the regret induced by the FP-CUCB algorithm in case (I) grows at the lowest achievable rate.

This result is analogous to results in other classes of bandit problem as shown by Lai and Robbins

(1985) and Burnetas and Katehakis (1996).

Theorem 4.4.5. For any λ ∈ RK
+ such that B(λ) 6= ∅, and for any uniformly good policy π for the

sequential surveillance problem with known γ, we have

lim inf
n→∞

Regπλ,γ(n)

log(n)
≥ c(λ) (4.4.12)

where c(λ) is the optimal value of the following optimisation problem

inf
d≥0

∑
g∈S(λ)

dg∆g (4.4.13)

such that inf
θ∈B(λ)

∑
g∈S(λ)

dg

K∑
k=1

gkkl(λk, θk) ≥ 1. (4.4.14)

and kl(λ, θ) = λ log(λ
θ
)+θ−λ is the Kullback Leibler divergence between two Poisson distributions
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with mean parameters λ, θ respectively.

We prove this theorem fully in Section 4.7.4, but here note that a key step of its proof is to

invoke Theorem 1 of Graves and Lai (1997), which is a similar result for a more general class of

controlled Markov Chains. It is possible to derive an analytical expression giving a lower bound

on c(λ) by following steps similar to those in the proof of Theorem 2 in Combes et al. (2015).

However we omit this here in the interests of succinctness as it is not an especially useful or elegant

expression.

Gap-free upper bound on regret

The logarithmic order bounds are useful as they establish the order-optimality of the UCB

algorithm. However, the coefficients may be very large in problem instances where the ∆k
min

terms are very small. Additionally, in absence of knowledge of the ∆k,min terms they do little

to inform one of expected performance of the algorithm. For these reasons, we also present the

following upper bound on regret, which is order-suboptimal, being of order O(K
√
n log(n)), but

holds uniformly across any choice of λ ∈ [0, λmax]
K and does not depend on the optimality gaps.

Theorem 4.4.6. The regret of the FP-CUCB algorithm with λmax applied to the sequential surveil-

lance problem with known γ satisfies

RegFP−CUCBλ,γ (n) ≤

√
92K2λmax
γmin

n log(n) +
24K

√
λmax,1

γmin
log2(n) +

5Kλmax
2

(4.4.15)

where λmax,1 = max(1, λmax).

We note that although the dependence on the optimality gaps may be removed, the dependence

on the minimal detection probability remains. This has an important relationship with performance

in our problem because it controls the information gained per action.
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Proof of Theorem 4.4.6: We first consider the following decomposition of regret, which works by

adding and subtracting the ‘reward’ with respect to inflated rates λ̄t of the action at selected in

round t, and then using that by definition rλ̄t,γ(at) ≥ rλ̄t,γ(a∗),

RegFP−CUCBλ,γ (n) = E
( n∑

t=1

rλ,γ(a∗)− rλ,γ(at)

)
= E

( n∑
t=1

rλ,γ(a∗)− rλ,γ(at) + rλ̄t,γ(at)− rλ̄t,γ(at)

)

= E
( n∑

t=1

K∑
k=1

λkg
∗
k − λ̄ktgkt + λ̄ktgkt − λkgkt

)

≤ E
( n∑

t=1

K∑
k=1

(λk − λ̄kt)g∗k + (λ̄kt − λk)gkt
)

=
n∑
t=1

K∑
k=1

E
(

(λk − λ̄kt)
)
g∗k +

n∑
t=1

K∑
k=1

E
(

(λ̄kt − λk)gkt
)

(4.4.16)

The terms of the first sum in (4.4.16) are very unlikely to be positive, increasingly so as more data

is collected. If we upper bound by ignoring the case of negative terms we have:

n∑
t=1

K∑
k=1

E
(

(λk − λ̄kt)
)
g∗k

≤
n∑
t=1

K∑
k=1

g∗kP(λk > λ̄kt)E(λk − λ̄kt|λk > λ̄kt)

≤
n∑
t=1

λmax

K∑
k=1

P(λk > λ̄kt)

= Kλmax

n∑
t=1

P
( K∑

k=1

λk >

K∑
k=1

∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

+
6 max(1,

√
λmax) log(t)∑t−1

s=1 γk,s
+

√
6λmax log(t)∑t−1

s=1 γk,s

)
≤ Kλmax

n∑
t=1

t−3 ≤ 5Kλmax
4

(4.4.17)
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where the second inequality holds since g∗KE(λk − λ̄kt) ≤ λmax ∀k, and where the penultimate

inequality is due to an application of Lemma 4.4.3.

Now consider the second sum in (4.4.16)

n∑
t=1

K∑
k=1

E
(

(λ̄kt − λk)gkt
)

=
n∑
t=1

E
( K∑

k=1

γk,t

(∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

+
6 max(1,

√
λmax) log(t)∑t−1

s=1 γk,s
+

√
6λmax log(t)∑t−1

s=1 γk,s
− λk

))

≤
n∑
t=1

KλmaxP
( K∑

k=1

∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

− λk >
K∑
k=1

6 max(1,
√
λmax) log(t)∑t−1

s=1 γk,s
+

√
6λmax log(t)∑t−1

s=1 γk,s

)

+
n∑
t=1

E
( K∑

k=1

2γk,t

(6 max(1,
√
λmax) log(t)∑t−1

s=1 γk,s
+

√
6λmax log(t)∑t−1

s=1 γk,s

))

≤ 5Kλmax
4

+ E
( n∑

t=1

K∑
k=1

12γk,t max(1,
√
λmax) log(t)∑t−1

s=1 γk,s

)
+ E

( n∑
t=1

K∑
k=1

γk,t

√
24λmax log(t)∑t−1

s=1 γk,s

)

≤ 5Kλmax
4

+ 12 max(1,
√
λmax) log(n)E

( n∑
t=1

K∑
k=1

γk,t∑t−1
s=1 γk,s

)

+
√

24λmax log(n)E
( n∑

t=1

K∑
k=1

γk,t√∑t−1
s=1 γk,s

)
. (4.4.18)

Here, we have again used the property that γk,t(λ̄kt−λk) is bounded for all k, t and applied Lemma

4.4.3 in the penultimate inequality. The two expectations remaining in (4.4.18) can be bounded in

terms of n. Considering the expectation in the final term, we have,

E
( n∑

t=1

K∑
k=1

γk,t√∑t−1
s=1 γk,s

)
≤

K∑
k=1

n∑
t=2

1√
(t− 1)γmin

≤ 2K
√
γmin

√
n. (4.4.19)
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Similarly for the other expectation, we have

E
( n∑

t=1

K∑
k=1

γk,t∑t−1
s=1 γk,s

)
≤

K∑
k=1

n∑
t=2

1

(t− 1)γmin
≤ K

γmin
(1 + log(n)). (4.4.20)

Finally, combining (4.4.17), (4.4.18), (4.4.19), and (4.4.20) we have the following gap-free bound

on regret:

RegFP−CUCBλ,γ (n) ≤ 5Kλmax
2

+
12K max(1,

√
λmax)

γmin
log(n)(1 + log(n))

+

√
92K2λmax log(n)n

γmin
,

as stated in Theorem 4.4.6. �

4.4.2 Case (II): Known scaling of detection probabilities

In the second case we suppose that we do not know exactly what probability of successful detec-

tion each searcher has in each cell, but that we have some idea of how these detection probabilities

change as the searchers are assigned more cells to search. If, for example, the searcher is moving

back-and-forth over l cells at a constant speed s, then the time between successive visits to a cell is

2l/s, suggesting that the detection probability may decay like s/(2l) with the number of cells l.

In order to be precise about this case we suppose that detection probabilities have the form

γk(a) =
U∑
u=1

φu(a)ωkuI{ak = u}, k ∈ [K], (4.4.21)

where φu : A → [0, 1] are known scaling functions, and ωku ∈ (0, 1] ∀k ∈ [K], u ∈ [U ] are

unknown baseline detection probabilities - the probability of searcher u detecting events in cell k

given that it is the only cell they are assigned to search. Functions φu are assumed to be decreasing
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in the number of cells searcher u must search. For instance, and as suggested in the preceding

paragraph, one suitable function may be φu(a) = (
∑K

k=1 I{ak = u})−1, the reciprocal of the

number of cells the searcher u is assigned. Searcher effectiveness may however decay more slowly

as the number of cells assigned grows if for instance events are visible for an extended period of

time.

In case (II) the action set and observed rewards remain entirely the same as for case (I), it

is the information initially available to the controller that differs. Here, both λ, the K-vector

of rate parameters, and ω = (ω1,1, ..., ω1,U , ω2,1..., ωK,U), the KU -vector of baseline detection

probabilities are unknown as opposed to solely λ in case (I). Due to nonidentifiability we cannot

make direct inference on λ or ω. However, simply estimating the products of certain components

is sufficient for optimal decision making as estimating the expected reward does not depend on

having separate estimates of each parameter. Therefore we can simply consider KU unknowns

τ = (ω1,1λ1, ..., ω1,Uλ1, ω2,1λ2, ..., ωK,UλK) when referring to the unknown parameters. For k ∈

[K], u ∈ [U ] and s ∈ [T ], φku,s will refer to the detection probability applied by searcher u to cell

k in round s.

As such this second case of the sequential search problem can also be modelled as a CMAB

problem with filtered feedback. The set of arms is given by searcher-cell pairs ku ∈ [K] × [U ].

Each arm ku is associated with a Poisson distribution with unknown parameter τku = ωk,uλk. We

continue to use A to specify the action set and filtering is governed by scaling function vectors

φ(a) = (φ1(a), ..., φU(a)). Let φku,t denote the filtering probability associated with the searcher-

cell pair ku in round t. It is 0 if ak,t 6= u and φu(at) if ak,t = u.

Let reward in this setting be defined

rλ,γ(a) = r̃τ ,φ(a) =
U∑
u=1

φu(a)
K∑
k=1

τkuI{ak = u}
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and define optimality gaps in this setting for ku ∈ [K]× [U ] as

∆ku
max = optλ,γ −min

a∈A
{rλ,γ(a) | rλ,γ(a) 6= optλ,γ , ak = u}

∆ku
min = optλ,γ −max

a∈A
{rλ,γ(a) | rλ,γ(a) 6= optλ,γ , ak = u}.

The appropriate FP-CUCB algorithm for case (II) then calculates upper confidence bounds for

each τku parameter instead of λk and as in the FP-CUCB algorithm for case (I) this induces an

optimistic estimate of the value of every a ∈ A. We describe this second variant in Algorithm 6.

Algorithm 6: FP-CUCB (case (II))

Inputs: Upper bound τmax ≥ τku, k ∈ [K] and u ∈ [U ].
Initialisation Phase: For t ∈ [KU ]

• Select an arbitrary allocation a ∈ A such that at 6= 0

Iterative Phase: For t = KU + 1, KU + 2, ...

• Calculate indices

τ̄ku,t =

∑t−1
s=1 Yku,s∑t−1
s=1 φku,s

+
6 max(1,

√
τmax) log(t)∑t−1

s=1 φku,s
+

√
6τmax log(t)∑t−1

s=1 φku,s
, ku ∈ [K]× [U ]

• Select an allocation a∗
λ̄t

such that r̃τ̄ t,φ(a∗
λ̄t

) = maxa∈A r̃τ̄ t,φ(a).

Since our CMAB model in case (II) and second variant of FP-CUCB are of the same form as in

case (I), the analogous results to Theorems 4.4.1 and 4.4.5 can be derived. Specifically we have a

regret upper bound for FP-CUCB in Corollary 4.4.7 and a lower bound for regret of any uniformly

good algorithm in Corollary 4.4.8.

Corollary 4.4.7. The regret of the FP-CUCB algorithm in case (b) defined by τmax applied to the
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sequential search problem as defined previously satisfies

RegFP-CUCB
λ,γ (n) ≤

∑
ku:∆ku

min>0

24(KU)2τmax,1c1,ku

φku,min∆ku
min

log(n) + 5KU∆max,

where τmax,1 = max(1, τmax), φku,min = mina:ak=u φu(a), and c1,k are known constants depending

on K,U,∆ku
max and ∆ku

min.

Corollary 4.4.8. For any τ ∈ RKU
+ such that B̃(τ ) 6= ∅, and for any uniformly good policy π for

the sequential surveillance problem with known φ, we have

lim inf
n→∞

Regπλ,γ(n)

log(n)
≥ c̃(τ )

where c̃(τ ) is the solution of an optimisation problem analogous to (4.4.13).

Precise specification of c̃(τ ) requires redefining notation from Section 4.4.1 in the context of

case (II) and produces an entirely unsurprising analogue. In the interests of brevity we omit this.

The techniques used in proving Theorems 4.4.1 and 4.4.5 can be easily extended to prove Corol-

laries 1 and 2.

4.5 Numerical Experiments

We now numerically evaluate the performance of the FP-CUCB algorithm in comparison to

a greedy approach and Thompson Sampling (TS). The greedy approach is one which always se-

lects the action currently believed to be best (following an initialisation period, where each cell is

searched at least once). As such it is a fully exploitative policy which fails to recognise the benefit

of the information gain inherent in exploration. TS is a randomised, Bayesian approach where an

action is selected with the current posterior probability that it is the best one. This is achieved by
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sampling indices from a posterior distribution on each arm and passing these samples to the optimi-

sation algorithm. We define these algorithms in the setting of known detection probabilities (case

(I)) in Algorithms 7 and 8 respectively.

Algorithm 7: Greedy

Initialisation Phase: For t ∈ [K]

• Select an arbitrary allocation a ∈ A such that at 6= 0

Iterative Phase: For t = K + 1, K + 2, ...

• For each k ∈ [K] calculate λ̂k,t =
∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

• Select an allocation a∗
λ̂t

such that rλ̂t,γ(a∗
λ̂t

) = maxa∈A rλ̂t,γ(a).

Algorithm 8: Thompson Sampling (TS)

Inputs: Gamma prior parameters α, β
Iterative Phase: For t = 1, 2, ...

• For each k ∈ [K] sample λ̃k,t from a Gamma(α +
∑t−1

s=1 Yk,s, β +
∑t−1

s=1 γk(as)).

• Select an allocation a∗
λ̃t

such that rλ̃t,γ(a∗
λ̃t

) = maxa∈A rλ̃t,γ(a).

We compare the FP-CUCB, Greedy and TS algorithms by randomly sampling λ and ω values

which define problem instances. We then test our algorithms’ performance on data generated from

the models of these problem instances. We assume that detection probabilities have the form given

in (4.4.21) but we know both the φ functions and ω values.

Specifically, we conduct four tests encompassing a range of different problem sizes and param-

eter values to display the efficacy of our proposed approach uniformly across problem instances. In

each test 50 (λ,ω) pairs are sampled and functions φ are selected. For each (λ,ω) pair 5 datasets

are sampled giving underlying counts of intrusion events in each cell in each round up to a horizon
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of n = 2000. This gives us 250 simulations for each test framework. Parameters are simulated as

below:

(i) K = 15 cells and U = 5 searchers. Cell means λk are sampled from a Uniform(10, 20)

distribution for k ∈ [K]. Baseline detection probabilities ωku are sampled from Beta(u, 2)

distributions for u ∈ [U ], k ∈ [K]. Scaling functions are φu(a) = (
∑K

k=1 I{ak = u})−1 for

u ∈ [U ], a ∈ A.

(ii) K = 50 cells and U = 3 searchers. Cell means λk are sampled from Uniform distributions

on the intervals [k, k+10] for k = 1, ..., 10, [20−k, 30−k] for k = 11, ..., 20, [k−20, k−10]

for k = 21, ..., 30, [40− k, 50− k] for k = 31, ..., 40, and [k− 40, k− 30] for k = 41, ..., 50.

Baseline detection probabilities ωku are sampled from Beta(u+2, 2) distributions for u ∈ [U ],

k ∈ [K]. Scaling functions are φu(a) = (0.5 + 0.5
∑K

k=1 I{ak = u})−1 for u ∈ [U ], a ∈ A.

(iii) K = 25 cells and U = 10 searchers. Cell means λk are sampled from a Uniform(90, 100)

distribution for k ∈ [K]. Baseline detection probabilities ωku are sampled from a Beta(30, 5)

distribution for u ∈ [U ], k ∈ [K]. Scaling functions are φu(a) = (
∑K

k=1 I{ak = u})−1 for

u ∈ [U ], a ∈ A.

(iv) K = 25 cells and U = 5 searchers. Cell means λk are sampled from a Uniform(0.4, 1)

distribution for k ∈ [K]. Baseline detection probabilities ωku are sampled from a Beta(1, 1)

distribution for u ∈ [U ], k ∈ [K]. Scaling functions are φu(a) = (0.5 + 0.5
∑K

k=1 I{ak =

u})−1 for u ∈ [U ], a ∈ A.

We test a variety of parametrisations of FP-CUCB (in terms of λmax) and TS (in terms of the

prior mean and variance - from which particular α and β values can be uniquely found) in each

test. In each case we use λmax values which are both larger and smaller than the true maximal rate.

Similarly we investigate TS with prior mean larger and smaller than the true maximal rate and with

several different levels of variance. It is not always fully realistic to assume knowledge of λmax
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will be perfect and therefore it is of interest to investigate the effects of varying it. Also, the choice

of priors in TS is a potentially subjective one and it is important to understand its impact.

We measure the performance of our algorithms by calculating the expected regret incurred by

their actions, rescaled by the expected reward of a single optimal action. For an algorithm A and

particular history Hn we write

ScaleRegAλ,γ(Hn) =

∑n
t=1 ∆at

optλ,γ
.

We calculate this value for all algorithms, all 250 datasets and rounds 1 ≤ n ≤ 2000. We choose

to rescale our regret to make a fairer comparison across the 50 different problem instances in each

test (i)-(iv) which will all have different optimal expected rewards.

In Figure 4.5.1 we illustrate how regret evolves over time by plotting the median scaled regret

across the 250 runs of each algorithm in all rounds of test (i). The rate of growth shown in these

plots is typical of the results in the other three tests. An immediate observation is that the greedy

algorithm does very poorly on average and its full median regret over the 2000 rounds cannot be

included in the graphs without obscuring differences between the other algorithms. We see also that

the performance of both FP-CUCB and TS is strongly linked to the chosen parameters. For the FP-

CUCB algorithm it seems in Figure 1 that the larger the parameter λmax is the larger the cumulative

regret becomes. For TS, larger prior variances seem to induce lower regret, the relationship with

the prior mean is more complex. Accurate specification of the prior mean seems to ensure good

performance, but underestimation and overestimation of the mean can lead to poor performance

(particularly when the variance is small).

We analyse these behaviours further in Figures 4.5.2 and 4.5.3. Here we calculate a scaled

regret at time n = 2000 for all 250 runs of each algorithm and plot the empirical distribution of

these values for each parameterisation of each algorithm. The results for tests (i) and (ii) are given in

Figure 4.5.2 and for tests (iii) and (iv) in Figure 4.5.3. We omit the greedy algorithm’s performance
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from these figures as the values are so large. In Section 4.7.5 we provide median values and lower

and upper quantiles of the scaled regret for each algorithm. We see from these values that the

greedy algorithm performs substantially worse than the FP-CUCB and TS algorithms which better

address the exploration-exploitation dilemma.

Examining Figures 2 and 3 we see that the FP-CUCB algorithm enjoys greater robustness to

parameter choice than the TS approach. In particular in the results of test (iii) we see that many

parametrisations of TS give rise to a long tailed distribution of round 2000 regret - meaning the

performance of TS is highly variable and often poor. This variability of performance does seem

to coincide with underestimation of the mean, however FP-CUCB manages to maintain strong

performance even when the λmax parameter is far from the true maximal rate. When the prior

variance is sufficiently large and the prior mean is close to the true λmax TS seems to do the best

job of balancing exploration and exploitation and incurs the smallest regret.

4.6 Discussion

In this chapter we have considered the problem of adaptively assigning multiple searchers to

cells along a line (in space or time) in order to detect the maximum number of events occurring

along the line. We have modelled the problem, and proposed and analysed solution methods. The

challenge at the heart of this problem is to correctly balance exploration and exploitation, in the

face of initial ignorance as to the arrival process of events.

We formulated our sequential decision problem as a combinatorial multi-armed bandit with

Poisson rewards and a novel filtered feedback mechanism. To design quality policies for this prob-

lem we first derived an efficient solution method to the full information problem. This IP forms the

backbone of all policies for the sequential problem, as it allows us to quickly identify an optimal

solution given some estimate of the arrival process’ rate parameters.
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Figure 4.5.1: Cumulative Regret histories for Test (i). Upper left: FP-CUCB, upper right: TS with
a prior variance of 1, lower left: TS with a prior variance of 5, lower right: TS with prior variance
of 10. In each case the plotted lines are the median values of scaled regret calculated at each time
point from 1 to 2000. Black lines represent λmax = 1 or a prior mean of 1, red represents the same
parameters taking the value 5, green 10, blue 20, grey 40, and pink 60. In all sub-figures the teal
line represents regret of the greedy algorithm. Note that the vertical axis scales differ between the
top and bottom rows.
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Figure 4.5.2: Scaled regret distributions in tests (i) and (ii). In both tests we have a true largest rate
of 20.
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Figure 4.5.3: Scaled regret distributions in tests (iii) and (iv). In test (iii) the true largest rate is 100,
and in test (iv) the true largest rate is 1.
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We considered the sequential problem in two informational scenarios - firstly where the prob-

ability of detecting events is known, and secondly where these probabilities are unknown but one

knows how they scale as the number of cells searched increases. For both of these cases we pro-

posed an upper confidence bound approach. We derived lower bounds on the regret of all uniformly

good algorithms under this our new feedback mechanism and upper bounds on the regret of our

proposed approach.

In addition to the advantage of theoretical guarantees, the FP-CUCB algorithm is somewhat

more reliable than TS. It is clear from the results of Section 4.5 that TS outperforms FP-CUCB for

certain parametrisations (commonly larger choices of variance and mean close to the true arrival

rates). However, we see that TS is particularly vulnerable to poor performance when the mean of

the prior underestimates the true rate parameters. Even though our theoretical results for FP-CUCB

depend on λmax ≥ λk, k ∈ [K] we see that it is robust to underestimating this parameter. The reason

FP-CUCB still performs well even when a key assumption does not hold is likely due to the fact

that de la Peña’s inequality does not give the tightest possible bound on Poisson tail probabilities

(and therefore the rate of concentration of the mean). However, in order to construct the algorithm

we required a symmetric tail bound for which an inflation term giving the type of concentration in

Lemma 1 could be identified. Other bounds may be tighter but lack these properties.

The variability of TS most likely arises due to the potential for the Gamma conjugate prior to be

dominated by a small number of observations and create a scenario where TS behaves similarly to a

greedy policy - sometimes fixing on good actions, but sometimes on poor ones. This phenomenon

of variability of regret is understudied in multi-armed bandits, not least because it is much more

challenging to analyse theoretically. However, in practical scenarios (where of course the learning

and regret minimisation process will only occur once) this is a risk of TS. We note that both algo-

rithms comfortably outperform the greedy algorithm in almost all examples, which speaks to the

benefit of making some attempt to balance exploration and exploitation.
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An alternative treatment of bandit decision making is the non-stochastic or adversarial bandit

(Auer et al., 1995). Under such a model, the assumptions that rewards are drawn i.i.d. from a fixed

distribution are dropped, and may instead be any arbitrary sequence. Adversarial bandits necessitate

a randomised strategy to guarantee good performance across any chosen reward sequence. Such

methods have been developed in the MAB and CMAB settings (Auer et al., 1995; Cesa-Bianchi

and Lugosi, 2012). As further work the problem could be studied under a non-stochastic, or even

a fully game-theoretic framework, relaxing some of our assumptions. This would however require

a markedly different set of algorithmic and analytical tools. Within application domains, variants

of the problem exist all along the spectrum from purely stochastic to fully game-theoretic. Our

work has considered the stochastic setting in detail and in doing so provided a solution to many

real-world problems.

4.7 Additional proofs and results

4.7.1 Proof of NP-hardness of the IP (4.3.2)

Theorem 4.7.1. Integer Linear Programs of the following type are NP-hard in the strong sense:

max
aiju,1≤i≤j≤K,u∈[U ]

K∑
i=1

K∑
j=i

U∑
u=1

qijuaiju

such that
K∑
i=1

K∑
j=i

aiju ≤1, u ∈ [U ]

K∑
i=1

K∑
j=i

U∑
u=1

aiju ≤1, k ∈ [K]

aiju ∈{0, 1}, 1 ≤ i ≤ j ≤ K, u ∈ [U ].

Proof of Theorem 4.7.1:
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The following problem is known to be NP-complete in the strong sense (Garey and Johnson,

1979):

3-PARTITION: Given positive integers w1, ..., w3n and a positive integer “target” t, does there

exist a partition of {1, ..., 3n} into subsets S1, ..., Sn such that |Si| = 3 and
∑

j∈Si wj = t for

i = 1, ..., n?

We reduce this to an IP of the given type as follows. First, we assume without loss of generality

that
∑3n

j=1 wj = nt, since otherwise the answer to 3-PARTITION is trivially “no”. Let K = nt

and U = 3n. For k = 1, ..., 3n, set qiju = wu if j − i = wu and the half-open interval [i, j) does

not include a multiple of t. Set all other qiju to zero. Then the answer to 3-PARTITION is “yes”

if and only if there is a solution to the IP with profit equal to nt. �

4.7.2 Lemma 4.4.3 Proof: Concentration of filtered Poisson estimator

By definition Zj =
∑j

i=1(Yi − E(Yi)), the sum of the accumulated noise to round t is a mar-

tingale. Therefore, Wj = Zj − Zj−1 =
∑j

i=1(Yi − E(Yi)) −
∑j−1

i=1 (Yi − E(Yi)) = Yj − E(Yj) is

a martingale difference sequence. We will utilise the following concentration result for martingale

difference sequences due to de la Peña (1999):

Theorem 4.7.2 (de la Peña’s inequality). Let {di,Fi} be a martingale difference sequence with

E(dj|Fj−1) = 0, E(d2
j |Fj−1) = σ2

j , V 2
n =

∑n
j=1 σ

2
j . Furthermore assume that there exists c,

0 < c <∞ such that E(|dj|k|Fj−1) ≤ k!
2
σ2
j c
k−2 for k ≥ 2. Then, for all x, y > 0

P(
n∑
i=1

di ≥ x, V 2
n ≤ y for some n) ≤ exp

(
−x2

2(y + cx)

)
. (4.7.22)

Plainly, E(Wj|·) = 0 and E(W 2
j |·) = γjλ. The proof of the condition on higher order moments

is more involved. Firstly we define µk to be the kth central moment of a Poisson distribution with

parameter λ. Riordan (1937) gives us the following second order recurrence relationship for the
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central moments µ of the Poisson distribution

µk = λ

(
dµk−1

dλ
+ (k − 1)µk−2

)
, k = 2, 3, ...

We first demonstrate a bound on the order (with respect to λ) of µk.

Lemma 4.7.3. For k ≥ 2, µk = o(λk/2).

Proof of Lemma 4.7.3 We can prove Lemma 4.7.3 via an induction argument. Note that µ1 = 0

and µ2 = λ. Assume for some r > 3 that µr = o(λr/2) and µr−1 = o(λ(r−1)/2). Then consider

µr+1 = λdµr
dλ

+ rλµr−1. For the first term we have dµr
dλ

= o(λr/2−1) and thus λdµr
dλ

= o(λr/2). The

second term is plainly of order o(λ(r+1)/2) and thus µr+1 = o(λ(r+1)/2), completing the induction

argument and proving Lemma 4.7.3 �.

Now introduce νk = k!
2
λmax(1,

√
λ)k−2 for k ≥ 2. The following lemma will be sufficient to

demonstrate that the condition on higher order moments holds.

Lemma 4.7.4. For k ≥ 2, νk ≥ µk.

Proof of Lemma 4.7.4 Firstly we write νk as a recurrence relationship

νk = kmax(1,
√
λ)νk−1 = k(k − 1) max(1,

√
λ)2νk−2, k = 2, 3, ...

We also prove this Lemma via an induction argument, which proceeds as follows. For µk we

have the following initial values µ2 = λ, µ3 = λ, µ4 = 4λ2 and for νk we have ν2 = λ, ν3 =

3λmax(1,
√
λ), ν4 = 12λmax(1,

√
λ)2. Clearly, these initial values satisfy νk ≥ µk. Now assume

that for some p > 5, we have νp ≥ µp and νp−1 ≥ µp−1. Then consider µp+1 as follows:

µp+1 = λ
dµp
dλ

+ pλµp−1

≤ λ
dµp
dλ

+ pλνp−1
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≤ p

2
µp + pλνp−1

≤ p

2
νp + pλνp−1

=
p2

2
max(1,

√
λ)νp−1 + pλνp−1

≤ max(1,
√
λ)2(

1

2
p2 + p)νp−1

≤ max(1,
√
λ)2(p+ 1)pνp−1 = νp+1,

completing the proof by induction. The first and third inequalities are due to the assumed relation-

ships for p and p−1, the second inequality is a consequence of Lemma 4.7.3 and the differentiation

of a polynomial. �.

The martingale difference sequence Wj therefore satisfies the conditions of de la Peña’s in-

equality with c = max(1,
√
λ) and we have

P
( s∑

j=1

Wj ≥ x,
s∑
j=1

E(W 2
j |·) ≤ y

)
≤ exp

(
−x2

2y + 2 max(1,
√
λ)x

)
.

We have that
∑s

j=1 E(W 2
j |·) ≤

∑s
j=1 γjλ with probability 1, so we may use the simplified result

P
( s∑

j=1

Wj ≥ x

)
≤ exp

(
−x2

2λ
∑s

j=1 γj + 2 max(1,
√
λ)x

)
.

Then if x = 6 max(1,
√
λmax) log(t) +

√
6λmax

∑s
j=1 γj log(t) , and introducing the shorthand

λm = λmax to save space, we have,

P

( n∑
i=1

(Yi − E(Yi)) > x

)
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≤ exp

(
−

36 max(1, λm) log2(t) + 12 max(1,
√
λm) log(t)

√
6λm

∑s
j=1 γj log(t) + 6λm

∑s
j=1 γj log(t)

2λ
∑s

j=1 γj + 12 max(1,
√
λ · λm) log(t) + 2 max(1,

√
λ)
√

6λm
∑s

j=1 γj log(t)

)

= exp

(
− log(t)

36 max(1, λm) log(t) + 12 max(1,
√
λm)

√
6λm

∑s
j=1 γj log(t) + 6λm

∑s
j=1 γj

12 max(1,
√
λ · λm) log(t) + 2 max(1,

√
λ)
√

6λm
∑s

j=1 γj log(t) + 2λ
∑s

j=1 γj

)

= exp

(
− 3 log(t)

12 max(1, λm) log(t) + 4 max(1,
√
λm)

√
6λm

∑s
j=1 γj log(t) + 2λm

∑s
j=1 γj

12 max(1,
√
λ · λm) log(t) + 2 max(1,

√
λ)
√

6λm
∑s

j=1 γj log(t) + 2λ
∑s

j=1 γj

)

≤ t−3.

It follows that

P

( n∑
i=1

(Yi − E(Yi)) > 6 max(1,
√
λm) log(t) +

√√√√6λm

s∑
j=1

γj log(t)

)

= P

( n∑
i=1

Yi − λ
n∑
i=1

γi > 6 max(1,
√
λm) log(t) +

√√√√6λm

s∑
j=1

γj log(t)

)

= P

(∑n
i=1 Yi∑n
i=1 γi

− λ >
6 max(1,

√
λmax) log(t) +

√
6λm

∑s
j=1 γj log(t)∑n

i=1 γi

)
≤ t−3.

Finally, note that Z̄j =
∑j

i=1(E(Yi) − Yi) = −Zj is also a martingale whose difference series

satisfies the conditions of de la Peña’s inequality and thus we can achieve the same bound for

deviations on the left, and introduce achieve the required result. �

4.7.3 Theorem 4.4.1 Proof: Expected regret of FP-CUCB

To complete the proof of Theorem 4.4.1 provided in the main text, we separately prove Propo-

sitions 4.4.2 and 4.4.4.

Proof of Proposition 4.4.2:
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Here we prove a bound on the expected number of plays of an arm after it has reached its

sufficient sampling level. Define the event

Nt =

{∣∣∣∣
∑t−1

j=1 Yk,j

Dk,t−1

− λk
∣∣∣∣ < 6 max(1,

√
λmax) log(t)

Dk,t−1

+

√
6λmax log(t)

Dk,t−1

∀k ∈ [K]

}
.

Define random variables Λk,t = 6 max(1,
√
λmax) log(t)

Dk,t−1
+
√

6λmax log(t)
Dk,t−1

for k ∈ [K] and Λt = maxk:gk,t>0(Λk,t).

Define Λk,l
t = 6 max(1,

√
λmax) log(t)

γk,minhk,n(∆k,l)
+
√

6λmax log(t)
γk,minhk,n(∆k,l)

for l ∈ [Bk], k ∈ [K], t ∈ [n], which are not

random variables. By these definitions and the definition of UCB indices λ̄k,t we have the following

properties.

Nt ⇒ λ̄k,t − λk > 0 ∀k ∈ [K]

Nt ⇒ λ̄k,t − λk < 2Λt ∀k : gk,t > 0

{gt = glk,B, Nk,t > Nk,t−1, Ns,t−1 > hk,n(∆k,l) ∀s : gs,t > 0} ⇒ Λk,l
t > Λt ∀k ∈ [K],∀l ∈ [Bk]

For any particular k ∈ [K] and l ∈ [Bk] if {Nt,gt = glk,B, Nk,t > Nk,t−1, Ns,t−1 > hk,n(∆k,l) ∀s :

gs,t > 0} holds at time t the following is implied

gTt · λ+ 2KΛk,l
t > gTt · λ+ 2KΛt ≥ gTt · λ̄t ≥ (g∗λ)T · λ̄t ≥ (g∗λ)T · λ = optλ,γ (4.7.23)

where g∗λ is an action that is optimal with respect to rate vector λ. However, by definition 2KΛk,l
t ≥

∆k,l and therefore (4.7.23) is a contradiction of the definition of ∆k,l = optλ,γ−glk,B ·λ. Therefore

P(Nt,gt = glk,B, Nk,t > Nk,t−1, ∀s : gs,t > 0, Ns,t−1 > hk,n(∆k,l)) = 0 ∀k ∈ [K], ∀l ∈ [Bk]
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and

K∑
k=1

Bk∑
l=1

P(gt = glk,B, Nk,t > Nk,t−1, Ns,t−1 > hk,n(∆k,l) ∀s : gs,t > 0) ≤ P(¬Nt) ≤ 2Kt−2.

The bound on P(¬Nt) comes from applying Lemma 1 and is sufficient to prove Proposition 4.4.2

since

E

(
K∑
k=1

Bk∑
l=1

N l,suf
k,n

)
= E

(
n∑

t=K+1

K∑
k=1

Bk∑
l=1

I{gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 > hk,n(∆k,l)}

)

≤
n∑

t=K+1

2Kt−2 ≤ π2

3
·K. �

Proof of Proposition 2

Now consider the number of plays made prior to reaching the sufficient sampling level. Firstly

set hk,n(∆k,0) = 0 to simplify notation and consider the following steps. Then for any cell k in

{j ∈ [K]|∆j
min > 0}

Bk∑
l=1

N l,und
k,n ·∆k,l

=
n∑

t=K+1

Bk∑
l=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ≤ hk,n(∆k,l)

}
∆k,l

=
n∑

t=K+1

Bk∑
l=1

l∑
j=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,l

≤
n∑

t=K+1

Bk∑
l=1

l∑
j=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j
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as ∆k,1 ≥ ∆k,2 ≥ ... ≥ ∆k,Bk ,

≤
n∑

t=K+1

Bk∑
l=1

Bk∑
j=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j

=
n∑

t=K+1

Bk∑
j=1

I

{
gt ∈ Gk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j

=

Bk∑
j=1

n∑
t=K+1

I

{
gt ∈ Gk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j

≤
Bk∑
j=1

(
hk,n(∆k,j)− hk,n(∆k,j−1)

)
∆k,j

since Nk can only be incremented a maximum of hk,n(∆k,j)− hk,n(∆k,j−1) times while remaining

in this range

= hk,n(∆k,Bk)∆k,Bk +

Bk−1∑
j=1

hk,n(∆k,j) · (∆k,j −∆k,j+1)

≤ hk,n(∆k,Bk)∆k,Bk +

∫ ∆k,1

∆k,Bk

hk,n(x)dx.

The last inequality holds since hk,n(x) are decreasing functions. �

4.7.4 Theorem 4.4.5 Proof: Lower bound on regret

To prove Theorem 4.4.5, we must define the additional quantities necessary to apply Theorem

1 of Graves and Lai (1997) and frame the problem accordingly.

We consider the reward history (Yt)
n
t=1 to be a realisation of a controlled Markov Chain moving

on the state space NK where the controls are the detection probability vectors selected in each

round. Each control g ∈ G then has an associated set of λ parameter vectors under which it is an
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optimal control Λg = {λ ∈ RK
+ : gT · λ = optλ,γ}, which may be the empty set. For any states

y, z ∈ NK transition probabilities are straightforward Poisson probabilities due to independence

across rounds:

p(y, z;λ,g) = p(z;λ,g) =
K∏
k=1

(gkλk)
zke−gkλk

zk!
.

These transition probabilities define the Kullback Leibler Information number for any control g ∈

G:

Ig(λ,θ) =
K∑
k=1

log

(
p(zk;λ,g)

p(zk;θ,g)

)
p(zk;λ,g) =

K∑
k=1

kl(gkλk, γkθk) =
K∑
k=1

gkkl(λk, θk).

With these quantities and those defined in Section 4.4.1 we can apply Theorem 1 of Graves and

Lai (1997) to reach the following result for any uniformly good policy π

lim inf
n→∞

∑
g∈J\J(λ)

Ig(λ,θ)Eλ(
∑n

t=1 I{gt = g})
log(n)

≥ 1 for every θ ∈ B(λ).

Since Regπλ,γ(n) =
∑

g∈J\J(λ) ∆gEλ(
∑n

t=1 I{gt = g}) the required result follows. �

4.7.5 Numerical Results
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Algorithm Parameters 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 1 9.52 11.96 15.89
λmax = 5 36.42 42.53 50.03
λmax = 10 57.44 72.57 88.70
λmax = 20 89.07 117.97 143.95
λmax = 40 123.23 178.07 223.81
λmax = 60 143.87 215.46 276.25

Thompson Sampling

Mean=1, Variance=1 38.44 242.39 508.93
Mean=5, Variance=1 1.95 132.79 358.15

Mean=10, Variance=1 1.44 56.30 134.12
Mean=20, Variance=1 11.66 17.76 25.88
Mean=40, Variance=1 75.24 96.87 124.57
Mean=60, Variance=1 122.72 180.67 233.25
Mean=1, Variance=5 5.69 26.49 90.89
Mean=5, Variance=5 2.32 38.51 134.07

Mean=10, Variance=5 2.18 7.19 43.90
Mean=20, Variance=5 7.17 10.95 15.80
Mean=40, Variance=5 30.00 36.11 43.23
Mean=60, Variance=5 57.61 72.42 87.30
Mean=1, Variance=10 6.31 14.21 36.57
Mean=5, Variance=10 3.60 9.35 35.87

Mean=10, Variance=10 3.28 6.65 18.41
Mean=20, Variance=10 6.55 9.67 15.97
Mean=40, Variance=10 20.15 24.65 30.25
Mean=60, Variance=10 40.17 46.12 55.09

Greedy 79.77 679.76 1657.52

Table 4.7.1: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (i) data
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Algorithm Parameters 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 1 65.82 75.92 89.31
λmax = 5 269.77 297.74 323.55
λmax = 10 433.92 480.78 517.22
λmax = 20 577.74 661.08 754.25
λmax = 40 643.61 759.90 891.13
λmax = 60 665.45 794.38 931.36

Thompson Sampling

Mean=1, Variance=1 286.11 603.51 969.56
Mean=5, Variance=1 7.94 184.48 568.05

Mean=10, Variance=1 8.12 21.05 159.10
Mean=20, Variance=1 102.40 132.00 174.17
Mean=40, Variance=1 286.61 395.04 472.38
Mean=60, Variance=1 371.53 504.06 609.47
Mean=1, Variance=5 26.95 61.18 153.86
Mean=5, Variance=5 9.56 70.19 224.13

Mean=10, Variance=5 6.55 13.80 40.48
Mean=20, Variance=5 36.57 45.19 56.15
Mean=40, Variance=5 128.60 172.27 208.23
Mean=60, Variance=5 222.33 303.67 361.93
Mean=1, Variance=10 25.38 41.44 69.92
Mean=5, Variance=10 12.61 26.23 100.81

Mean=10, Variance=10 10.22 15.79 32.32
Mean=20, Variance=10 24.28 30.60 39.17
Mean=40, Variance=10 84.45 106.17 122.09
Mean=60, Variance=10 151.68 206.13 244.60

Greedy 296.46 720.45 1163.15

Table 4.7.2: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (ii) data
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Algorithm Parameter 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 1 2.17 3.37 7.20
λmax = 10 9.19 10.34 11.78
λmax = 25 15.92 18.45 21.33
λmax = 50 22.57 27.39 31.58
λmax = 100 30.41 37.59 44.85
λmax = 200 38.90 48.07 57.96

Thompson Sampling

Mean=1, Variance=5 30.47 66.95 115.65
Mean=10, Variance=5 36.78 64.41 98.24
Mean=25, Variance=5 29.06 58.44 95.57
Mean=50, Variance=5 10.82 39.65 71.71

Mean=100, Variance=5 4.83 6.05 7.71
Mean=200, Variance=5 28.24 34.20 40.37
Mean=1, Variance=10 12.61 52.06 97.08

Mean=10, Variance=10 33.99 68.30 109.44
Mean=25, Variance=10 30.97 64.55 105.03
Mean=50, Variance=10 17.32 46.39 80.35

Mean=100, Variance=10 4.26 5.52 7.09
Mean=200, Variance=10 21.37 25.06 29.00

Mean=1, Variance=25 3.87 37.19 102.98
Mean=10, Variance=25 36.51 66.12 107.72
Mean=25, Variance=25 30.87 64.73 106.71
Mean=50, Variance=25 20.21 51.32 86.70

Mean=100, Variance=25 3.86 5.09 6.79
Mean=200, Variance=25 14.08 15.92 18.09

Greedy 21.57 49.20 95.89

Table 4.7.3: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (iii) data
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Algorithm Parameters 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 0.1 47.56 87.07 162.36
λmax = 1 62.60 108.48 195.80
λmax = 5 98.70 163.13 279.62
λmax = 10 109.59 184.01 311.37
λmax = 20 116.40 200.99 336.25
λmax = 40 120.39 210.65 356.25

Thompson Sampling

Mean=0.1, Variance=1 70.68 136.84 284.14
Mean=1, Variance=1 42.78 61.44 91.98
Mean=5, Variance=1 43.96 75.38 119.21

Mean=10, Variance=1 75.45 118.86 197.36
Mean=20, Variance=1 104.58 174.02 291.32
Mean=40, Variance=1 119.72 207.46 349.74

Mean=0.1, Variance=5 94.23 246.71 467.06
Mean=1, Variance=5 43.48 73.41 119.94
Mean=5, Variance=5 41.71 60.07 88.64

Mean=10, Variance=5 45.15 72.69 119.42
Mean=20, Variance=5 69.43 113.12 191.90
Mean=40, Variance=5 102.60 169.98 281.94

Mean=0.1, Variance=10 134.60 320.63 588.63
Mean=1, Variance=10 48.26 81.35 146.95
Mean=5, Variance=10 41.43 58.66 84.74

Mean=10, Variance=10 40.78 62.10 99.55
Mean=20, Variance=10 55.42 89.68 146.88
Mean=40, Variance=10 86.98 141.99 239.18

Greedy 664.28 1825.61 1999.89

Table 4.7.4: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (iv) data



Chapter 5

Continuum Armed Bandit Model of

Sequential Event Detection

A version of this chapter has been published as Grant, J.A., Boukouvalas, A., Griffiths, R.,

Leslie, D.S., Vakili, S., and Munoz de Cote, E. (2019). Adaptive Sensor Placement for Continuous

Spaces. In Proceedings of 36th International Conference on Machine Learning.

This work was completed in collaboration with research staff at PROWLER.io, and the code to

produce the experiments and figures was produced by software engineers at PROWLER.io, with

my instruction on the desired output. The optimisation algorithm Action Selection by Iterative

Merging (AS-IM) and the proof of the bound on its sample complexity in Theorem 5.2.1 are thanks

to Sattar Vakili and are included for completeness, rather than under the assertion that they are my

own original work.

100



CHAPTER 5. CAB MODEL OF SEQUENTIAL EVENT DETECTION 101

5.1 Introduction

In this chapter we study the sequential event detection problem as a continuum-armed bandit

problem, with the application of sensor placement in mind. The model of reward and event detec-

tion is slightly different to that of the previous chapter. We suppose that a decision-maker is tasked

with placing a finite number of sensors along an interval. The decision-maker’s objective is to max-

imise, through time, a reward function which trades off the number of events detected with the cost

of sensing. At each step, each sensor is tasked with sensing a subinterval, with the cost of sensing

depending on the length of the subinterval. All the events that occur in a sensed subinterval are

detected, but none which occur outside a sensed subinterval will be detected. The most informative

action is to sense the entire interval, but this may not be the reward-maximising action due to the

cost of sensing. Hence the decision-maker must choose sensor placements to trade off learning

about regions where information is insufficient, while also capitalising on information they already

have to generate large rewards. In this chapter we consider the aim of minimising Bayesian regret,

the difference between the expected reward achieved by constantly selecting an optimal action and

the expected reward of actions actually taken, where the expectation is taken with respect to the

prior over the reward-generating parameters.

Our model most closely resembles the continuum-armed or X -armed bandit problem Agrawal

(1995). We recall that in a continuum-armed bandit (CAB) problem a decision-maker sequen-

tially selects points in some d-dimensional continuous space and receives reward in the form of a

noisy realisation of some unknown (usually Lipschitz smooth) function on the space. Our sensor

placement problem can map to this framework by considering that the placement of sensors can

be represented by the a vector of endpoints of the sensors’ subintervals. Note, however, that the

noise and feedback models in the sensor placement problem are more complex than in previous

treatments of CAB models, which have focused on scalar reward observations with bounded or

sub-Gaussian noise (e.g. Bubeck et al., 2011). In tackling the sequential event detection problem,
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we handle the added complexities of observing event locations and the heavier-tailed noise of the

Poisson distribution.

The method we will propose performs fast Bayesian inference on the rate function, by means

of the Bayesian histogram approach Gugushvili et al. (2018), and makes decisions to trade off ex-

ploration and exploitation using Thompson sampling (TS) (see e.g. Russo et al., 2018). Gugushvili

et al.’s approach to nonparametric inference on the continuous action space imposes a mesh struc-

ture over the interval, splitting it into a finite number of bins, with the mesh becoming finer as time

increases. Inference is then performed over the rate of event occurrence in each bin. TS meth-

ods select an action in a given round according to the posterior probability that it is optimal. In

our approach, this is implemented by sampling bin rates from the simple posterior distributions of

Gugushvili et al.’s model and selecting an optimal action for these sampled rates via an efficient

optimisation algorithm described in Section 5.2.4.

We analyse the Bayesian regret of the TS algorithm in this setting using similar techniques

to those of Russo and Van Roy (2014). This allows us to derive an Õ(T 2/3) upper bound on the

Bayesian regret that holds across all possible rate functions with a bounded maximum, and has

minimal dependency on the prior used by the TS algorithm. The CAB problem with Poisson noise

and event data as feedback is to the best of our knowledge unstudied, however our regret upper

bound is encouragingly close to the Ω(T 2/3) lower bound on simpler CAB models of Kleinberg

(2005).

5.1.1 Related Work

The problem of allocating searchers in a continuous space has been studied by Carlsson et al.

(2016) under the assumption that the rate of arrivals is known. In Chapter 4, we presented the first

attempt to solve a version of the problem in which the rate must be learned, in which the space is

discretised to a fixed grid for all time. The objective of this chapter is to present the first learning
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version of the problem for the fully continuous space.

The fixed discretisation version of the problem maps directly to the Combinatorial Multi-Armed

Bandit (CMAB) problem (Cesa-Bianchi and Lugosi, 2012; Chen et al., 2016a). We recall that this

is a class of problems wherein the decision-maker may pull multiple arms among a discrete set

and receives a reward which is a function of observations from individual arms. In the discretised

sensor-placement problem, the individual arms correspond to cells of the grid. The model remains

relevant for the continuous version of the problem, as by using an increasingly fine mesh, we

approximate the problem with a series of increasingly many armed CMABs.

The continuum-armed bandit (CAB) model (Agrawal, 1995) is an infinitely-many armed exten-

sion of the classic multi-armed bandit (MAB) problem. There are two main classes of algorithm

for CAB problems: discretisation-based approaches which select from a discrete subset of the

continuous action space at each iteration, and approaches which make decisions directly on the

whole action space. Our proposed method belongs to the former class. Early discretisation-based

approaches focused on fixed discretisation (Kleinberg, 2005; Auer et al., 2007), with more re-

cent approaches typically using adaptive discretisations such as a “zooming” approach (Kleinberg

et al., 2008) or a tree-based structure (Bubeck et al., 2011; Bull, 2015; Grill et al., 2015) to man-

age the exploration. Authors who handle the full continuous action space typically use Gaussian

process models to capture uncertainty in the unknown continuous function and balance exploration-

exploitation in light of this (Srinivas et al., 2010; Chowdhury and Gopalan, 2017; Basu and Ghosh,

2017). As mentioned in Section 5.1, our problem can map into a CAB, but since our informa-

tion structure is more complex, our action space has dimension greater than 1, and the stochastic

components have heavier tails than usual, standard algorithms and results do not apply.

Thompson sampling (TS) is a particularly convenient, and generally effective, method for trad-

ing off exploration and exploitation. The critical ideas can be traced as far back as Thompson

(1933), although the first proofs of its asymptotic optimality came much later (May et al., 2012;
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Agrawal and Goyal, 2012; Kaufmann et al., 2012a). Later, similar results were derived for MABs

with rewards from univariate exponential families Korda et al. (2013) and in multiple play bandits

Komiyama et al. (2015); Luedtke et al. (2016). More recently, TS has been studied in the CMAB

framework by Wang and Chen (2018) and Huyuk and Tekin (2019) under slightly differing models,

but both with bounded reward noise. Both papers demonstrate the asymptotic optimality of TS with

respect to the frequentist regret, and we anticipate that these results could be extended to univariate

exponential families. However, in both of these works, the leading order coefficients can be highly

suboptimal. Therefore, rather than attempt to extend these ideas to CABs, we favour an alternative

analysis of the Bayesian regret to get bounds that are of slightly suboptimal order but are more

meaningful because of their (relatively) small coefficients. The Bayesian regret is less extensively

studied than the frequentist regret. However the bounds that have been derived for the Bayesian

regret of TS (Russo and Van Roy, 2014; Bubeck and Liu, 2013) are powerful as they do not depend

on a specific parameterisation of the reward functions.

5.1.2 Key Contributions

Similarly to Chapter 4, this chapter makes a number of contributions to bandit theory and again

provides a practically useful solution to a real problem. We summarise the principal contributions

below:

• Formulation of a new widely applicable model of sequential sensor placement as a CAB;

• The first study of CABs with Poisson process feedback, and use of a new progressive dis-

cretisation technique as an approximation to the continuous action space;

• An efficient optimisation routine for sensor placement given known event rate;

• Analysis of the Bayesian regret of a TS approach, resulting in a Õ(T 2/3) upper bound;
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• Numerical validation of the efficacy of the TS method, and its favourable performance rela-

tive to upper confidence bound and ε-greedy approaches.

5.1.3 Chapter Outline

The remainder of the chapter is structured as follows. In Section 5.2 we formalise our model and

algorithm. The algorithm has three main components, the Bayesian histogram approach to infer-

ence, a bespoke optimisation routine to select actions, and the TS component to balance exploration

and exploitation. In Section 5.3 we present theoretical analysis of the Bayesian regret, leading to

an Õ(T 2/3) upper bound. We conclude in sections 5.4 and 5.5 with numerical experiments and a

discussion respectively.

5.2 Model and solution

We now formally present our model and solution method.

5.2.1 Reward and regret

In each of a series of rounds t ∈ N, mt ≥ 0 events of interest arise at locations Xt,1, ..., Xt,mt ∈

[0, 1] according to a non-homogeneous Poisson process with Lipschitz smooth rate λ : [0, 1]→ R+.

U sensors are deployed in each round with each sensor observing a distinct subinterval of [0, 1];

the action space A consists of the sets of at most U disjoint intervals of [0, 1]. Let At ⊆ [0, 1] be

the union of the subintervals covered by the sensors in round t. An event Xt,i is detected if it lies in

At. The system objective is to maximise the number of detected events while penalised by a cost

of operating the sensors. The expected reward for playing action A is therefore

r(A) =

∫
A

(λ(x)− C) dx,
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where C is the cost per unit length of sensing. We define the Bayesian regret of an algorithm to be

the expected difference (with respect to the prior on λ) between the reward achieved when playing

the optimal action in each of T rounds and the actions taken by the algorithm:

BReg(T ) =
T∑
t=1

E (r(A∗)− r(At))

where A∗ = arg maxA⊆A r(A) is the optimal action on the continuous interval.

5.2.2 Inference

With the Poisson process rate being defined on the continuum [0, 1], nonparametric estima-

tion is preferable to a parametric form. We use the increasingly granular histogram approach of

Gugushvili et al. (2018), since it provides us with fast inference and a concentration rate. At the be-

ginning of each round t a piecewise-constant estimation of λ is considered by counting the number

of events to have been observed in each of Kt bins. The number of bins will be gradually increased

as rounds proceed. To maintain simplicity in the inference and analysis we choose all bins to be of

a constant width ∆t = K−1
t .

We introduce the notation

Bk,t ≡
[
k − 1

Kt

,
k

Kt

)
∀ k ∈ {1, . . . , Kt}, ∀ t ∈ N,

to refer to the kth histogram bin at iteration t (the index t is needed to uniquely index a bin since the

number of bins changes as t increases). The number of events in bin Bk,t in a single observation of

the Poisson process is a Poisson random variable with parameter
∫
Bk,t

λ(x) dx. Since this depends
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on the width of the bin, we instead estimate the average rate function in a bin, defined as

ψk,t = Kt

∫
Bk,t

λ(x) dx.

We place independent truncated Gamma (TG) priors on each of the ψk,t parameters, with shape

and scale parameters α and β and support on [0, λmax] where λmax is some known upper bound on

the maximum of rate functions. (The TG(α, β, 0, λmax) distribution has a density proportional to

a Gamma(α, β) distribution, but with truncated support [0, λmax].) In practice the λmax parameter

may be chosen very conservatively; setting λmax to be too large does not affect the action selection;

however it is important to include an upper limit on the prior support to permit tractable regret

analysis, and the chosen λmax appears in the regret bound in Theorem 5.3.1.

The consequence of this formulation is that, conditional on actions and observations in the first t

rounds, we have a posterior distribution over λ at time t which is piecewise constant. A λt sampled

from this posterior takes the form

λt(x) =
Kt∑
k=1

I{x ∈ Bk,t}ψ̃k,t, with

ψ̃k,t ∼ TG(α +Hk,t(t), β + ∆tNk,t(t), 0, λmax), (5.2.1)

where Hk,t(s) =
∑s

j=1

∑mj
l=1 I{Bk,t ⊆ Aj}I{Xj,l ∈ Bk,t} gives the number events observed up to

iteration s in bin Bk,t, and Nk,t(s) =
∑s

j=1 I{Bk,t ⊆ Aj} gives the number of times to iteration s

that bin Bk,t has been sensed (see Section 5.2.3).

Gugushvili et al. (2018) demonstrate that, with a full observation at each iteration, this posterior

contracts to the truth at the optimal rate for any h-Hölder continuous rate function λ. In particular,

E (||λt − λ||2) ≤ t
−2h
2h+1
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if Nk,t(t) = t for all k ∈ [Kt] and Kt = O(th/2h+1). We describe in the next sub-section how the

same choice ofKt gives favourable performance in our sequential decision problem, even when we

only observe subintervals of [0, 1].

5.2.3 Thompson sampling

In order to make action selection feasible, and to facilitate the inference using histograms, we

constrain the action set of the TS approach using the same (increasingly fine-meshed) grid that the

inference is performed over. In particular, in round t, the action At is constrained to lie in the set

of available actions At, consisting of those intervals and unions of intervals where only entire bins

(no fractions of bins) are covered and the action consists of at most U subintervals. Recall U is

the number of sensors, and the restriction to at most U intervals ensures that each sensor can be

allocated a single contiguous subinterval.

Our TS approach is described in Algorithm 9. In each round t, for each bin k ∈ {1, . . . , Kt},

a rate ψ̃k,t is sampled according to (5.2.1), and then an action is selected that would be optimal if

the true rate function were the piecewise-constant combination of these rates. As each bin rate is

sampled from the current posterior and action the action selected is the optimal action for this set

of sampled rates, the selected action is chosen according to the posterior probability that it is the

optimal one available. The optimal action conditional on a given sampled rate can be determined

efficiently and exactly using the approach described in Section 5.2.4.

5.2.4 Action selection by iterative merging (AS-IM)

In this section we describe a routine, called action selection by iterative merging (AS-IM), for

efficiently determining the optimal action conditional on a given sampled rate function. For the

piecewise constant λt functions sampled by the TS approach, the above optimization problem can

be formulated as an integer program in which each bin Bk,t is either searched or not. In Chapter
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Algorithm 9: Thompson Sampling

Inputs: Gamma prior parameters α, β > 0, upper truncation point λmax

Iterative Phase: For t ≥ 1

• For each k ∈ {1, . . . , Kt}, evaluate Hk,t(t− 1) and Nk,t(t− 1) and sample an index

ψ̃k,t ∼ TG(α +Hk,t(t− 1), β + ∆tNk,t(t− 1), 0, λmax)

• Choose an action At ∈ At that maximises r(A) conditional on the true rate being
given by the sampled ψ̃k,t values, and observe the events in At

4 we solved this program (albeit for more general cost functions and fixed discretisation) using

traditional integer programming methods, with exponentially high computation complexities in Kt

and U . Here, instead, we introduce an efficient optimal action selection policy with polynomial

sample complexity.

Firstly, we introduce additional notation that will be useful for explaining the algorithm. Through-

out this section we take λ as fixed and piecewise constant on bins Bk,t, and provide a method to

find A∗ for this λ. An action A ∈ A can be written as the union of disjoint intervals: A = ∪Uu=1Iu

and Iu ∩ Iu′ = ∅ for all 1 ≤ u, u′ ≤ U . Define the weight of an interval I ∈ [0, 1] as w(I) =∫
I
(λ(x)− C)dx. Thus, we may write the optimal action as

A∗ = argmax
{Iu}Uu=1

U∑
u=1

w(Iu).

AS-IM creates an initial set of candidate intervals I = {In}Nn=1such that each In is the union of

a number of adjacent Bk,t, and for k = 2, ..., Kt, Bk,t and Bk−1,t belong to the same In if and only

if w(Bk,t) and w(Bk−1,t) have the same sign. Notice that, by construction, the weights of adjacent

intervals have opposite signs. If the number of intervals in I with positive weight is not bigger than

U , AS-IM returns all such intervals as the optimal action. Otherwise, AS-IM proceeds to the next
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step.

AS-IM iteratively reduces the number of intervals with positive weights by merging the inter-

vals. Specifically, let M = {n ∈ {2, . . . , N − 1} : |w(In)| ≤ |w(In−1)|, |w(In)| ≤ |w(In+1)|}

be the set of intervals that should be considered for merging. If M is empty, no further merging

should take place. If M is nonempty let n = argminM |w(In)| be the label in M with the smallest

absolute weight; AS-IM merges In with its two neighbour intervals In+1 and In−1 into one interval

and updates the set of intervals I. The merging procedure repeats until either M is empty or the

number of intervals with positive weight equals U . At this point AS-IM returns the U intervals with

the largest weights as I∗1 , I
∗
2 , ..., I

∗
U .

We have the following result on AS-IM guaranteeing its optimality and efficiency. The proof is

given in the Section 5.6.2 via an induction argument.

Theorem 5.2.1. The AS-IM policy returns the optimal action and its sample complexity is not

bigger than O(Kt logKt).

5.3 Regret Bound

In this section, we present our main theoretical contribution: an upper bound on the Bayesian

regret of the TS approach. There is an inevitable minimum contribution to regret due to the optimal

action likely not being in our discretised action set. But by allowing the mesh to become finer as

more observations are made, we will gradually reduce this discretisation regret and permit a closer

approximation to the true underlying rate function.

For the analysis that follows it will be useful to define A∗t = arg maxA∈At r(A) as the optimal

action available in round t. We then define for any A ∈ At and t ∈ N:

δ(A) = r(A∗)− r(A)
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δt(A) = r(A∗t )− r(A)

as the single-round regret of the action A with respect to the optimal continuous action and the

optimal action available to the algorithm in round t respectively. The difference between δ(A) and

δt(A) is that the “discretisation regret” incurred by choosing actions only from At is present only

in δ(A). Minimising the true regret δ(A) requires balancing out estimation accuracy (requiring a

coarse grid) versus discretisation regret (requiring a finer grid). We find below that choosing the

number of bins Kt to be order O(t1/3) provides the best theoretical performance guarantees. This

coincides with the optimal posterior contraction rate findings in Gugushvili et al. (2018). We verify

this numerically in Section 5.4 and find that this rebinning rate is superior to a faster linear rate of

rebinning.

Theorem 5.3.1. Consider the setup of Section 5.2, with U sensors, and cost of sensing C. Suppose

we choose Kt such that there exist positive constants K,K such that Kt1/3 ≤ Kt ≤ Kt1/3. Then

the Bayesian regret of Algorithm 9 satisfies

BReg(T ) ≤ 4K
(

log(T + 1) log(T ) + 2λmax

)
T 1/3 +

(
CUK−1 +

√
24Kλmax log(T )

)
T 2/3.

This main result is that we have a O(T 2/3 log1/2(T )) bound on the Bayesian regret. A lower

bound for the problem is not currently available. The closest result available is that of Kleinberg

(2005) for CABs with bounded Lipschitz smooth reward function and bounded noise. The bound

holds only for a one-dimensional action space and is of order Ω(T 2/3). The material differences in

our setting are that the observation noise is unbounded (with Poisson tails), our reward function is

defined on higher dimension (the unrestricted action space of the underlying CAB is of dimension

2U ), and that we observe additional information in the form of event locations. Nevertheless, we

have encouraging evidence that our Thompson Sampling approach is a strongly performing policy.
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Proof of Theorem 5.3.1. The Bayesian regret can be decomposed as the sum of the regret due to

discretisation and the regret due to selecting suboptimal actions in At, as follows

BReg(T ) = E

( T∑
t=1

δ(A∗t )

)
+ E

( T∑
t=1

δt(At)

)

The expectation in the first term only averages over λ functions, not over action selection, and

the sum can be upper bounded uniformly over all λ’s by considering the rate of re-binning. In

particular we have the following lemma, proved in the Section 5.6.1.

Lemma 5.3.2. The regret due to discretisation is bounded by

T∑
t=1

δ(A∗t ) ≤ CUK−1T 2/3,

uniformly over all rates λ.

To handle the stochastic part of the regret we use a decomposition from Proposition 1 of Russo

and Van Roy (2014). For all T , for all 1 ≤ t ≤ T and for all A ∈ At, let Lt,T (A) and Ut,T (A)

satisfy −C|A| ≤ Lt,T (A) ≤ Ut,T (A) (see below for a judicious choice of these variables). Then,

for any T ,

E

[
T∑
t=1

δt(At)

]

= E

[
T∑
t=1

Ut,T (At)−r(At)

]
+ E

[
T∑
t=1

r(A∗t )−Ut,T (A∗t )

]

≤ E

[
T∑
t=1

Ut,T (At)−Lt,T (At)

]
+ λmax ×

[
T∑
t=1

P (r(A∗t )>Ut,T (A∗t )) +
T∑
t=1

P (r(At)<Lt,T (At))

]

The key step here is the second equality, which holds for TS because the distribution of Ut(At) is
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precisely the distribution of Ut(A∗t ) due to the method of selecting At. The final step follows by

noting that, for any A,

E [r(A)− Ut,T (A)] ≤ E
[
(r(A)− Ut,T (A))I{r(A)−Ut,T (A)>0}

]
≤ λmaxP (r(A) > Ut,T (A)) ,

and similarly for E[Lt,T (A) − rt(A)]. The λmax term arises from r(A) ≤ λmax − C|A| and

Ut,T (A) ≥ −C|A| for all A ∈ At.

We will choose Lt,T and Ut,T so that each sum converges. In particular, the confidence bounds

derived in Grant et al. (2018) for Poisson random variables inspire the definition of

Dk,T (t− 1) =
2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

for all k ∈ [KT ], with upper and lower confidence bounds on the reward of an action A ∈ At at

time t ∈ N as follows:

Ut,T (A) = ∆T

∑
k:Bk,T⊆A

ψ̂k,T (t−1) +Dk,T (t−1)− C|A|,

Lt,T (A) = ∆T

∑
k:Bk,T⊆A

ψ̂k,T (t−1)−Dk,T (t−1)− C|A|,

where ψ̂k,T (t) =
Hk,T (t)

∆TNk,T (t)
gives the empirical mean in bin Bk,T after t rounds. It is in the defi-

nition of Ut,T and Lt,T that we see the need for a T -dependence in our choice of upper and lower

confidence bounds—we need to count the number times actions At for t < T selected the bin Bk,T

defined for time T .

In Section 5.6.1 we prove the following lemmas, which when combined are sufficient to com-

plete the proof of Theorem 5.3.1.
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Lemma 5.3.3. For Ut,T and Lt,T as defined above, we have

T∑
t=1

Ut,T (At)− Lt,T (At) ≤ 4K log(T ) log(T + 1)T 1/3 +

√
24Kλmax log(T )T 2/3

Lemma 5.3.4. The deviation probabilities can be bounded

P

(
r(At) /∈ [Lt,T (At), Ut,T (At)]

)
≤ 2KT t

−2

Combining these results we have:

BReg(T ) ≤ CUK−1T 2/3 + 4K log(T ) log(T + 1)T 1/3

+

√
24Kλmax log(T )T 2/3 + 2KTλmax

T∑
t=1

2t−2

which gives the required result as
∑∞

t=1 t
−2 ≤ π2

6
.

5.4 Simulations

In this section, we provide simulation examples on the performance of the Thompson sampling

approach presented in Section 5.2.3. We first examine the effect of the rebinning rate on the re-

gret and then investigate the performance of the Thompson sampling approach in relation to other

algorithms.

5.4.1 Effect of rebinning rate

Firstly we examine the effect of different rebinning rates in a simple unimodal setting with

λ(x) = 1000
21

(x − x2), C = 10, and U = 1 sensor. This setting is chosen such that the optimal
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Figure 5.4.1: Cumulative regret comparing different rebinning rates. Green line denotes the average
regret under linear rebinning, black dashed line denotes the average regret under square root order
rebinning, and red dot-dashed line denotes the average regret under cube root order rebinning.
Shaded areas illustrate empirical 95% confidence intervals.



CHAPTER 5. CAB MODEL OF SEQUENTIAL EVENT DETECTION 116

action can be calculated as A∗ = [0.3, 0.7]. Here, and throughout our experiments, we set the prior

parameters for Thompson sampling to be α = 0.5 and β = 0.5/C, where scaling by cost C makes

the prior relevant to the expected scale of costs in the problem. We also set the truncation λmax to

be ten times the true maximal value of λ; λmax is an inconvenient parameter that is only needed

for the theory, so we set it to a conservative large value that should have no influence on the real

behaviour of the algorithm. The experiment is run 10 times for T = 1024 timesteps starting with

K0 = 4 bins.

We compare linear, square root and cube root rebinning rates: the number of bins Kt is doubled

in rounds where t (in the linear case), t1/2 (square root case) or t1/3 (cube root case) is twice its

value at the last rebinning time. Actions are selected using the TS method of Algorithm 9 and

Fig. 5.4.1 shows that the cumulative regret is consistently lower under the cube root rate. While

under the linear rebinning rate, actions with reward close to that of A∗ become available more

quickly, reducing the discretisation regret, the issue is that the majority of bins contain very little

data and the posterior inference is heavily dependent on the prior. Under the cube root (and indeed

square root) rebinning rate the action set grows more slowly but the unavoidable discretisation

regret is balanced by better action selection. The square root case is surprisingly similar to the

cube root case despite a weaker theoretical rate in this case. We demonstrate the shrinking of the

discretisation regret in Section 5.6.3.

We also show, in Fig. 5.4.2, the posterior inference under the linear and cube root settings at

the last time step of one run of the experiment. The posterior under the linear rebinning is highly

unconcentrated with simply insufficient numbers of observations in almost all bins. The cube root

rate on the other hand results in a posterior which is much more concentrated about the truth in the

region where it matters.
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Figure 5.4.2: Posterior under the linear and cube root rebinning rates at round T = 1024. We show
the true rate function (blue) and cost (pink), the posterior credible interval (light green) and mean
(dark green) per bin. Thompson samples are shown in black, and the selected interval, AT , is the
(red) vertical bar. The initial number of bins is 4 in both cases and the final number of bins, KT , is
2048 for the linear rebinning schedule and 32 bins for the cube root schedule.



CHAPTER 5. CAB MODEL OF SEQUENTIAL EVENT DETECTION 118

5.4.2 Comparison to Baselines

We now compare different baseline policies solely using the cube root rebinning schedule.

Experiments with the unimodal rate of Section 5.4.1 were not informative since the problem is an

easy one. We instead use a bimodal rate λ(x) = max
(
0.001, 15 sin(10x)√

(10x+1)+x

)
with C = 2 and U = 2

sensors. Each experiment was run 10 times for T = 1000 time steps, starting with K0 = 16 bins

and terminating with KT = 128 bins. In addition to the Thompson sampling approach described

in Section 5.2.3, we consider three other algorithms, which are summarised here and described

precisely in the supplementary material. (i) An upper confidence bound (UCB) approach, in which

the decision-maker chooses what would be an optimal action if the true rates were Ut,t (as defined in

the proof of Theorem 1); this is essentially the FP-CUCB algorithm of Grant et al. (2018) (a paper

which is an early version of Chapter 4), albeit with a changing mesh, and requires the specification

of an upper bound λmax on the rate in order to define the action selection. In our experiments

we fix this λmax to the correct value; in practise a conservative estimate is usually available, but

for this algorithm the choice of λmax strongly affects the actions selected, in contrast with the

TS algorithm, and we choose the most favourable λmax for this algorithm. (ii) A modified-UCB

approach (mUCB) where the empirical mean for each histogram bin ψ̂k is used in place of the

overall maximum rate λmax. Note this modification invalidates the concentration results used in

Grant et al. (2018), but appears to improve performance in practice. (iii) An ε-Greedy approach

where the intervals are selected according to the empirical mean for each bin ψ̂k but occasionally

a an explorative randomisation step occurs in which the algorithm samples, for each bin, a draw

from the prior. The randomisation step is taken with probability ε = 0.01.

The cumulative regret for each policy is shown in Figure 5.4.3. The worst performing policy is

the UCB approach, despite its theoretical properties. The poor performance of the UCB policy is

due to the overestimation of the true rate as can be seen in the illustrative example shown in Fig-

ure 5.4.4(d). Even after 900 iterations, the UCB values (in black) are close to the cost threshold even
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Figure 5.4.3: Cumulative regret plot for the bimodal rate functions. Green line denotes the average
regret for Thompson Sampling, black dashed line denotes the average regret for the UCB algorithm,
red dotted line denotes the average regret for the modified UCB algorithm, and blue dot-dashed
line denotes the average regret for the greedy algorithm. Shaded areas illustrate empirical 95%
confidence intervals.
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Figure 5.4.4: Posterior under different action selection strategies for the bimodal test function.
The true rate function (orange), posterior mean (blue) and 95% confidence interval (green in-
fill) is shown. Rate samples for each method are shown in black for each bin and the cost
threshold is the (magenta) horizontal dashed line. The optimal action is to select two intervals
A∗ = [0.013, 0.280], [0.675, 0.882].
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in the regions where the true rate is low and there is little uncertainty. In contrast the modified-UCB

values, that do not depend on λmax, are less inflated where the uncertainty is low (Figure 5.4.4(c))

resulting in more often choosing a better action. In Fig. 5.4.3 the ε-Greedy achieves similar mean

regret to modified-UCB but with a higher variance. The ε-Greedy approach has the highest vari-

ance due to the greediness of the algorithm. A higher value of ε would reduce variance but would

increase the exploration cost. The TS approach consistently outperforms all other policies.

Further intuition can also be gained from the posterior examples shown in Figure 5.4.4. These

were selected at time step T = 900 from one of the experimental runs. The TS approach has

selected an action close to optimal. Further, the posterior variance outside the optimal interval is

significantly higher that in the selected regions as only a small number of observations were taken

in those regions demonstrating the high efficiency of the method. In contrast both UCB approaches

have uniformly low posterior variance in the entirety of the domain reflecting the large number of

observations taken incurring a high exploration cost. In contrast, the ε-Greedy approach selects

smaller than optimal intervals with high posterior variance outside these regions. This reflects an

under-exploration of the greedy approach which is only able to escape bad local minima when the

randomisation step is used.

In summary, the TS approach outperforms all the other approaches we have considered and is

able to efficiently trade-off exploration penalty and exploitation reward.

5.5 Conclusion

We have presented a continuum-armed bandit model of sequential sensor placement. This

model introduces the complexities of point process data and heavy-tailed reward distributions to

continuum-armed bandits for the first time through its Poisson process observations. We proposed

a Thompson sampling approach to make decisions based on fast non-parametric Bayesian inference
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and an increasingly granular action set, and derived an upper bound on the Bayesian regret of the

policy which is independent of the choice of prior distribution.

In our simulation study we have studied two aspects of our approach. Firstly we examined the

effect of the rebinning rate on posterior inference and regret. The theoretically-optimal cube root

rate resulted in more accurate posterior inference than a linear or square root rebinning rate. This

effect was also evident in a lower regret for the cube root rate.

Our empirical study also contrasted our Thompson sampling approach to alternative approaches

like UCB or ε-greedy policies. In both the cases we examined, we found the other methods either

over-explored (e.g. UCB) or over-exploited (e.g. ε-greedy). The TS approach achieved the best

trade-off between the two and consistently achieved the lowest regret.

The observation model and rebinning strategies we have presented here are straightforward; it

would be interesting to extend the algorithm and analysis to account for imperfect observations and

to allow for heterogeneous bin widths, letting us capture more detail of the rate function in areas

where we have made many observations and adopt a smoother estimate in others.

An alternative to the discretisation approach we have followed is to employ a continuous model

such as a Cox process for which efficient approximate inference methods exist (John and Hensman,

2018). Action selection under the additive cost model would still be possible via a continuous

action space extension of the AS-IM routine. The regret analysis in this setting would be more

involved although recent concentration results (e.g. Kirichenko and Van Zanten, 2015) suggest

possible approaches. In the next chapter we shall look at extending such concentration results to

meet the features of the data arising from making decisions in sequence.
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5.6 Further proofs and algorithms

5.6.1 Regret bound proofs

Proof of Lemma 1

Define Amin,t =
⋂
A∈At :A∗⊆AA as the smallest interval (or union of intervals) in At containing

the optimal interval (or union of intervals). It will be easier to bound the regret of Amin,t than A∗t

wrt A∗. We have, for t ∈ N,

δ(A∗t ) = r(A∗)− r(A∗t )

≤ r(A∗)− r(Amin,t)

=

∫
A∗

(λ(x)− C) dx−
∫
Amin,t

(λ(x)− C) dx

= C|Amin,t \ A∗| −
∫
Amin,t\A∗

λ(x)dx

≤ 2CU∆t.

Here, the final inequality holds since 2∆t bounds the difference between the lengths of subintervals

of Amin,t and A∗t , and there are U such subintervals. Since ∆t = K−1
t ≤ K−1T−1/3 the result

follows immediately.

Proof of Lemma 5.3.2

Consider the term inside the expectation

T∑
t=1

Ut,T (At)− Lt,T (At)
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= 2∆T

T∑
t=1

∑
k:Bk,T⊆At

Dk,T (t− 1)

= 2∆T

T∑
t=1

∑
k:Bk,T⊆At

2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

= 2∆T

T∑
t=1

KT∑
k=1

I{Bk,T ⊆ At}
(

2 log(t)

∆T

∑t−1
s=1 I{Bk,T ⊆ As}

+

√
6λmax log(t)

∆T

∑t−1
s=1I{Bk,T ⊆ As}

)

≤ 2∆T

KT∑
k=1

Nk,T∑
j=1

2 log(T )

j∆T

+

√
6λmax log(T )

j∆T

≤ 2∆TKT

( T∑
j=1

2 log(T )

j∆T

+
T∑
j=1

√
6λmax log(T )

j∆T

)
= 4KT log(T ) log(T + 1) +

√
24λmaxKT log(T )T 1/2

≤ 4K log(T ) log(T + 1)T 1/3 +

√
24Kλmax log(T )T 2/3

where the penultimate line is due to ∆T = K−1
T , and the final inequality is because KT ≤ KT 1/3.

Proof of Lemma 3

We have the following, which holds for any round t

P

(
r(At) /∈ [Lt,T (At), Ut,T (At)]

)
≤ P

(
r(At) ≤ Lt,T (At)

)
+ P

(
r(At) ≥ Ut,T (At)

)
= P

( ∑
k:Bk,T⊆At

ψk,T ≤
∑

k:Bk,T⊆At

[
ψ̂k,T (t− 1)−Dk,T (t− 1)

])

+ P

( ∑
k:Bk,T⊆At

ψk,T ≥
∑

k:Bk,T⊆At

[
ψ̂k,T (t− 1) +Dk,T (t− 1)

])
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≤
∑

k:Bk,T⊆At

[
P

(
ψk,T − ψ̂k,T (t− 1) ≤ −Dk,T (t− 1)

)
+ P

(
ψk,T − ψ̂k,T (t− 1) ≥ Dk,T (t− 1)

)]

≤
KT∑
k=1

P

(
|ψk,T − ψ̂k,T (t− 1)| ≥ 2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

)

≤
KT∑
k=1

t−1∑
s=1

P

(
|ψk,T − ψ̂k,T (t− 1)| ≥ 2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

∣∣∣∣ Nk,T (t− 1) = s

)
≤ 2KT t

−2.

The final inequality is a direct application of Lemma 1 of Grant et al. (2018) which in turn exploits

Bernstein’s Inequality for independent Poisson random variables.

5.6.2 Proof of optimality and efficiency of AS-IM

Proof of Theorem 1

Recall that the reward of an action is the sum of the weights of the intervals that comprise that

action.

We prove the theorem by induction. Assume at least one initial In has a positive weight (oth-

erwise the optimal action is to do no sensing). For N = 1 initial interval, which therefore has a

positive weight, AS-IM simply returns this interval, which is optimal. For N = 2 initial intervals,

with one positive weight, AS-IM returns the postitively-weighted interval, which is the optimal

action. Now, assuming AS-IM returns the optimal action for N ≥ 1, we prove that AS-IM returns

the optimal action for N + 2 initial intervals. The result follows by induction.

Given I = {In}N+2
n=1 , if the number of intervals in I with positive weight is not bigger than

U , AS-IM returns all such intervals. This is the optimal action since all bins with positive reward

can be covered without incurring the cost of any bins with negative reward; any other action either

omits a positive-reward bin, or includes a negative-reward bin.
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Similarly, consider the situation in which no interval satisfies the merging condition. Suppose

that the optimal action A∗ places a sensor on a sequence of intervals Im ∪ · · · ∪ In with n > m.

Clearly we must havew(Im) > 0 andw(In) > 0 since otherwise the total weight could be increased

by omitting the negatively-weighted end interval. But the fact that no interval can be merged

implies that either |w(Im+1)| > |w(Im)| or |w(In−1)| > |w(In)|. Hence removing either Im ∪ Im+1

or In−1 ∪ In from the sensor will improve the total weight. It follows that, under A∗, each sensor

is allocated to a single interval, and allocating to the U highest-weight intervals, as specified by

AS-IM, maximises the reward.

Now, assume that at least one interval is merged in AS-IM. Let In be the interval which min-

imises |w(In)| and so is the first interval which is merged with its neighbours in AS-IM into

a single interval Ĩn = In−1 ∪ In ∪ In+1. Let Ã∗ be AS-IM’s solution for the set of intervals

Ĩ = {I1, · · · , In−2, Ĩn, In+2, · · · , IN+2}. By induction, Ã∗ is optimal for Ĩ . We prove that A∗, the

optimal solution for I, is equal to Ã∗. To prove this, we consider different cases based on the sign

of w(In).

Case 1: w(In) < 0. First note that the optimal solution cannot include only one neighbour of In.

If In−1 were included but In+1 were not, we could add both In and In+1 and increase the overall

weight (since In has the smallest absolute weight). Similarly, A∗ can not include both In−1 and

In+1 but not In; if so then A∗ could be improved by (i) using a single sensor in place of the two

that cover In−1 and In+1, adding In to A∗, and (ii) redeploying the sensor we have saved to either

split one existing sensor by removing a negative-weight Im with |w(Im)| > |w(In)|, or adding a

new positive-weight Im with |w(Im)| > |w(In)|. The net outcome is an improved total weight. We

have shown that A∗ includes either all or none of In−1 ∪ In ∪ In+1. Since A∗ is optimal for I, and

the restriction to Ĩ does not prevent AS-IM from finding this optimal A∗, it follows that Ã∗ = A∗.
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Case 2: w(In) > 0. Under the optimal solution A∗, a sensor cannot have a negative-weighted

interval as an end interval, since dropping the negative-weight interval only increases the total

weight. Furthermore, a sensor cannot include In as an end interval of a series of intervals, since

then the total weight could be improved by stopping sensing both In and its sensed neighbour. Thus

if In is included in A∗ then either a sensor is observing only In, or a single sensor observes all of

In−2 ∪ In−1 ∪ In ∪ In+1 ∪ In+2. As in Case 1, if a sensor is observing only In we can improve on

A∗ by redeploying this sensor to either sense a better interval, or stop sensing an interval which has

a higher negative weight than is lost by stopping sensing In. So again, under A∗, In is either sensed

with all its neighbours, or none of them are sensed. The same logic as in Case 1 ensures Ã∗ = A∗.

Complexity: AS-IM requires sorting the N initial intervals. Noticing that there are at most N

mergings, and assuming constant complexity for each merging, AS-IM offers an O(N logN) sam-

ple complexity. Since N ≤ Kt, AS-IM has a sample complexity not bigger than O(Kt logKt).

5.6.3 Discretisation error under linear and cubic root rates

The effect of the different rates on the unavoidable discretisation error is depicted in Fig-

ure 5.6.5. The regret for the linear rate is reduced at a faster rate than for the cubic root rate as

the number of bins is increased at a much faster rate. However as we show in the main paper (Sec-

tion 5.1) the other part of the regret due to error in action selection from the model forecast is much

higher under the linear regret rate.

5.6.4 Baselines used in the empirical study

In the paper we have compared the TS approach other approaches which we now describe in

more details.
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Figure 5.6.5: Instantaneous regret comparing linear and cube root rebinning rates. The vertical
lines depict the rebinning times for the two different rate schedules. The time step (horizontal axis)
and the regret (vertical axis) are both on a log scale. The number of bins for each rebinning rate are
shown on the top horizontal axis.
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1. UCB approach, which is based on the FP-CUCB algorithm of Grant et al. (2018) and requires

the specification of an upper bound on the rate which we fix to the correct value in our

experiments; in practise a conservative estimate is usually available. This is described in

Algorithm 10.

Algorithm 10: UCB

Inputs: Upper bound λmax ≥ maxx∈[0,1] λ(x)
Initialisation Phase: For t = 1

• Select A = [0, 1]

Iterative Phase: For t ≥ 2

• For each k ∈ {1, . . . , Kt}, evaluate Hk,t(t− 1) and Nk,t(t− 1) and calculate an index

ψ̄k,t =
Hk,t(t− 1)

∆tNk,t(t− 1)
+

2 log(t)

∆tNk,t(t− 1)
+

√
6λmax log(t)

∆tNk,t(t− 1)
.

• Choose an action At that maximises r(A) conditional on the true rate being given by the ψ̄k,t
values

• Observe the events in At

2. A modified-UCB approach (mUCB) which has the same form as Algorithm 1 except λmax

is replaced with the empirical mean. Note this modification breaks the upper bound regret

guarantee. The indices are :

ψ̄k,t = ψ̂k,t(t− 1) +
2 log(t)

∆tNk,t(t− 1)
+

√
6ψ̂k,t(t− 1) log(t)

∆tNk,t(t− 1)
, k ∈ [Kt]

where ψ̂k,t(t− 1) =
Hk,t(t−1)

∆tNk,t(t−1)
.

3. An ε-Greedy approach where with probability 1− pε an action At is selected that maximises

r(A) conditional on the rate being given by the empirical mean values ψ̂k,t. With probabil-
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ity pε, the action is instead chosen by sampling rates ψ̃k,t from independent Gamma(α, β)

priors. In our experiments we fix pε = 0.01.



Chapter 6

Posterior Contraction Rates for Gaussian

Cox Processes with Non-identically

Distributed Data

A version of this Chapter has been submitted for publication as Grant, J.A., and Leslie, D.S.

(2019). Posterior Contraction Rates for Gaussian Cox Processes with Non-identically Distributed

Data.

6.1 On the Structure of the Remaining Material

In Chapters 4 and 5 we presented bandit algorithms for the sequential event detection prob-

lem. These algorithms were based on inference schemes which approximate the Nonhomogeneous

Poisson process (NHPP) rate function λ with piecewise constant functions. In many cases the rate

function may in fact be smooth. While the approach in Chapter 5 can capture smooth functions

asymptotically, if we believe λ is likely to be smooth, then it is reasonable to suggest that our

131
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probabilistic model should capture this from the outset.

In Chapter 2 we described the Gaussian Cox Process (GCP) family of models which are popular

models for the NHPP with smooth λ. As a GCP is a Bayesian model, a natural bandit algorithm

based on its inference is a Thompson Sampling (TS) approach, which we term Gaussian Cox Pro-

cess based Thompson Sampling (GCP-TS) and give as Algorithm 11. GCP-TS follows the canon-

ical TS structure. In each round a sample is drawn from the current posterior distribution on the

unknown parameter (in this case the function λ) and an action is chosen which would be optimal

if that sample were the true parameter (function). The posterior belief is then updated based on the

chosen action and observed data, and the process iterates.

Algorithm 11: Gaussian Cox Process based Thompson Sampling (GCP-TS)

Inputs: GCP prior distribution on λ, π0(λ), action set A, reward function r : A → R
Iterative Phase: For t = 1, 2, ...

• Sample a rate function λ̃t from the posterior distribution πt−1(λ)

• Select an allocation a∗
λ̄t

such that rλ̄t(a
∗
λ̄t

) = maxa∈A rλ̄t(a), i.e. one maximising
reward with respect to λ̃t.

• Observe reward Rt and event locations {X1
t , . . . , X

mt
t }, and update the posterior based

on this data to πt(λ).

While the design of this approach is relatively straightforward, the task of producing a tight

analysis of its (Bayesian) regret is a challenging one. Existing theoretical results on the perfor-

mance of TS do not apply to the GCP-TS approach. The action space is more complex than those

considered in related work, and the posterior distribution is doubly intractable, meaning that quan-

tifying the contraction of the posterior under bandit feedback is difficult. Furthermore, for reasons

of efficiency, it is likely that practical implementations of this approach would utilise variational

inference - meaning samples used for decision-making would not be from the exact posterior. This

is another challenging aspect which is not covered by existing results, which typically assume sam-
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pling from the exact posterior. Producing a (tight) analysis of the performance of GCP-TS would

require extensions to existing work in a number of dimensions, and the results required to do this

are not, in our opinion, currently known.

Therefore, in the material that follows, rather that presenting a direct analysis of the regret of

GCP-TS (Algorithm 11) we derive theoretical results which give insights in to the performance

of algorithms for simpler related problems and of GCP inference schemes. In this Chapter we

consider the contraction of the GCP posterior using analytical tools from Bayesian nonparametrics.

In Chapter 7 we extend the understanding of the performance of TS to cover its application to

continuum-armed bandits (CABs) with smooth reward functions and sub-exponential reward noise.

The developments of both chapters increase our understanding of the properties of decision-making

and inference relevant to GCP-TS, and contribute to the broader understanding of TS and GCPs.

6.2 Introduction

This chapter differs from those preceding in that we are not developing or considering the

performance of a sequential decision making algorithm. Instead we focus on the concentration

properties of sophisticated inference methods. Specifically we focus GCP models introduced in

Chapter 2, and derive results on their posterior contraction - which could then be used in the de-

sign and analysis of more sophisticated sequential decision making algorithms than those we have

previously considered.

A GCP, as introduced in Chapter 2, is a doubly stochastic model of the Nonhomogeneous

Poisson process (NHPP) where λ is modelled as a transformation of a Gaussian process (GP). In

this chapter we focus on two classes of GCP, the Sigmoidal GCP (SGCP) of Adams et al. (2009)

and the Quadratic GCP (QGCP) of Lloyd et al. (2015). We recall that in the SGCP the rate function

is modelled as a multiple of a logistic transformation of a GP. In the QGCP the rate function is
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modelled as the square of a GP. Here, we are concerned with the quality of posterior inference on λ

arising from these models. Specifically we are interested in the rate at which the expected posterior

mass the models assign to functions far from the true λ decreases.

The GCP is a model over functions and is defined on some space of non-negative functions

Λ. Given a true rate function λ0 ∈ Λ, observed data X1:n collected over n ∈ N timesteps, and a

relevant distance dn(λ, λ′) defined for all λ, λ′ ∈ Λ, we look for results of the form

Eλ0
(

Π
(
λ ∈ Λ : dn(λ, λ0) ≥ εn|X1:n

))
≤ fn (6.2.1)

for decreasing sequences εn, fn, where Π(·|X1:n) denotes the posterior probability mass and Eλ0
denotes expectation with respect to the probability measure implied by λ0. The sequences εn, fn

define the rate of posterior contraction of a model. If such a bound holds for certain εn, fn → 0 as

n → ∞ this displays that the model is consistent. However, we are also interested in the order of

the sequences and for which n results of the form (6.2.1) can be identified.

Asymptotic consistency results of the form

Eλ0
(

Π
(
λ ∈ Λ : dn(λ, λ0) ≥ εn|X1:n

))
→ 0

as n → ∞ are prevalent in the Bayesian nonparametrics literature; for example Kirichenko and

Van Zanten (2015) gives such a result for i.i.d. X1:n under the SGCP and a broader family of GCPs

which have a smooth and bounded link function. Such asymptotic results are undoubtedly useful

contributions to the understanding Bayesian models and inference, however they provide limited

support to finite-time analyses thereof. We extend beyond existing results in four important regards

by

1. Providing results for independent non-identically distributed (i.n.i.d.) data,

2. Providing results for the QGCP model as well as the SGCP,
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3. Providing a rate on the shrinkage of the posterior mass fn (as well as on εn), and

4. Providing results for finite values of n, not only asymptotically, and relating specific choices

of hyperpriors (and parameters) to these results.

Studying i.n.i.d. data places this work in contrast to the majority of previous studies of non-

parametric inference on NHPPs. However, ours is an important, practically-relevant setting. Com-

monly when observing point process data, the detection of events may be imperfect. This may

be due to visibility conditions, unreliable signals or the fallability of observation equipment. A

result of this is that while events may occur independently and according to a stationary process,

the distribution of observed events can vary as data is collected. Equally, different subsections of a

region of interest may be observed at different rates by design, as in the sequential event detection

problem. Another possibility is that data collectors may be more readily able to gather data in a par-

ticular region, resources may be too costly to gather the same quality of information everywhere or

multiple sub-investigations may be combined to form a joint dataset. As GCP models are typically

used to model situations with underlying spatial smoothness and covariance structure, a unified

analysis is still desirable, however existing contraction results only handle the setting where an

entire region of interest has been observed uniformly. The results we obtain in this paper apply to

the setting where (whether through design or imprecision) different rates of observation have been

applied at different locations. Therefore, we present results that are more relevant to the practical

settings in which GCP models are utilised than those which consider only identically distributed

data.

The QGCP model has recently received attention in the literature (Lloyd et al., 2015; John and

Hensman, 2018) as a model for NHPP inference, due to the ability to carry out fast and accurate

inference. Previously however, there was little theoretical understanding of the model. We provide

theoretical foundations for this new variant of the GCP model. This is non-trivial since the link

function in the QGCP is not bounded, in contrast with the SGCP. Consequently, we find the rate of
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contraction to be lower for the QGCP than for the traditional SGCP.

Providing a rate fn on the shrinkage of the posterior mass for finite values of n is also an

important development. A trend in the existing literature is to focus on the asymptotic results and

present that if the width of a ball around the true rate is chosen to decrease at the correct rate

(with respect to the number of observations) then the probability of lying outside this ball tends

to 0 as the number of observations goes to infinity. Such results are typically cleaner, and clearly

demonstrate the consistency of a method, while the finite-time result can usually be extracted from

the proofs provided for such results if desired. If the rate fn is explicitly given or can be inferred,

it is often only specified as holding for “sufficiently large” n. Inferring the rate fn and determining

the order of n that qualifies as sufficiently large, can be challenging to users of these results. By

explicitly giving a form of fn and quantifying the values of n (in terms of functions of the chosen

hyperparameters) for which it is valid, we present a more informative set of results that are useful

for end-users of this theory.

Such theory can be used in the analysis and design of sequential decision making algorithms,

for the sequential event detection problem and more broadly. Understanding the rate at which the

inference model contracts allows one to address an exploration-exploitation dilemma appropriately

by allocation sufficiently many actions to exploratory behaviour. The work in earlier chapters has

relied on assuming simpler inference models to obtain performance guarantees. Guarantees on the

contraction of Cox process posteriors with rates on the posterior mass will be important in the

design and analysis of more sophisticated approaches to these problems.

Another use for these results is in experimental design and resource planning problems. It is

valuable for decision-makers to know the expected level of uncertainty in a rate function given a

certain number of observations. They can then appropriately design sampling strategies or deploy

resources to collect information in a way that is tailored to achieving a certain level of confidence

in the inference.
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6.2.1 Chapter Outline

In the remainder of this section, we discuss related work in GCPs and general contraction results

for Bayesian models. In Section 6.2 we formally introduce our GCP models and notation. Section

6.3 includes all our main theoretical results and proofs, and in Section 6.4 we conclude with a

discussion. Throughout we have aspired to make our assumptions transparent and demonstrate

how they can be met. In Section 6.5.8 we verify that all assumed conditions can be satisfied for

finite numbers of observations.

6.2.2 Related Work

The Cox process (Cox, 1955) is a class of doubly stochastic process where the rate function

of an non-homogeneous Poisson process (see e.g. Moller and Waagepetersen (2003)) is modelled

as another stochastic process. The Gaussian Cox process (GCP), as mentioned above, is a par-

ticular subset of this class where the rate function of the NHPP is modelled via a transformation

of a Gaussian process (Williams and Rasmussen, 2006). Three main transformations have been

proposed yielding three main models. Firstly, the Log-Gaussian Cox Process (LGCP) of Rathbun

and Cressie (1994) and Møller et al. (1998) where λ is modelled as an exponential transformation

of a GP. Secondly, the Sigmoidal-Gaussian Cox Process (SGCP) of Adams et al. (2009) where λ

is modelled as a multiple of a logistic transformation of a GP. Finally, the Quadratic-Gaussian Cox

Process (QGCP) of Lloyd et al. (2015) where λ is modelled as a quadratic transformation of a GP.

We focus on the SGCP and QGCP models, as (for reasons discussed fully in Section 4) the LGCP

model requires separate techniques to derive a contraction result.

General results for the contraction of posterior density estimates given i.i.d. data are available

thanks to the seminal papers Ghosal et al. (2000) and Ghosal and Van Der Vaart (2001). The link

between density estimation and function estimation is exploited in Belitser et al. (2015) to extend

this work to show contraction rates for Bayesian Poisson process inference subject to appropriate
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prior conditions. Furthermore, Belitser et al. (2015) proposes a spline based prior satisfying these

conditions. The result of Belitser et al. (2015) and GP concentration results of van der Vaart and

van Zanten (2009) are used by Kirichenko and Van Zanten (2015) to show an asymptotic rate of

posterior contraction for the SGCP - Kirichenko and Van Zanten (2015) is the existing work most

similar to our contribution. However we are able to move beyond i.i.d. data to the independent

non-identically distributed (i.n.i.d.) case, thanks to the work of Ghosal and Van Der Vaart (2007)

in deriving contraction results for posterior density estimates under such data.

6.3 Model

In this section we introduce the data generating model and two prior models considered in the

paper, along with other relevant notation required to understand our main results.

6.3.1 Likelihood

We consider an NHPP with bounded non-negative rate function λ0 on [0, 1]d. We suppose that

n independent realisations of the NHPP X̃1, ..., X̃n are generated. Each realisation j consists of a

collection mj of points {X̃1
j , ..., X̃

mj
j } ∈ [0, 1]d. We write

X̃j =

mj∑
i=1

δX̃i
j
, j = 1, ..., n

where δx denotes the Dirac measure at x. By the definition of the NHPP model, each realisation

j is distributed such that the number of points in any set R ⊆ S, denoted X̃j(R) follows a Pois-

son distribution with mean
∫
B
λ(s)ds. Furthermore X̃j(R1), X̃j(R2) are independent if the sets

R1, R2 ⊆ S are disjoint.

Under our model, the realisations X̃1, ..., X̃n are not directly observed. Instead, so-called fil-
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tered realisations X1:n = X1, ..., Xn are observed. The events in a filtered realisation Xj are a

subset of the events in the corresponding raw realisation X̃j . The relationship between X1:n and

X̃1:n is governed by a set of filtering functions γ1:n = γ1, ..., γn.

Each filtering function γj : [0, 1]d → [0, 1] evaluated at a point s ∈ S gives the probability of

observing an event in X̃j given that it has occurred at location s. Every event that occurs in X̃j is

observed or not independently according to these probabilities.

By standard results, Xj is distributed according to an NHPP with rate γiλ0. That is to say, the

n filtered realisations Xi:n are then realisations of independent, non-identically distributed NHPPs

with rates γ1λ0, ..., γnλ0 respectively.

It follows that the likelihood of a particular set of observations X1:n = X1, ..., Xn given a rate

function λ and filtering functions γ1:n can be written

L(X1:n|λ0, γ1:n) =
n∏
j=1

exp

(∫
S

γj(s)λ0(s)dXj(s)−
∫
S

(γj(s)λ0(s)− 1)ds

)
,

using the law of the realisation Xj as given by Proposition 6.1 of Karr (1986).

We note that the case of i.i.d. data as considered in Kirichenko and Van Zanten (2015) and

Gugushvili et al. (2018) is a special case of this model, where γj(x) = 1,∀x ∈ [0, 1]d,∀j =

1, . . . , n.

6.3.2 Prior Models

In this paper we consider two Bayesian models of the Poisson process where the rate function

λ0 is modelled a priori as a transformation of a Gaussian process. Under the SGCP model (Adams

et al., 2009), the true rate function is modelled a priori as

λ(s) = λ∗σ(g(s)) = λ∗(1 + e−g(s))−1 s ∈ S (6.3.2)
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where λ∗ > 0 is a scalar hyperparameter endowed with an independent Gamma prior and g is

a zero-mean GP. The sigmoidal transformation σ is bounded in [0, 1] so the hyperparameter λ∗

models the maximum of the rate function, ||λ0||∞. The QGCP model (Lloyd et al., 2015) uses a

more straightforward transformation. The rate function is modelled a priori as

λ(s) = (g(s))2 s ∈ S (6.3.3)

where again, g is a GP.

For both models, we specify certain additional properties of the GP to support our subsequent

analyses. These conditions are standard in the posterior contraction literature (van der Vaart and

van Zanten, 2008, 2009; Kirichenko and Van Zanten, 2015). We require that the covariance kernel

f of the GP g, can be given in its spectral form by

Ef(s)f(s′) =

∫
e−i<ξ,l(s

′−s)>µ(ξ)dξ, s, s′ ∈ S. (6.3.4)

Here l > 0 is an (inverse) length scale parameter and µ is a spectral density on Rd such that the

map a 7→ µ(aξ) on (0,∞) is decreasing for every ξ ∈ Rd and that satisfies

∫
eδ||ξ||µ(dξ) <∞

for some δ > 0. Condition (6.3.4) is satisfied, for instance, by the squared exponential covariance

function

Ef(s)f(s′) = e−l
2||s−s′||2 , s, s′ ∈ S

since it corresponds to a centred Gaussian spectral density.
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The length scale parameter should have a prior πl on [0,∞) which satisfies

C1x
q1 exp(−D1x

d logq2 x) ≤ πl(x) ≤ C2x
q1 exp(−D2x

d logq2 x) (6.3.5)

for positive constants C1, C2, D1, D2, non-negative constants q1, q2, and every sufficiently large

x > 0. In particular if ld is endowed with a Gamma(a, b) prior, then

πl(x) =
bad

Γ(a)
xda−1 exp(−bxd)

for x > 0, and thus (6.3.5) is satisfied with C1 = C2 = bad
Γ(a)

, D1 = D2 = b, q1 = da − 1, and

q2 = 0. We will assume a Gamma prior on ld in the remainder of the paper for ease of analysis and

presentation, but note that similar results are obtainable for other choices.

Finally, for the SGCP model we assume a positive, continuous prior pλ∗ for λ∗ on [0,∞) satis-

fying ∫ ∞
λ′

pλ∗(x)dx ≤ C0e
−c0(λ′)κ (6.3.6)

for some constants c0, C0, κ > 0 and all λ′ > 0. This condition is satisfied by, for instance, choosing

a Gamma prior on λ∗.

6.3.3 Additional Notation

In the following section, we will derive results on the posterior distribution of λ0|X1:n under the

two models. We will denote the prior distributions as Π(·) and the posteriors as Π(·|X1:n). Certain

results will be valid for the class of all continuous functions on [0, 1]d, which will be denoted

C([0, 1]d), and others will hold for the class of all α-Hölder continuous functions on [0, 1]d denoted

Cα[0, 1]d.

Contraction results will inevitably depend on the particular filtering functions γ1:n, therefore it
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is convenient to define versions of standard distances averaged with respect to γ1:n. We have the

averaged uniform norm

Γn,∞(λ, λ′) =
1

n

n∑
i=1

||λγi − λ′γi||∞ =
1

n

n∑
i=1

sup
x∈[0,1]d

|λ(x)γi(x)− λ′(x)γi(x)|,

averaged L2 norm

Γn,2(λ, λ′) =
1

n

n∑
i=1

||λγi − λ′γi||2 =
1

n

n∑
i=1

∫
[0,1]d

(λ(x)γi(x)− λ′(x)γi(x))2dx,

and square rooted averaged L2 norm

Γ
1/2
n,2 (λ, λ′) =

1

n

n∑
i=1

||
√
λγi −

√
λ′γi||2 =

1

n

n∑
i=1

∫
[0,1]d

(
√
λ(x)γi(x)−

√
λ′(x)γi(x))2dx,

for rate functions λ, λ ∈ C([0, 1]d). Using these definitions we can guarantee a rate of convergence

appropriate to the level of filtering.

Finally let N(ε,S, l) denote the ε-covering number of a set S with respect to distance l.

6.4 Posterior Contraction Results

In this section we state our results on the finite-time contraction of the posterior of the QGCP

and SGCP models. Our results assert that given n realisations of the NHPP, the expected posterior

mass concentrated on functions outside a Hellinger-like ball of a given width will not exceed a

transformation of the width of the ball. Theorem 6.4.1 gives the result for the QGCP, and Theorem

6.4.2 for the SGCP.

Theorem 6.4.1. Suppose that λ0 ∈ Cα([0, 1]d) for some α > 0 and λ0 : [0, 1]d → [λ0,min,∞).

Suppose that the filtering functions γ1:n are known. Then for all sufficiently large M,n > 0 the
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posterior under the QGCP satisfies

Eλ0

(
Π
(
λ :

1

n

n∑
i=1

||
√
λγi −

√
λ0γi||2 ≥

√
2Mεn|X1:n

))
= õ
(
n
−d

4α+d

)
(6.4.7)

for εn = 2
√
||λ0|∞n−α/(4α+d)(log(n))ρ+d+1 + n−2α/(4α+d)(log(n))2ρ+2d+2 with ρ = 1+d

4+d/α
.

Theorem 6.4.2. Suppose that λ0 ∈ Cα([0, 1]d) for some α > 0 and λ0 : [0, 1]d → [λ0,min, λ0,max].

Suppose that the filtering functions γ1:n are known. Then for all sufficiently large M,n > 0 the

posterior under the SGCP satisfies

Eλ0

(
Π
(
λ :

1

n

n∑
i=1

||
√
λγi −

√
λ0γi||2 ≥

√
2Mεn|X1:n

))
= õ
(
n
−d

2α+d

)
(6.4.8)

for εn = n−α/(2α+d)(log(n))ρ+d+1 with ρ = 1+d
2+d/α

.

In each case analytical results free from “little-o” notation and a specific value for the “suffi-

ciently large” conditions on M and n are given in the proofs in Sections 6.4.2 and 6.4.3.

The key difference between the two results is that for the QGCP we can only guarantee conver-

gence on larger ball widths εn and at a slower rate fn. Notice that under the QGCP the ball width

is õ(n−α/(4α+d)) and the contraction rate is õ(n−d/(4α+d)), whereas for the SGCP the ball width is

õ(n−α/(2α+d)) and the contraction rate is õ(n−d/(2α+d)).

In the simplest setting where λ0 ∈ C1([0, 1]) - i.e. where we consider Lipschitz smooth func-

tions on d = 1 - this means we have a contraction rate of õ(n−1/5) on balls of width õ(n−1/5) for

the QGCP and a contraction rate of õ(n−1/3) on balls of width õ(n−1/3) for the SGCP. The result

on the SGCP is therefore tighter in two senses, we are able to say that the posterior mass shrinks

quicker than for the QGCP and on the probability of being in a larger subspace (since the ball width

εn is smaller, the area outside the ball is larger).

The different results arise as a consequence of the different transformation functions. For the
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posterior to contract at a given rate, we must demonstrate that the prior model satisfies certain

properties related to this rate. Both models are built upon a GP g, and by considering the properties

of g, we can verify that the SGCP and QGCP prior models meet the necessary conditions.

The results of van der Vaart and van Zanten (2009) demonstrate that for g as described in

Section 6.3, relevant properties of g can be shown, i.e. that the prior mass g assigns to certain

parts of the function space is bounded by sequences of a known form. It follows that appropriate

transformations of these sequences can be used to show that the SGCP and QGCP priors also assign

their prior mass across the function space in the required manner. The transformed sequences give

rise to our ball widths εn which in turn influence the contraction rate. Since the SGCP and QGCP

involve different transformations of g, we also require different transformations of the sequences

for which desirable properties of g hold, and therefore different results are obtained.

More informally, the issue is that by applying a quadratic transformation to the GP over a

logistic one, prior mass is dispersed more across the function space and the resulting posterior

takes longer to contract around the true λ0.

6.4.1 Contraction of NHPP models under general priors

Before we prove Theorems 6.4.1 and 6.4.2 we introduce a third result which gives a sufficient

set of conditions on prior models to attain posterior contraction at a known rate under i.n.i.d. ob-

servations. Theorem 6.4.3 extends Theorem 1 of Ghosal and Van Der Vaart (2007) to apply to

for Poisson processes. The extension is in the same manner as the result of Belitser et al. (2015)

extends Theorem 2 of Ghosal and Van Der Vaart (2001) for i.i.d. Poisson process realisations. In

addition we retain the rate on the shrinkage of the posterior mass, as well as on the ball width,

unlike these earlier papers.

Theorem 6.4.3. Assume that λ0 : [0, 1]d → [λ0,min,∞) and that filtering functions γ1:n are known.

Suppose that for positive sequences δ, δ̄n → 0, such that nmin(δn, δ̄n)2 → ∞ as n → ∞, it
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holds that there exist subsets Λn ⊂ C(S), some n0 ∈ N, and constants c1, c2, c3 > 0, c4 > 1, and

c5 > c2 + 2 such that

Πn

(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ c1e

−c2nδ2n (6.4.9)

sup
δ>δ̄n

logN

(
δ

36
√

2
,
√

Λn,δ,Γn,2

)
≤ c3nδ̄

2
n (6.4.10)

Πn(Λ \ Λn) ≤ c4e
−c5nδ2n . (6.4.11)

for all n ≥ n0 where Λn,ε =
{
λ ∈ Λn : hn(pλ, pλ0) ≤ ε

}
, and hn(pλ, pλ0), is given by

h2
n(pλ, pλ′) =

1

n

n∑
i=1

2

(
1− Eλγi

(√
p(X(i)|λ, γi)
p(X(i)|λ′, γi)

))
.

Then for εn = max(δn, δ̄n) and any C > 0, J ≥ 1,M ≥ 2,

Eλ0

[
Πn

(
λ : Γ

1/2
n,2 (λ, λ0) ≥

√
2JMεn|X1:n

)]
≤ 1

C2nε2n
+ e−M

2nε2n/4

+ 2e−(M2/2−c3)nε2n +
2

c1

e−(c2M2J2/4−C−1)nε2n

(6.4.12)

for n ≥ max(n0, n1, n2, n3) where n1 = arg min{n : εn ≤ λmin}, n2 = arg min{n : εn ≤ 1√
2M
},

and n3 = arg min{n : e−nε
2
nKM

2/4 ≤ 1/2}.

We prove this theorem in Section 6.4.4. This establishes that given the prior model satisfies

certain conditions, the expected posterior mass assigned to rate functions outside an order εn width

ball around λ0 (measured with respect to an averaged L2 distance) decreases at rate o((nε2n)−1)

for sufficiently large n. The conditions on the prior model are standard and are inherited from

the conditions of Theorem 4 of Ghosal and Van Der Vaart (2007) required to show posterior con-
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traction in a density estimation setting. Condition (6.4.9), the prior mass condition, ensures that

a sufficient proportion of the prior mass is assigned to functions close to λ0. Condition (6.4.10),

the entropy condition, and condition (6.4.11), the remaining mass condition, together prescribe that

there exist subsets of the function space such that the entropy of these subsets is not too large, but

the probability of lying outside these is also small.

Equipped with this general result, we are now in a position to prove Theorems 6.4.1 and 6.4.2

by demonstrating that the QGCP and SGCP models meet conditions (6.4.9), (6.4.10), and (6.4.11).

6.4.2 Proof of Theorem 6.4.1: Contraction of the QGCP model

To prove Theorem 6.4.1 we verify that the QGCP model described in Section 6.3 meets the

conditions of Theorem 6.4.3. The following sections handles each condition in turn. Throughout

we have

δn = 2
√
||λ0||∞n−α/(4α+d) logρ(n) + n−2α/(4α+d) log2ρ(n), (6.4.13)

δ̄n = 2
√
||λ0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n). (6.4.14)

Prior Mass Condition

The first condition, the so-called prior mass condition (6.4.9) does not rely on the existence of

particular subsets Λn, and can be verified by the following lemma, which we prove in Section 6.6.1.

Lemma 6.4.4. If λ0 = g2
0 where g0 ∈ Cα([0, 1]d) for some α > 0 then under the QGCP model

there exist constants c1, c2 > 0 for δn as defined in (6.4.13) such that the prior satisfies

Π(λ : ||λ− λ0||∞ ≤ δn) ≥ c1e
−c2nδ2n

for all n ≥ 3.
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Then consider that since γi ∈ [0, 1] for all i = 1, ..., n,

Γn,∞(λ, λ0) =
1

n

n∑
i=1

||λγi − λ0γi||∞ ≤ ||λ− λ0||∞. (6.4.15)

Thus, by Lemma 6.4.4 we have that there exist constants c1, c2 > 0 such that

Πn

(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ Πn(λ : ||λ− λ0||∞ ≤ δn) ≥ c1e

−c2nδ2n ,

satisfying condition (6.4.9).

Definition of Sieves

We now define the subsets Λn for which the QGCP satisfies the constraints of Theorem 6.4.3.

Let,

Λn = (Gn)2 (6.4.16)

where

Gn =

[
βn

√
ζn
χn

Hζn
1 + κnB1

]
∪
[ ⋃
a≤χn

(βnHa
1) + κnB1

]
, (6.4.17)

B1 is the unit ball in C([0, 1]d) with respect to the uniform norm, and Hl
1 is the unit ball of the

RKHS Hl of the GP g with covariance as given in (6.3.4). We define the sequences involved as

follows,

ζn = L2n
1
d

2α+d
4α+d (log(n))2ρ/d + L3n

1
d
α+d
4α+d (log(n))3ρ/d + L4n

1
d

d
4α+d (log(n))4ρ/d

βn = L5n
1
2

2α+d
4α+d (log(n))2ρ+ d+1

2 + L6n
1
2
α+d
4α+d (log(n))3ρ+ d+1

2 + L7n
1
2

d
4α+d (log(n))4ρ+ d+1

2

κn =
1

3
δ̄n, χn =

δ̄n

6τ
√
dβn

,
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for constants

L2 > (8c5||λ0||∞)/D1, L3 > (8c5

√
||λ0||∞)/D1, L4 > 2c5/D1

such that L2 + L3 + L4 > max(A, e) and

L5 ≥ max

(√
16K5Ld2K1+d

1

log2ρ(3)
,
√

32||λ0||∞c5, L
1/3
2

( 8 max(1,
√
||λ0||∞)

(3/36
√

2)3/2d1/4
√

2τ

)2/3
)

L6 ≥ max

(√
16K5Ld3K1+d

1

log3ρ(3)
,

√
32
√
||λ0||∞c5

)
, L7 ≥ max

(√
16K5Ld4K1+d

1

log4ρ(3)
,
√

8c5

)
,

such thatL5+L6+L7 >
4L1 max(1,

√
||λ0||∞)

3
√
||µ||

, andL2L
3
5 >

(
8 max(1,||g0||∞)

(3/L1)3/2d1/4
√

2τ

)2

whereL1 = 1/(36
√

2)

and K1 = log
( 3(L2+L3+L4)

min(1,2
√
||λ0|∞)

)
+ 2αd+2α+d

4αd+d2
+ (4ρ− ρ/d− d− 1).

The definition of Gn and these sequences is important as it allows general GP results of van der

Vaart and van Zanten (2009) to be applied. The extensive conditions on the constants are important

to ensure that the results hold for finite values of n.

Entropy Condition

The following lemma allows us to verify condition (6.4.10) which stipulates that the log entropy

of the subsets Λn is not too large. The proof of this lemma is provided in Section 6.6.3. In particular

it exploits an existing bound on the covering number of Gn with respect to the infinity norm from

van der Vaart and van Zanten (2009).

Lemma 6.4.5. For Λn defined as in (6.4.16), a constant L1 > 0, and δ̄n as defined in (6.4.14), there

exists a constant c3 > 0 such that

logN(L1δ̄n,
√

Λn, || · ||2) ≤ c3nδ̄
2
n,
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for all n such that

4||λ0||∞ log2d+2−2ρ(n) ≥ m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3
∑4

i=2 Li

4||λ0||3/2∞

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d

and

2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1

√
||λ0||∞ + L1

)
≤ 4||λ0||∞n(4α+2d)/(8α+2d) log2ρ+2d+2(n)

− log

(
n(6α+d)/(4α+d) log6ρ(n)

)
.

To apply Lemma 6.4.5, notice that 1
n

∑n
i=1 ||γi × ·||2 ≤ || · ||2 since the functions γi ∈ [0, 1] for

all i = 1, ..., n. It follows that

N

(
δ

36
√

2
,
√

Λn,δ,
1

n

n∑
i=1

||γi × ·||2
)
≤ N

(
δ

36
√

2
,
√

Λn,δ, || · ||2
)
≤ N

(
δ

36
√

2
,
√

Λn, || · ||2
)
.

(6.4.18)

As any ε-covering number is decreasing in ε, it follows by Lemma 6.4.5 that

sup
δ>δ̄n

logN

(
δ

36
√

2
,
√

Λn,δ,
1

n

n∑
i=1

||γi × ·||2
)
≤ c3nδ̄

2
n.

Thus we have satisfied constraint (6.4.10).

Remaining Mass Condition

Finally, Lemma 6.4.6 below is sufficient to validate condition (6.4.11) directly. Its proof is

given in Section 6.6.4.
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Lemma 6.4.6. Under the QGCP model, with Λn as defined in (6.4.16), and δn as defined in (6.4.13)

there exist constants c4 > 0, c5 ≥ c2 + 4 such that

Π(λ : λ /∈ Λn) ≤ c4e
−c5nδ2n ,

for all n such that

n(2α+d)/(4α+d) log2ρ(n) ≥ q1

4c5||g0||2∞
log
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)
)
.

Conlcuding the Proof

By Lemmas 6.4.4, 6.4.5, and 6.4.6 and the definitions of δn and δ̄n therein we have that the

conditions of Theorem 6.4.3 are satisfied. Thus, for the QGCP model

Eλ0

[
Πn

(
λ : Γ

1/2
n,2 (λ, λ0) ≥

√
2JMεn|X̃1:n

)]
≤ 1

C2nε2n
+ e−M

2nε2n/4

+ 2e−(M2/2−c3)nε2n +
2

c1

e−(c2M2J2/4−C−1)nε2n

holds with εn = max(δn, δ̄n) = δ̄n for any C > 0, J ≥ 1,M ≥ 2. Specific values of the remaining

constants can be extracted from Lemmas 6.4.4, 6.4.5, 6.4.6, and 6.6.1.

Then, so long as M and J are sufficiently large, the second, third and fourth terms on the RHS

of equation (6.4.12) decay much more quickly than the first and the bound is õ(n
−d

4α+d ) as stated,

for all n such that the conditions of Theorem 6.4.3 and Lemmas 6.4.5 and 6.4.6 are met. �

6.4.3 Proof of Theorem 6.4.2: Contraction of the SGCP model

Like the proof of Theorem 6.4.1, the proof of Theorem 6.4.2 relies on demonstrating the the

SGCP model described in Section 6.3 meets the conditions of Theorem 6.4.3. In Kirichenko and
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Van Zanten (2015) the conditions of Theorem 1 of Belitser et al. (2015) - the asymptotic and

i.i.d. analogue of Theorem 6.4.3 - are verified for the SGCP model. However certain asymptotic

arguments are used in said proof. In the following sections we handle each condition of Theorem

6.4.3 in turn under our setting. Throughout we have

δn = n−α/(2α+d)(log(n))(1+d)/(2+d/α) (6.4.19)

δ̄n = n−α/(2α+d)(log(n))(1+d)/(2+d/α)+d+1 (6.4.20)

Prior Mass Condition

For the SGCP model, the prior mass condition (6.4.9) can be verified by the following lemma

which we prove in Section 6.6.5.

Lemma 6.4.7. If λ0 = ||λ0||∞σ(g0) where g0 ∈ Cα([0, 1]d) for some α > 0 then under the SGCP

model there exist constants c1, c2 for δn as defined in (6.4.19) such that the prior satisfies

Π(λ : ||λ− λ0||∞ ≤ δn) ≥ c1e
−c2nδ2n

for all n ≥ 3.

Then, by (6.4.15) and Lemma 6.4.7 we have that there exist constants c1, c2 > 0 such that

Π

(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ c1e

−c2nδ2n

and we have shown condition (6.4.9) is satisfied under the SGCP model.
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Definition of Sieves

We now define the sets Λn such that the remaining coniditions hold. Consider,

Λn =
⋃
λ≤λn

λσ(Gn) (6.4.21)

where

Gn =

[
βn

√
ζn
χn

Hζn
1 + κnB1

]
∪
[ ⋃
a≤χn

(βnHa
1) + κnB1

]
, (6.4.22)

B1 is the unit ball in C([0, 1]d) with respect to the uniform norm, and Hl
1 is the unit ball of the

RKHS Hl of the GP g with covariance as given in (6.3.4). Though the structure of the sieves Gn is

the same as in the proof of Theorem 6.4.1, the sequences are defined differently, as below

ζn = L8n
1

2α+d (log(n))2ρ/d, βn = L9n
d

2(2α+d) (log(n))d+1+2ρ,

λn = L10n
d

κ(2α+d) (log(n))4ρ/κ, κn =
1

3
δ̄n, χn =

κn

2τ
√
dβn

,

for constants

L8 > max

(
A, 1,

(
2c5

D1

)1/d
)
, L9 ≥

√
8c5, L10 >

(
c5

c0

)1/ρ

such that

L8L
3
9L

3/2
10 >

2

(6cL1)3/2τ
√
d
, L9L

1/2
10 >

1

6cL1

√
||µ||

,

where L1 = 1/(36
√

2), c = 2−5/2, and κ is a positive constant.
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Entropy Condition

The following lemma will allow us to verify condition (6.4.10). We prove it in Section 6.6.6.

Lemma 6.4.8. For Λn as defined in (6.4.21), a constant L1 > 0 and δ̄n as defined in (6.4.20), there

exists a constant c3 > 0 such that

logN(L1δ̄n,
√

Λn, || · ||2) ≤ c3nδ̄
2
n,

for all n such that

log2d+2(n) > K1L
d
8

(
log(

√
2τL8L3

9L
3/4
10 d

1/4) +
κ(6d+ 6α + 2) + 3d

4κ(2α + d)
log(n)

+ log
(

log3ρ/2+3ρ/κ+ρ/d−d−1(n)
))1+d

(6.4.23)

n
d

2α+d > max

(
2 log(12cL1L9L

1/2
10 ), 2 log(L1L

1/2
10 )

)
+ 1. (6.4.24)

Then, as in the proof of Theorem 6.4.1, using (6.4.18) and Lemma 6.4.8 we have

sup
δ>δ̄n

logN

(
δ

36
√

2
,
√

Λn,δ,
1

n

n∑
i=1

||γi × ·||2
)
≤ c3nδ̄

2
n,

verifying condition (6.4.10).

Remaining Mass Condition

Finally, Lemma 6.4.9 below is sufficient to validate condition (6.4.11) directly. Its proof is

given in Section 6.6.7.

Lemma 6.4.9. Under the SGCP model, with Λn as defined in (6.4.21), and δn as defined in (6.4.20)
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there exist constants c4 > 0, c5 ≥ c2 + 4 such that

Π(λ : λ /∈ Λn) ≤ c4e
−c5nδ2n

for all n such that

log2ρ(n) >
16K5D1L

d
8

L2
9

(
log(
√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)
log(n)

)1+d

, (6.4.25)

n
d

2α+d >
1

c5

(
log(Lq1−d+1

8 ) + 1
)
, (6.4.26)

Concluding the Proof

Thus, the three conditions (6.4.9), (6.4.10), and (6.4.11) of Theorem 6.4.3 are satisfied by the

SGCP model, and we have

Eλ0

[
Πn

(
λ : Γ

1/2
n,2 (λ, λ0) ≥

√
2JMεn|X̃1:n

)]
≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4

+ 2e−(M2/2−c′3)nε2n +
2

c′1
e−(c′2M

2J2/4−C−1)nε2n

with εn = max(δn, δ̄n) = δ̄n. Then, so long as M and J are sufficiently large, the second, third and

fourth terms on the RHS of equation (6.4.12) decay much more quickly than the first and the bound

is õ(n
−d

2α+d ) as stated, for all n such that the conditions of Theorem 6.4.3 are met and that (6.4.23),

(6.4.24), (6.4.25), and (6.4.26) hold. �

6.4.4 Proof of Theorem 6.4.3: Generic contraction in NHPPs

The proof of Theorem 6.4.3 depends on a general result for convergence of posterior parameter

estimation given i.n.i.d. observations. Such a result is given in Ghosal and Van Der Vaart (2007),
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but without a finite time rate on the probability. We restate their result below as Theorem 6.4.10

but with a rate included.

Consider as in Ghosal and Van Der Vaart (2007), a model in which a parameter θ0 ∈ Θ gives

rise to a i.n.i.d sequence of data. The data at time i are drawn independently from the data at other

times from a distribution P θ
i , which we assume admits a density pθi with respect to a dominating

measure.

We define the following subsets of the parameter space for n ≥ 1 and k > 1

Bn(θ0, ε; k) =

{
θ ∈ Θ :

1

n

n∑
i=1

Ki(θ0, θ) ≤ ε2,
1

n

n∑
i=1

Vk,0;i(θ0, θ) ≤ Ckε
k

}

where Ki(θ0, θ) =
∫
pθ0i log(pθ0i /p

θ
i )dµ is the Kullback-Leibler divergence and Vk,0;i(θ0, θ) =∫

pθ0i | log(pθ0i /p
θ
i ) − K(θ0, θ)|kdµ is a variance discrepancy measure. Furthermore, let dn be the

averaged Hellinger distance, defined by

d2
n(θ, θ′) =

1

n

n∑
i=1

∫
(
√
pθ,i −

√
pθ′,i)

2dµi.

Our modified version of Theorem 4 of Ghosal and Van Der Vaart (2007) is as below.

Theorem 6.4.10. Suppose Yi ∼ P θ
i independently for i = 1, ..., n and let dn be defined as the

average Hellinger distance. Further, suppose that for a sequence εn → 0 such that nε2n is bounded

away from 0, some k > 1, all sufficiently large j ∈ N, constants c1, c2, c3 > 0, and sets Θn ⊂ Θ,

the following conditions hold:

Πn(θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn)

Πn(B∗n(θ0, εn; k))
≤ c1e

c2nε
2
nj

2

4 (6.4.27)

Πn(Θ \Θn)

Πn(B∗n(θ0, εn; k))
= o(e−2nε2n) (6.4.28)
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sup
ε>εn

logN

(
ε

36
,
{
θ ∈ Θn : dn(θ, θ0) < ε

}
, dn

)
≤ c3nε

2
n. (6.4.29)

Then for any C > 0, J ≥ 1, and M ≥ 2,

Eθ0Πn(θ : dn(θ, θ0) ≥ JMεn|Y (n)) ≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4

+ 2e−(M2/2−c3)nε2n +
2

c1

e−(c2M2J2/4−C−1)nε2n

for all n such that e−nε
2
nM

2/4 ≤ 1/2 .

The proof of Theorem 6.4.10 is a modification of proof of Theorem 4 of Ghosal and Van

Der Vaart (2007). We replace arguments that hold in the limit with finite-time versions and handle

the introduction of the constants c1, c2, c3, assumed to be 1 in Ghosal and Van Der Vaart (2007).

We can set the constant K present in the original theorem to 1/2 since we are dealing with the

Hellinger distance.

Proof of Theorem 6.4.10: By Lemmas 9 and 10 of Ghosal and Van Der Vaart (2007) and given

conditions (6.4.27), (6.4.28), and (6.4.29), we have for n such that e−nε2nM2/4 ≤ 1/2 any M ≥ 2,

J ≥ 1 and C > 0,

Eθ0Πn(θ : dn(θ, θ0) ≥ JMεn|Y (n))

≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 +
e−(M2/2−c3)nε2n

1− e−M2nε2n/2
+
∑
j≥J

1

c1

e−nε
2
n(c2M2j2/4−C−1)

≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
1

c1

e−nε
2
n(c2M2J2/4−C−1)

∞∑
j=0

(
e−nε

2
n(c2M2/4)

)j2
≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
1

c1

e−nε
2
n(c2M2J2/4−C−1)

∞∑
j=0

(
e−nε

2
n(c2M2/4)

)j2
≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
e−nε

2
n(c2M2J2/4−C−1)

c1(1− e−nε2nc2M2/4)
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≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
2

c1

e−(c2M2J2/4−C−1)nε2n . �

To apply Theorem 6.4.10 we define averaged versions of the Hellinger distance, KL divergence

and variance measure. Let pλγi(N) = p(X(i)|λ, γi) and we define the averaged Hellinger distance

hn(pλ, pλ′) by

h2
n(pλ, pλ′) =

1

n

n∑
i=1

2

(
1− Eλγi

(√
pλγi(N)

pλ′γi(N)

))
,

the averaged KL-divergence as

kn(pλ, pλ′) = − 1

n

n∑
i=1

Eλ′γi

(
log
( pλγi(N)

pλ′γi(N)

))
,

and variance measure as

vn(pλ, pλ′) =
1

n

n∑
i=1

V arλ′γi

(
log
( pλγi(N)

pλ′γi(N)

))
.

Through component-wise application of the relations in Section A.1 of Belitser et al. (2015) we

have deterministic expressions for these quantities as

h2
n(pλ, pλ′) =

1

n

n∑
i=1

2

(
1− exp

{
− 1

2

∫
Ri

(√
λ(t)γi(t)−

√
λ′(t)γi(t)

)2

dt

})
,

kn(pλ, pλ′) =
1

n

n∑
i=1

(∫
Ri

(λ(t)− λ′(t))γi(t)dt+

∫
Ri

λ′(t)γi(t) log
(λ′(t)
λ(t)

)
dt

)
,

vn(pλ, pλ′) =
1

n

n∑
i=1

∫
Ri

λ′(t)γi(t) log2
(λ′(t)
λ(t)

)
dt.

Lemma 1 of Belitser et al. (2015) gives bounds on the non-averaged versions of these quantities,

but as the bounds will hold for each component of the average, we can trivially extend these results
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to give the following inequalities:

1√
2n

n∑
i=1

(
||
√
λγi −

√
λ′γi||2 ∧ 1

)
≤ hn(pλ, pλ′) ≤

√
2

n

n∑
i=1

(
||
√
λγi −

√
λ′γi||2 ∧ 1

)
(6.4.30)

kn(pλ, pλ′) ≤
3

n

n∑
i=1

||
√
λγi −

√
λ′γi||22 + vn(pλ, pλ′)

(6.4.31)

1

n

n∑
i=1

||
√
λγi −

√
λ′γi||22 ≤

1

4n

n∑
i=1

∫
Ri

γi(s)(λ(s) ∨ λ′(s)) log2
( λ(s)

λ′(s)

)
ds

(6.4.32)

where for numbers x and y, the minimum is denoted x ∧ y and the maximum is denoted x ∨ y.

By assumption, λ0 is bounded away from 0. It follows that any λ ∈ Λ with ||λ0 − λ||∞ ≤ λmin

is also bounded away from 0, and that by the results (6.4.31) and (6.4.32) above kn(pλ0 , pλ) and

vn(pλ0 , pλ) are both bounded by a constant times the averaged uniform norm 1
n

∑n
i=1 ||λ0γi −

λγi||∞. Therefore for n ≥ n1 the ball

B∗n(εn) =

{
λ ∈ Λ : kn(pλ0 , pλ) ≤ ε2n, vn(pλ0 , pλ) ≤ ε2n

}

is bounded by a multiple of the ball

{
λ ∈ Λ :

1

n

n∑
i=1

||λ0γi − λγi||∞ ≤ εn

}

for εn ≤ λmin. It follows that for n ≥ n1, the condition (6.4.9) implies

Πn(B∗n(δn)) ≥ c1e
−c2nδ2n . (6.4.33)
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By (6.4.30) we have that

N

(
ε

36
,Λn,ε, hn

)
≤ N

(
ε

36
√

2
,
√

Λn,ε,
1

n

n∑
i=1

|| · ||2
)

where Λn,ε =
{
λ ∈ Λn : hn(pλ, pλ0) ≤ ε

}
. Thus the condition (6.4.10) implies (6.4.29).

Combining these results we have

Πn(λ ∈ Λn : jδn < hn(pλ, pλ0) ≤ 2jδn)

Πn(B∗n(δn))
≤ 1

Πn(B∗n(δn))
≤ c1e

c2nδ2n

by (6.4.33) to satisfy condition (6.4.27), and

Πn(Λc
n)

Πn(B∗n(δn))
≤ c4e

−c5nδ2n

c1e−c2nδ
2
n

= o(e−2nδ2n)

by (6.4.11) and (6.4.33) for c5 − c2 ≥ 2 to satisfy (6.4.28). Thus all the conditions of Theorem

6.4.10 are satisfied by the assumptions of Theorem 6.4.3 and the conclusion of Theorem 6.4.10

carries forward to Theorem 6.4.3 where we choose k = 2. �

6.5 Conclusion

We have derived finite time rates on the posterior contraction of the QGCP and SGCP models

given i.n.i.d observations. This allows us to quantify the contraction of posterior estimates in the

setting where events are not detected perfectly or the observation region is not sampled uniformly.

As well as a new consistency result for the QGCP model, and the innovations of studying i.n.i.d

data over i.i.d., the presentation of explicit rates on the posterior mass for the contraction of non-

homogeneous Poisson process models is new. These results are of theoretical importance and

practical interest in problems such as sequential decision making and experimental design.
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We found that the SGCP model admitted a much tighter analysis than the QGCP model. For

the simple setting of 1-dimensional 1-Hölder smooth rate functions, the SGCP model can be shown

to have convergence of the near-optimal order õ(n−1/3). Our best result for the QGCP model

only shows convergence of order õ(n−1/5). This discrepancy arises because of the different link

functions used in the two models. In comparison to the bounded sigmoid function, the quadratic

function induces a larger space of rate functions when the GP is transformed - meaning that wider

sieves are required to give the desired results and the contraction guarantees are looser. Guarantees

on the tightness of these bounds are currently unavailable, but this work provides some evidence

to suggest that the SGCP model is superior to the QGCP in terms of rate of posterior contraction

at least. This is an observation that would merit further empirical and analytical study in to the

relationship between the models. We did not consider the LGCP model in this work as its expo-

nential link function makes it very difficult to adapt the existing GP results of van der Vaart and

van Zanten (2009) into meaningful results in the NHPP posterior contraction setting. In particular,

the high probability bound {||g − g0||∞ ≤ ηβn} on the GP model, does not imply a useful bound

on ||eg − eg0||∞ - the distance to be bounded in the prior mass condition for the LGCP - that gives

useful contraction results.

We have focussed on particular choices of smoothness class, the link function used within the

GCP construction and the width of the balls used in the contraction rate statements. There is of

course potential to expand on these results by studying other choices. We believe however that

the choices we have are consistent with the most common modelling choices in implementation

of GCPs and useful for relating our results to the existing literature on posterior contraction of

Bayesian nonparametric models.

The results we have provided in this chapter are, we believe, the best available with the current

theory around contraction of nonparametric Bayesian inference. An open problem now is to utilise

these to derive bounds on the performance of sequential event detection algorithms using GCP
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inference.

6.6 Further proofs

6.6.1 Proof of Lemma 6.4.4

Proving Lemma 6.4.4 relies on a bound on the uniform norm in the GP space. The following

lemma gives a particular prior mass result which holds for all n > 0 and uses a general term ηβ,n

which fits with the analysis of both the SGCP and QGCP models.

Lemma 6.6.1. If g0 ∈ Cα([0, 1]d) for some α > 0, then there exist constants c1, c2 > 0 such that

Π
(
||g − g0||∞ ≤ ηβ,n

)
≥ c1e

−c2nηββ,n

for ηβ,n = n−α/(βα+d)(log(n))ρβ and ρβ = 1+d
β+d/α

for all n ≥ 3 where β > 1.

Furthermore, we rely on the following simple result which allows us to move between probabilistic

bounds on the uniform norm of the GP and the squared GP.

Lemma 6.6.2. Let w1 and w2 be functions defined on [0, 1]d such that ||w2||∞ is finite, and c be

a positive constant. Given the standard definition of the uniform norm, we have the following

relation: {
||w1 − w2||∞ ≤ c

}
⇒
{
||w2

1 − w2
2||∞ ≤ 2c||w2||∞ + c2

}
.

We prove Lemma 6.6.1 in Section 6.6.2 and prove Lemma 6.6.2 below.
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Proof of Lemma 6.6.2:

We have:

||w1 − w2||∞ ≤ c

⇒ w1(x) ≤ w2(x) + c ∀ x ∈ S

⇒ w2
1(x) ≤ w2

2(x) + 2cw2(x) + c2 ∀ x ∈ S

⇒ ||w2
1 − w2

2|| ≤ 2c||w2||∞ + c2. �

Proof of Lemma 6.4.4:

Recall the defintion δn = 2ηn||g0||∞ + η2
n, with ηn = η4,n. By definition we have:

Π
(
λ : ||λ− λ0||∞ ≤ δn

)
= Π

(
g : ||g2 − g2

0||∞ ≤ 2ηn||g0||∞ + η2
n

)
≥ Π

(
g : ||g − g0||∞ ≤ ηn

)
≥ c1e

−c2nη4n ≥ c1e
−c2nδ2n ,

Here, the first inequality is due to Lemma 6.6.2. The second is by application of Lemma 6.6.1 and

the third is by definition of δn. �

6.6.2 Proof of Lemma 6.6.1

We will utilise the following result from Section 5.1 of van der Vaart and van Zanten (2009),

which holds for a constant H depending only on g0 and µ, a constant K2 depending only on
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g0, µ, α, d and D1 and any ε > 0

Π
(
||g − g0||∞ ≤ 2ε

)
≥ C1 exp

{
−K2

(
1

ε

)d/α(
log

(
1

ε

))1+d}(
H

ε

) q1+1
α

.

Recall that C1, D1, and q1 are constants from the assumption (6.3.5) on the length scale of the GP

prior.

Substituting the particular form of ε = εn = n−α/(βα+d)(log(n))ρ and ρ = 1+d
β+d/α

from Lemma

6.6.1 into the above we have:

Π
(
||g − g0||∞ ≤ εn

)
≥ C1 exp

{
− 2

d
αK2n

d
βα+d (log(n))−

d
α

1+d
β+d/α

(
log

(
2n

α
βα+d (log(n))−

1+d
β+d/α

))1+d
}

×

(
2Hn

α
βα+d (log(n))−

1+d
β+d/α

) q1+1
α

,

defining Z(n) =
(
Hn

α
βα+d (log(n))−

1+d
β+d/α

) q1+1
α

and expanding the logarithm,

= C1Z(n) exp

{
− 2

d
αK2n

d
βα+d (log(n))−

d
α

1+d
β+d/α

(
α

βα + d
log(2n)− (log(n))

1+d
β+d/α

)1+d
}

≥ C1Z(n) exp

{
− 2

d
αK2n

d
βα+d (log(n))−

d
α

1+d
β+d/α

(
α

βα + d
log(2n)

)1+d
}

using 2 log(n) ≥ log(2n) for n ≥ 2

≥ C1Z(n) exp

{
− 21+d/αK2n · n−

βα
βα+d (log(n))(1+d)

β+d/α−d/α
β+d/α

}
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= C1Z(n) exp

{
− 21+d/αK2nε

β
n

}

letting K3 = minn≥3(Z(n))

≥ C1K3 exp

{
− 21+d/αK2nε

β
n

}
= c1e

−c2nεβn ,

where c1 = C1K3, and c2 = 21+d/αK2. �

6.6.3 Proof of Lemma 6.4.5

As
√

Λn = Gn, the covering numbers N(L1δ̄n,
√

Λn, || · ||2) and N(L1δ̄n,Gn, || · ||2) are equiv-

alent. It follows that

N(L1δ̄n,
√

Λn, || · ||2) ≤ N(L1δ̄n,Gn, || · ||∞).

Defining Gn as in (6.4.17) allows us to use the following result, (5.4) of van der Vaart and van

Zanten (2009):

logN(L1δ̄n,Gn, || · ||∞) ≤ mζdn

(
log

33/2d1/4β
3/2
n

√
2τζn

(L1δ̄n)3/2

)1+d

+ 2 log
6βn
√
||µ||

L1δ̄n

for ||µ|| the total mass of the spectral measure µ, τ 2 as the second moment of µ, positive constant

m depending only on µ and d, and given

(3/L1)3/2d1/4β3/2
n

√
2τζn > 2δ̄3/2

n , (3/L1)βn
√
||µ|| > δ̄n.
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By the definitions of βn, and ζn we have that

mζdn

(
log

33/2d1/4β
3/2
n

√
2τζn

(L1δ̄n)3/2

)1+d

≤ nδ̄2
n

2 log
6βn
√
||µ||

L1δ̄n
≤ nδ̄2

n,

for the values of n specified in the statement of Lemma 6.4.5. It follows that the lemma is satisfied

with c3 = 2. �

6.6.4 Proof of Lemma 6.4.6

Firstly note that Π(λ /∈ Λn) = Π(g /∈ Gn). By a simplification of (5.3) of van der Vaart and van

Zanten (2009) to account for our assumption that q2 = 0, we have

Π(g /∈ Gn) ≤ C1ζ
q1−d+1
n e−D1ζdn + e−β

2
n/8

δ̄n < δ0 for small δ0 > 0, and βn, ζn, and δ̄n satisfying

β2
n > 16K5ζ

d
n

(
log
(3ζn
δ̄n

))1+d

, ζn > 1,

for a constant K5 depending only on µ and g. The definitions of βn, δn and ζn give us the following

relations, for a constant c5 = c2 + 4

D1ζ
d
n ≥ 2c5nδ

2
n, β

2
n ≥ 8c5nδ

2
n, ζ

q1−d+1
n ≤ ec5nδ

2
n ,
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with the final of these holding for values of n as specified in the statement of Lemma 6.4.6. Using

these we can obtain the necessary result as follows:

Π(λ : λ /∈ Λn) = Π(g : g /∈ Gn) ≤ C1ζ
q1−d+1
n e−D1ζdn + e−β

2
n/8

≤ C1e
c5nδ2ne−2c5nδ2n + e−c5nδ

2
n

=
(
C1 + 1

)
e−2c5nδ2n

≤ c4e
−(c2+4)nδ2n

for c4 = C1 + 1. �

6.6.5 Proof of Lemma 6.4.7

Under the SGCP model we have

Π

(
(λ∗, g) : ||λ∗σ(g)− λ0||∞ ≤ δn

)
≥ Π

(
λ∗ : |λ∗ − 2||λ0||∞| ≤

δn
2

)
× Π

(
g : ||σ(g)− σ(g0)||∞ ≤

δn
4||λ0||∞

)
.

By the assumption that λ∗ has a positive continuous density, the first term on the RHS of the

inequality can be bounded below by a constant times δn, which can itself be lower bounded by a

constant for finite n. The second term can be bounded below by Πn(||g − g0||∞ ≤ δn/(16||λ0|∞))

since 1/4 is the Lipschitz constant of the sigmoid transformation. Thus, by Lemma 6.6.1 (given in

Section 6.6.1) we have:

Π
(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ c′0Π

(
g : ||g − g0||∞ ≤

δn
16||λ0||∞

)
≥ c′1e

−nc′2δ2n

for positive constants c′1, c
′
2, showing condition (6.4.9) is satisfied under the SGCP model.
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6.6.6 Proof of Lemma 6.4.8

Define ψn = δ̄n/(2L1

√
λn). We have

logN(L1δ̄n,
√

Λn, || · ||2) = logN(2ψn
√
λn,
√

Λn, || · ||2)

≤ logN(ψn
√
λn, [0, λn],

√
| · |) + logN(ψn/c,Gn, || · ||∞)

≤ log
1

ψn
+ logN(ψn/c,Gn, || · ||∞) (6.6.34)

for c = 2−5/2, the Lipschitz constant of
√
σ.

Then, as in the proof of Lemma 6.4.5, by equation (5.4) of van der Vaart and van Zanten (2009),

we have for Bn > 0,

logN(Bnδ̄n,Gn, || · ||∞) ≤ mζdn

(
log

33/2d1/4β
3/2
n

√
2τζn

(Bnδ̄n)3/2

)1+d

+ 2 log
6βn
√
||µ||

Bnδ̄n
(6.6.35)

subject to the conditions

(3/Bn)3/2d1/4β3/2
n

√
2τζn > 2δ̄3/2

n , (3/Bn)βn
√
||µ|| > δ̄n, ζn > A

for a constant A > 0. These conditions hold by defintion for n as specified by (6.4.23), with

Bn = (2cL1

√
λn)−1. Then, combining (6.6.34) and (6.6.35) we have

logN
(
L1δ̄n,

√
Λn, || · ||2

)
≤ log

2L1

√
λn

δ̄n
+mζdn

(
log

(6cL1)3/2d1/4β
3/2
n

√
2τλnζn

δ̄
3/2
n

)1+d

+ 2 log
12cL1βn

√
λn||µ||

δ̄n
.
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For n as specified by (6.4.24), we have

log
2L1

√
λn

δ̄n
< nδ̄2

n,

mζdn

(
log

(6cL1)3/2d1/4β
3/2
n

√
2τλnζn

δ̄
3/2
n

)1+d

< nδ̄2
n,

2 log
12cL1βn

√
λn||µ||

δ̄n
< nδ̄2

n.

Thus for n satisfying (6.4.23) and (6.4.24) we have

logN

(
L1δ̄n,

√
Λn, || · ||2

)
≤ 3nδ̄2

n

proving Lemma 6.4.8 with c3 = 3. �

6.6.7 Proof of Lemma 6.4.9

As in Kirichenko and Van Zanten (2015), we may decompose the probability of interest

Π
(
λ : λ /∈ Λn

)
= Π

(
(λ∗, g) : λ∗σ(g) /∈ Λn

)
≤
∫ λn

0

Π
(

(λ∗, g) : λ∗σ(g) /∈ Λn

)
pλ∗(λ)dλ+

∫ ∞
λn

pλ∗(λ)dλ

≤ Π
(
g : g /∈ Gn

)
+ C0e

−c0λρn ,

by the assumption (6.3.6). As utilised in the proof of Lemma 6.4.6, equation (5.3) of van der Vaart

and van Zanten (2009) states that

Π(g /∈ Gn) ≤ C1ζ
q1−d+1
n e−D1ζdn + e−β

2
n/8
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given conditions

β2
n > 16K5ζ

d
n

(
log
(λ1/2

n ζn
δ̄n

))1+d

, ζn > 1

which are satisfied by our earlier definitions, for a constant K5 depending only on µ and g. Then

for n as specified by equations (6.4.25) and (6.4.26), we have the following results

c0λ
ρ
n > c5nδ

2
n, D1ζ

d
n ≥ 2c5nδ

2
n, ζq1−d+1

n ≤ ec5nδ
2
n , β2

n ≥ 8c5nδ
2
n.

The required result then follows. �



Chapter 7

Thompson Sampling for Lipschitz Bandits

An updated version of this chapter has been accepted for publication, to appear as Grant J.A.,

and Leslie, D.S. (2020). On Thompson Sampling for Smoother-than-Lipschitz Bandits. In Pro-

ceedings of AISTATS 2020.

7.1 Introduction

The posterior contraction results of Chapter 6 provide us with a deeper understanding of Gaus-

sian Cox Processes (GCPs), but do not readily lead to a bound on the performance of GCP-

Thompson Sampling (GCP-TS). As we described in Section 6.1.1, there is , generally speaking,

a lack of understanding of TS based on non-parametric inference. The GCP-TS is a special case

among many poorly understood algorithms. While the results of Chapter 6 may be useful for de-

riving a bound on the regret of GCP-TS, when coupled with appropriate regret analysis techniques,

such sophisticated techniques are unfortunately not currently known.

In this chapter we will tackle the more general problem, of quantifying the performance of the

TS approach based on a non-parametric prior over a class of smooth problems in its application to

170
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the continuum-armed bandit (CAB) problem which we introduced in Chapter 3.

We will give a bound on the Bayesian regret of TS for CAB problems where the reward function

is a sample from a prior on the class of functions with M Lipschitz smooth derivatives, where

M ∈ N, and the feedback is of the form of a noisy realisation of the reward function at the location

of the selected action in each round. While a prior with mass on the entirety of this class may be

hard to define, there are a number of non-parametric models which may approximate it well or

place all their mass on such a class. Some options are a Gaussian process (GP) with a covariance

kernel which induces Lipschitz smooth realisations, certain Bayesian neural networks, or priors

over smooth basis functions such as B-splines. The particular choice of prior will of course have

an effect on the performance of TS, and if the true reward function is not supported by the chosen

prior, the results in this chapter may no longer apply.

However, we assert that results pertaining to general priors and exact inference are valuable

benchmarking tools, increase our understanding of the TS principle in general, and derivation of

such results is timely as implementation of (approximate) TS based on the aforementioned non-

parametric priors becomes increasingly viable, thanks to advanced sampling techniques.

Furthermore, these results are valuable because TS is a powerful method which may be more

widely applicable than other approaches which require careful tuning to the concentration of pa-

rameter estimates, and thus any further understanding of its properties is helpful. CABs have

applications in many of the same settings as simpler bandit models including clinical trials and

dose design, website optimisation, parameter tuning, and optimal search. Indeed, in many cases

the CAB provides a more realistic representation of the available action space and reward function

than the necessarily discrete formulation under the MAB.

In our sequential event detection problem, if only the per-round reward (and not individual

event locations) is observed by the decision-maker, the problem can be readily modelled by a

CAB problem of the type described above. There are a number of reasons that this may in fact
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be a realistic assumption. Perhaps storage of event locations is too costly and they are discarded,

or pinpointing event locations is somehow more challenging, or less reliable, than detecting the

occurrence of an event and the information is not deemed suitable for inference.

7.1.1 Related Work

As we mentioned in Chapter 3, although TS was first proposed as a method long ago (Thomp-

son, 1933), the majority of research on TS has been developed in the last decade. Numerous authors

have studied the frequentist regret of TS in multi-armed bandit (MAB), combinatorial multi-armed

bandit (CMAB), and contextual bandit problems, with varying assumptions on the feedback mech-

anism and reward noise distribution (May et al., 2012; Agrawal and Goyal, 2012; Kaufmann et al.,

2012b; Korda et al., 2013; Komiyama et al., 2015; Wang and Chen, 2018).

Russo and Van Roy (2014) originated the study of the Bayesian regret of TS. They introduced

the notion of the ε-eluder dimension of a function class (a new complexity measure useful for

analysis, whose form we will fully specify in the main body of the chapter) and showed that by

considering this along with the concentration properties of the least squares estimator, a bound on

the Bayesian regret of TS for general action sets and reward function classes is available. They

use this generic argument to derive bounds for bandit problems with (generalised) linear reward

functions under sub-Gaussian noise. Quadratic functions and applications in model-based rein-

forcement learning are considered by Osband and Van Roy (2014). The eluder dimension-based

technique may be generalized further. We extend the application of this theory to the broader set-

ting of reward functions with Lipschitz derivatives and sub-exponential reward noise, through a

new ε-eluder dimension bound, and the generalisation of Russo and van Roy’s work. This exten-

sion is valuable as the application of TS to such a general notion of the CAB with smooth reward

functions has not yet been studied.

The special case of TS for the CAB problem where the reward function is a sample from a
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GP and the reward noise is sub-Gaussian, sometimes referred to as GP optimisation has received

some attention. This setting is more restrictive than ours, but is popular because of its intersection

with common modelling assumptions in Bayesian optimisation (Shahriari et al., 2016). Hernández-

Lobato et al. (2014) showed a method to approximately sample from a GP posterior, and later Bijl

et al. (2016) show how Sequential Monte-Carlo methods can be used to implement approximate

TS for the CAB with reward function drawn from a GP. Russo and Van Roy (2014) also derive a

Bayesian regret bound for TS applied to GP optimisation. These results rely on the information-

theoretic technqiues of Srinivas et al. (2012), meaning that they only hold for GPs with a covariance

kernel for which the “maximum information gain” is known. This is an information theoretic

property of a particular covariance kernel and is non-trivial to derive.

Basu and Ghosh (2017) study an ε-randomised variant of TS, however they are interested in the

rate at which the selected action converges to the optimal action, rather than regret or Bayesian re-

gret. They show that an exponential rate of convergence is achievable subject to certain conditions

on the kernel function and its eigenfunctions. Kandasamy et al. (2018) provide methods for paral-

lelising TS for Bayesian Optimisation in this setting, and carry forward versions of the guarantees

of Russo and Van Roy (2014).

Further papers have considered the use of information theoretic ideas to bound the Bayesian

regret of TS in multi-armed bandits (Russo and Van Roy, 2016; Dong and Van Roy, 2018). These

bounds express regret in terms of the information ratio - a statistic which characterises the trade-off

between exploration and exploitation performed by a particular algorithm. The techniques used to

derive these bounds are quite different to the confidence set based analysis we use in this chapter,

and as such we will not investigate them further here, though we note they could perhaps also be

applied to the nonparametric bandits we consider in our work.

Several upper confidence bound approaches exist for CABs with a Lipschitz smooth reward

function. In this setting, Kleinberg (2005) demonstrated that Ω(T 2/3) regret is the best achiev-
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able. Order-optimal performance can be achieved by the zooming algorithm (Kleinberg, 2005),

which was initially proposed for sub-Gaussian rewards. Recently the order optimal results have

been extended to a version of the zooming algorithm adapted to heavy tailed rewards (Lu et al.,

2019). Bubeck et al. (2011) propose the Hierarchical Online Optimisation (HOO) algorithm which

can attain O(
√
T ) regret, subject to further convexity assumptions on the reward function, which

also reduce the order of the lower bound for the problem. Each of these algorithms achieves or-

der optimal regret by an adaptive discretisation routine which imposes an appropriate amount of

exploration on the sequence of selected actions.

Following Srinivas et al. (2010, 2012) a number of works have considered Bayesian upper

confidence bound algorithms (not to be confused with the Bayes-UCB algorithm mentioned in

Chapter 3) for GP optimisation. Under this the regime O(
√
T ) regret is possible. This is because

the reward function is assumed to be a sample from a GP and thus is restricted to be smoother

than in the Lipschitz bandit setting. Srinivas et al. (2010) initially proposed the GP-UCB algorithm

(an extension of the UCB idea to CABs) and demonstrated O(
√
T ) regret. Several extensions of

the algorithm are proposed and found to have similar theoretical guarantees. Contal et al. (2013);

Bogunovic et al. (2016); Wang et al. (2016) propose methods where UCB decision making steps

are combined with pure exploration steps or where pure exploration is performed on a subset of

actions determined by a UCB function. Contal et al. (2014) propose a variant of the method where

the exploration bonus incorporates the expected information gain. In Shekhar and Javidi (2018) the

GP-UCB ideas are combined with ideas from tree-search algorithms for Lipschitz bandit problems

to give an approach which avoids any non-convex optimisation. Grünewälder et al. (2010) and

Scarlett et al. (2017) derive algorithm-independent lower bounds for GP optimisation in the noise-

free and noisy settings respectively, and Krause and Ong (2011) extend the GP-UCB algorithm to

a contextual bandit setting.
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7.1.2 Key Contributions

The main contribution of this chapter is a bound on the Bayesian regret of Thompson Sam-

pling applied to Continuum-armed Bandits where the reward function is a sample from a prior

distribution on the class of bounded functions with M ∈ N Lipschitz smooth derivatives and the

reward noise is sub-exponentially distributed. As far as we are aware this is the first analysis of the

performance of TS based on non-parametric inference that considers such a general framework.

We derive an upper bound of order O(T
1− 1

2
2M2+3M+2

2M2+7M+6 ). This suggests that TS may not perform as

well as UCB methods with adaptive discretisation for problems with M small, but that it seems to

perform at the optimal order as M →∞.

In the process of proving this result we give the first bound on the ε-eluder dimension of Lip-

schitz function classes, and we extend bounds on the Bayesian regret of Thompson Sampling for

bandit problems with (generalised) linear reward function to the sub-exponential reward noise set-

ting.

7.1.3 Chapter Outline

The remainder of the chapter is structured as follows. Section 7.2 introduces the general bandit

model relevant to this chapter. In Section 7.3 we present a general bound on the Bayesian regret

under sub-exponential reward noise. Then in Section 7.4 we specialise this bound to particular re-

ward function classes, including the case of a reward function having Lipschitz smooth derivatives.

Finally we conclude with a discussion in Section 7.5.

7.2 Model

Throughout the chapter we will use the following general representation of a bandit problem.

There exists a set of actionsA ∈ Rd, which can be selected by a decision-maker. Each action a ∈ A
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has an expected reward given by a reward function fθ : A → R parameterised by a potentially

infinite dimensional parameter θ ∈ Θ, with prior pθ, where Θ is a parameter space. The implication

of this parameterisation is that fθ ∈ F , where F is a class of functions parameterised by θ ∈ Θ,

that we will assume is known. Furthermore, we assume that ∀f ∈ F , ∀a ∈ A, f(a) ∈ [0, C], i.e.

that all functions in F are bounded onA. In a sequence of rounds t ∈ [T ] ⊆ N, the decision-maker

selects an action at ∈ A and receives a reward Rt = fθ(at)+ηt, which is a noisy pertubation of the

reward function at at. LetHt = σ(a1, R1, . . . , at, Rt) be the σ-algebra induced by the history of the

first t actions and rewards. We assume that for t ∈ [T ], ηt is (σ2, b)-sub-exponential conditioned on

(Ht−1, θ, at), meaning

E
(
eληt|Ht−1, θ, at

)
≤ e

λ2σ2

2 , ∀ |λ| ≤ 1

b
. (7.2.1)

We are interested in the performance of TS as a policy to select actions at for t ∈ [T ]. Let

pθ,t denote the posterior distribution on θ conditioned on Ht and let θ̃t be a sample from pθ,t. Set

pθ,0 = pθ. The TS approach, πTS , is the one which chooses an action at ∈ argmaxa∈A fθ̃t−1
(a) in

round t, breaking ties arbitrarily if the maximiser is non-unique.

We concern ourselves with the Bayesian regret of πTS in T rounds, given as

BReg(T, πTS) =
T∑
t=1

Epθ

(
max
a∈A

fθ(a)− fθ(at)
)
, (7.2.2)

where Epθ denotes expectation with respect to the prior pθ. In particular, we are interested in bound-

ing the Bayesian regret as a function of T for particular A and F , and the order with respect to T

that such bounds possess. The choice to study Bayesian regret is a natural one in the Bayesian

framework. Guarantees on the frequentist regret are also available for TS in other settings. How-

ever, since these guarantees are generally constructed via markedly different analytical techniques,

we will not consider frequentist performance measures in this chapter. In the following section

we proceed to give a bound on the Bayesian regret for this very general representation of a bandit
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problem.

7.3 Bounds on the Bayesian Regret

We first give a bound on the Bayesian regret for general function classes, F , and action sets,

A, and later specialise these expressions for particular important choices of F and A. This general

result is similar to the general bound given in Proposition 10 of Russo and Van Roy (2014). Their

result holds only under sub-Gaussian noise on the reward observations, and has less flexibility in

terms of being able to tune the terms based on the properties of F . Our result has such added

flexibility and applies to sub-exponential rewards.

The difficulty of a bandit problem is often related to the complexity of the function class, and

the size of the action set. This is natural, since in more complex function classes, it will be more

challenging to learn the true function. Thus bounds on the Bayesian regret include measures of

the compexity of F . Specifically, Russo and Van Roy (2014) show that the performance of TS can

be linked to two notions of the complexity of F , the ε-eluder dimension, and ball-width function,

which we introduce below.

Firstly, to define the ε-eluder dimension, we first introduce the notion of ε-dependence. An

action a ∈ A is said to be ε-dependent on actions {a1, . . . , an} ∈ A with respect to F if any pair

of functions f, f̃ ∈ F satisfying
√∑n

i=1(f(ai)− f̃(ai))2 ≤ ε also satisfies f(a) − f̃(a) ≤ ε for

some ε > 0. An action a is ε-independent of {a1, . . . , an} if a is not ε-dependent on {a1, . . . , an}.

The ε-eluder dimension dimE(F , ε), which we will often refer to simply as the eluder dimension,

is the length of the longest sequence of elements in A, such that for some ε′ ≥ ε, every element is

ε′-independent of its predecessors.

Informally, the eluder dimension is a measure of the smoothness of the functions in F , as it

quantifies how long a sequence of actions may be such that at each action, there exist two functions
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in F that take well-separated values, but have similar (enough) values for all actions taken previ-

ously. We will later show that the greater the smoothness of the functions in a function class, the

smaller the eluder dimension of that function class is.

Second, we have the following function, which we will refer to as the ball-width function. The

ball-width function, β∗n, defines the size of high-probability confidence sets in the function class

F , in terms of n, a number of reward observations. In particular it depends on N(α,F , || · ||∞),

the α-covering number of the function class F with respect to the uniform norm, || · ||∞, the sub-

exponential parameters of the reward noise distribution, σ2 and b, further parameters α, δ > 0 which

will be chosen to optimise the regret bound and λ : |λ| ≤ b−1 which keeps the same interpretation

as the free parameter in Equation (7.2.1). The ball-width function is specified as follows:

β∗n(F , δ, α, λ) :=
log(N(α,F , || · ||∞)/δ)

λ(1− 2λσ2)
+

2αn(4C + α)(1− λσ2)

1− 2λσ2

+
2α
∑

i≤bn0c

√
2σ2 log(4i2/δ) + 2α

∑n
i≥dn0e 2b log(4i2/δ)

1− 2λσ2
, (7.3.3)

where n0 =
√

δ
4

exp σ2

2b2
.

The ball-width function presented here is the analogue of the simpler equation (8) given by

Russo and Van Roy (2014) in the case of sub-Gaussian noise. The properties of sub-exponential

distributions mean that our expression is more complex, but the interpretation of both functions

is the same. The functions {β∗n}∞n=1 define the widths of certain high-probability confidence sets

for the true reward function, based on n actions and realisations. In particular, they depend on the

α-covering number of the function class. This is natural, since in larger function classes, a greater

coverage is required to include the true reward function with high probability.

Together, the eluder dimension and ball-width function characterise a bound on the Bayesian

regret of TS applied to the general bandit problem with reward function drawn from F and actions

selected from A. This bound is given in the following theorem.
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Theorem 7.3.1. For all problem horizons T ∈ N, parameters α > 0, δ ≤ 1/(2T ), and |λ| ≤ b−1,

and nonincreasing functions κ : N → R+, we have that the Bayesian regret of πTS applied to the

general bandit problem with action set A where the reward function fθ ∈ F is drawn from pθ and

reward noise is (σ2, b)-sub-exponential is bounded as follows,

BReg(T, πTSθ ) ≤ Tκ(T )+(dimE(F , κ(T ))+1)C+4
√
dimE(F , κ(T ))β∗T (F , α, δ, λ)T . (7.3.4)

The bound (7.3.4) is useful because it characterises the regret in terms of the eluder dimension

and ball-width function of the function class F . Each of these may be bounded in terms of T based

on the properties of F . Then through judicious choice of κ, α, and δ as functions of T , we can

derive regret bound expressions which are sublinear in T . We will do so in Section 7.4.

In Russo and Van Roy (2014) a similar bound to (7.3.4) is constructed, but a material differ-

ence is that κ(T ) is fixed to T−1, which constrains the quality of the results which can be obtained

for specific function classes. We show that the analysis may be extended to allow for more gen-

eral choices of κ(T ) as a nonincreasing function of T , allowing for greater flexibility in deriving

function class specific results.

In the remainder of this section we provide a proof of Theorem 7.3.1. The ideas of the proof are

similar to those employed in Chapter 5. Central to the proof is the observation that, when concerned

with Bayesian regret, TS can be shown to achieve the best performance of any upper confidence

bound sequence. That is to say, that given a sequence of high probability confidence sets for the

reward function, the Bayesian regret of TS may be decomposed in terms of the sums of the widths

of these sets, which should be decreasing functions of the number of rounds. This means that if the

confidence sets are chosen appropriately, this sum may be written as being sublinear in the problem

horizon T .

In Chapter 5, this property was exploited by selecting a bespoke set of confidence intervals

for the empirical mean of Poisson data. In this chapter we require a more general sequence of
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confidence sets, around function estimators, as opposed to univariate parameters. The proof of

Theorem 7.3.1 makes use of general properties of the least squares estimator, which can be defined

abstractly for a general estimation problem on F , even if it does not admit a convenient analytical

form. What is key, is that the width of certain high probability confidence sets around the least

squares estimator can be defined in closed-form. These widths, which are specified in terms of the

eluder dimension and ball-width function, are then used to bound the regret.

7.3.1 Proof of Theorem 7.3.1: General regret bound

We begin the proof with the following martingale concentration result, an extension of Lemma

3 of Russo and Van Roy (2014) (which holds for sub-Gaussian noise). The result below says that

with high probability, for any function f : A → R, its squared error L2,t(f) =
∑t−1

i=1(f(Ai)−Ri)
2

is lower bounded. In particular, we say that the squared error of f will not fall below the sum of

the squared error of the true reward generating function, fθ, and a measure of the distance between

f and fθ, by more than a fixed constant.

Lemma 7.3.2. For any action sequence A1, A2, · · · ∈ A, inducing (σ2, b)-sub-exponential reward

observations R1, R2, . . . and any function f : A → R, we have

P
(
L2,n+1(f) ≥ L2,n+1(fθ) + (1− 2λσ2)

n∑
i=1

(f(Ai)− fθ(Ai))2 − log(1/δ)

λ
, ∀n ∈ N

)
≥ 1− δ,

(7.3.5)

for all λ with |λ| ≤ b−1.

A proof of Lemma 7.3.2 is provided in Section 7.6, it is based on the sub-exponential property

of the reward noise. Lemma 7.3.2 allows us to construct high-probability confidence sets for the

true reward function, fθ. These sets are defined with respect to the least squares estimate of fθ. That

is a function f̂LSt ∈ argminf∈F L2,t(f), with minimal squared error, in reference to the observed
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rewards. The following lemma gives the definition and high-confidence property of said confidence

sets.

Lemma 7.3.3. For all δ > 0, α > 0, |λ| ≤ b−1, and {A1, . . . An} ∈ An we have

P
(
fθ ∈

∞⋂
n=1

Fn
)
≥ 1− 2δ.

for all n ∈ N where

Fn =

{
f ∈ F :

n∑
i=1

(f̂LSn (Ai)− f(Ai))
2 ≤ β∗(F , δ, α, λ)

}
.

The proof of Lemma 7.3.3 is also reserved for Section 7.6. The confidence sets {Fn}∞n=1 defined

in Lemma 7.3.3, allow us to bound the Bayesian regret of TS. Specifically, we can decompose the

Bayesian regret in terms of a notion of the width of these confidence intervals. By Lemma 4 of

Russo and Van Roy (2014) we have for all problem horizons T ∈ N, that if inff∈Ft f(a) ≤ fθ(a) ≤

supf∈Ft f(a) for all t ∈ N and a ∈ A with probability at least 1− 1/T then

BReg(T, πTSθ ) ≤ C + E
( T∑

t=1

sup
f∈Ft

f(a)− inf
f∈Ft

f(a)

)
. (7.3.6)

The proof of Theorem 7.3.1 can then be completed by bounding the widths of the confidence sets,

wFt(a) = supf∈Ft f(a)− inff∈Ft f(a). The following Lemma provides such a result by bounding

the sum of the widths in terms of the κ(T )-eluder dimension, dimE(F , κ(T )). It is a generalisation

of Lemma 5 of Russo and Van Roy (2014) which fixes κ(t) = t−1 and we provide its proof in

Section 7.6.
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Lemma 7.3.4. If (βt ≥ 0 |t ∈ N) is a non-decreasing sequence and Ft is

Ft :=

{
f ∈ F :

∑t
i=1(f̂LSt (Ai)− f(Ai))

2 ≤ βt

}

then for all T ∈ N, and non-increasing functions κ : N→ R+

T∑
t=1

wFt(At) ≤ Tκ(T ) + dimE(F , κ(T ))C + 4
√
dimE(F , κ(T ))βTT . (7.3.7)

�

7.4 Bounds for Specific Function Classes

Equipped with the general bound of Theorem 7.3.1, providing regret bounds for specific func-

tion classes and action sets is a matter of bounding the eluder dimension dimE(F , κ(T )) and ball

width function β∗t (F , δ, α, λ). In this section we will do so for finite, (generalised) linear, and

Lipschitz function classes.

7.4.1 Finite and (Generalised) Linear Function Classes

In the setting of sub-Gaussian reward noise, Russo and Van Roy (2014) provide bounds for

dimE(F , T−1) and the sub-Gaussian version of the ball-width function for three simple function

settings: finitely many actions, linear function classes, and generalised linear function classes. We

can produce analogous results for these settings under sub-exponential reward noise.



CHAPTER 7. THOMPSON SAMPLING FOR LIPSCHITZ BANDITS 183

Eluder Dimension

For finite function classes, we may bound the eluder dimension as dimE(F , ε) ≤ |A| for all

ε > 0. For linear reward functions fθ(a) = θTφ(a) where θ ∈ Θ ⊂ Rd such that F = {fρ, ρ ∈ Θ}.

If there exist constants S and γ, such that ||ρ||2 ≤ S and ||φ(a)||2 ≤ γ for all a ∈ A then the

eluder dimension may be bounded as dimE(F , ε) ≤ 3d e
e−1

log(3 + 3(2S
ε

)2) + 1. Finally, consider

generalised linear reward functions fθ(a) = g(θTφ(a)) where again θ ∈ Θ ⊂ Rd and F = {fρ, ρ ∈

Θ}, and where g(·) is a differentiable and strictly increasing function. If there exist constants h, h, S

and γ such that for all ρ ∈ Θ and a ∈ A, 0 ≤ h ≤ g′(ρTφ(a)) ≤ h, ||ρ||2 ≤ S, and ||φ(a)||2 ≤ γ

then the eluder dimension can be bounded as dimE(F , ε) ≤ 3dr2 e
e−1

log(3r2 + 3r2(2Sh
ε

)2) + 1,

where r = supθ̃,a g
′(< φ(a), θ̃ >)/ inf θ̃,a g

′(< φ(a), θ̃ >) bounds the ratio between the maximal

and minimal slope of g.

Ball Width Function

For finite function classes, and α = 0 we have β∗n(F , δ, 0, λ) = log(|F|/δ)
λ(1−2λσ2)

. For both the class

of linear and of generalised linear reward functions we have logN(α,F , || · ||∞) = O(d log(1/α))

from Russo and Van Roy (2014). It follows that in both cases β∗T (F , δ, 1/T 2, λ) = O(d log(T/δ)).

Regret Bounds

As a result, for finite function classes we have,

BReg(T, πTSθ ) ≤ 1 + (|A|+ 1)C + 4

√
|A| log(2|F|T )

λ(1− 2λσ2)
T . (7.4.8)

For linear and generalised linear function classes we have, for δ ≤ 1/2T ,

BReg(T, πTSθ ) = O
(
d log(T ) +

√
d2 log(T ) log(T/δ)T

)
. (7.4.9)
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The orders, with respect to T , of these bounds match those of Russo and Van Roy’s bounds for

the sub-Gaussian case, and are optimal up to the small contribution of the logarithmic factors. This

relationship between the regret under sub-Gaussian and sub-exponential noise is consistent with

the findings of Chapters 4 and 5, and other works on bandits with heavier than sub-Gaussian tailed

rewards, in that the heavier tails affect only the coefficients of the regret bound, not its order with

respect to T .

7.4.2 Reward Functions with Lipschitz Derivatives

We now present the main contribution of this chapter, a specification of the general Bayesian

regret bound to the classes of functions with Lipschitz derivatives. We define the class of C-

bounded functions with M L-Lipschitz smooth derivatives on [0, 1] as

FC,M,L =

{
f : [0, 1]→ [0, C] : |f (m)(a)− f (m)(a′)| ≤ L|a− a′|, ∀a, a′ ∈ [0, 1],m ≤M

}
,

(7.4.10)

for some C,L > 0, and M ∈ N. Note that when k = 0 this is simply the class of bounded

Lipschitz functions. Our main result, below, is a bound on the Bayesian regret of TS applied where

fθ is drawn from a prior on FC,M,L. Its proof is given in the following sub-section, Section 7.4.3.

As in the case of (generalized) linear functions, it relies on bounding the terms of (7.3.4) which are

specific to the function class FC,M,L. Note, that while we have focussed on the case of A = [0, 1]

we do not believe that this is the limit in terms of the application of this theory. We believe the

techniques used to prove the theorem can be extended at least to A = [0, 1]d for d ∈ N, and

possibly to general compact A ∈ Rd.

Theorem 7.4.1. ForM ∈ N and the bandit problem with sub-exponential reward noise, and reward

function drawn from a prior on FC,M,L([0, 1]) the Bayesian regret of the TS algorithm which uses
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this prior is bounded as

BReg(T, πTS) = O(T
1− 1

2
2M2+3M+2

2M2+7M+6 ). (7.4.11)

The consequence of this result is more transparent when we consider particular values of M .

We have Bayesian regret of order O(T 5/6) when the reward function is Lipschitz and of order

O(T 23/30) when it has a Lipschitz first derivative. Generally, as the number of Lipschitz derivatives

M →∞ the order of the Bayesian regret approaches O(T 1/2).

Interestingly, the bound (7.4.11) suggests that the performance of the proposed TS approach

could be suboptimal when M is small. Recall that for M = 0 (i.e. where fθ is Lipschitz) the lower

bound of Kleinberg (2005) is Ω(T 2/3) and upper confidence bound approaches can achieveO(T 2/3)

regret. It is not clear from the analysis (neither that leading to our upper bound nor that leading to

Kleinberg’s lower bound) why there is a discrepancy. If we consider the nature of algorithms which

do achieve order optimal bounds for the Lipschitz bandit problem, such as the Zooming algorithm

of Kleinberg (2005), we notice that they generally employ an adaptive discretisation component.

That is to say, they limit the actions available to the algorithm to some set At ⊂ A in each round

t ∈ {1, . . . , T}, and in doing so force a certain level of exploration. It could be that the TS algorithm

proposed as Algorithm 11 which has access to the entire action set A somehow carries a greater

risk of conducting insufficient exploration.

Another possibility is that the true performance of the TS approach analysed here does match

in fact the lower bound, and analysis of Russo and Van Roy (2014) which we have adapted to this

setting is too loose in this framework. We notice, for instance, that even if the eluder dimension

were to be O(1), the best bound available for M = 0 via the general bound of Theorem 7.3.1

would then be O(T 3/4) because the general bound induces a Ω(
√
T ) result and the ball width

function (which is square rooted in the regret bound) is O(
√
T ) for M = 0 because of the covering

number of the function class - a well-established theoretical result.

In the case where M → ∞, the performance of TS would seem to be order optimal. While
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lower bounds on regret for the setting of reward functions with infinitely many smooth derivatives

have not, to the best of our knowledge, explicitly been considered, there are some related results. In

settings such as (generalised) linear bandits, the reward function class is contained entirely within

FC,∞,L (trivially so since higher order derivatives are uniformly zero). The optimal order perfor-

mance for such problems is Ω(
√
T ). Similarly, in GP-optimisation O(

√
T ) regret is achievable,

and certain choices of covariance kernel imply that the reward function will always have infinitely

many smooth derivatives and lie in a subset of FC,∞,L. So while further analysis is required to de-

rive a lower bound for the setting where the reward function may be any function in FC,∞,L, there

is a reasonable suggestion that the O(
√
T ) that we show the regret of TS converges to is optimal,

at least for certain special cases.

7.4.3 Proof of Theorem 7.4.1: Regret under Lipschitz reward functions

As in the case of (generalised) linear functions, the proof of Theorem 7.4.1 relies on bounding

the eluder dimension and ball-width function for the function class FC,M,L. The following theorem

provides the necessary bound on the eluder dimension of Lipschitz function classes. We prove

this result in the following sub-section, Section 7.4.4. This result is a non-trivial extension of the

existing bounds on the eluder dimension of simpler function classes, and is the first bound on the

eluder dimension of a non-parametric class of functions.

Theorem 7.4.2. Let M ∈ N, C,L, ε > 0 and FC,M,L be the class of functions with M L-Lipschitz

derivatives as defined in (7.4.10). We have the following bound on the ε-eluder dimension of

FC,M,L,

dimE(FC,M,L, ε) = o((ε/L)−1/(M+1)). (7.4.12)

We are interested in the κ(T )-eluder dimension, and since κ(T ) is a nondecreasing function of

T , dimE(F , κ(T )) will be an increasing function. However, the presence of the (−1/(M + 1))th

order power means it makes only a minimal contribution to the overall order of regret for M large.
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Bounding the ball-width function relies in turn on a bound on the covering number of the

Lipschitz function class. The covering numbers of Lipschitz function classes were amongst the

first to be discovered (Kolmogorov and Tikhomirov, 1961). Specifically for M ∈ N and FC,M,L as

defined previously, the following is known,

logN(α,FC,M,L, || · ||∞) = Θ(α−
1

M+1 ).

Recall the definition of the ball-width function

β∗T (F , δ, α, λ) :=
log(N(α,F , || · ||∞)/δ)

λ(1− 2λσ2)
+

2αT (4C + α)(1− λσ2)

1− 2λσ2

+
2α
∑

i≤bNc

√
2σ2 log(4i2/δ) + 2α

∑n
i≥dNe 2b log(4i2/δ)

1− 2λσ2
,

for (σ2, b) sub-exponential rewards. We wish to select α as a function of T to minimise the order

of β∗T (FC,M,L, δ, α(T ), λ) with respect to T . Choosing α(T ) = T−(M+1)/(M+2) we have,

β∗T (FC,M,L, δ, T
−(M+1)/(M+2), λ) = O(T 1/(M+2)),M ∈ N (7.4.13)

as the best result available result.

The proof of Theorem 7.4.1 is then completed by utilising the general bound of Theorem 7.3.1,

BReg(T, πTS) ≤ Tκ(T ) + (dimE(F , κ(T )) + 1)C + 4
√
dimE(F , κ(T ))β∗T (F , α, δ, λ)T .

Choosing κ(T ) = T
− 1

2
2M2+3M+2

2M2+7M+6 , we have by Theorem 7.4.2 and (7.4.13) that

BReg(T, πTS) ≤ O(T
1− 1

2
2M2+3M+2

2M2+7M+6 ). �
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7.4.4 Proof of Theorem 7.4.2: Eluder dimension of Lipschitz function class

To bound the eluder dimesnion, we first define a related function class:

GC,M,L =

{
g = f − f ′,∀f, f ′ ∈ FC,M,L

}
,

which is the class of absolute difference functions for all pairs of functions in FC,M,L. As the eluder

dimension is defined in terms of difference of functions f, f ′ ∈ FC,M,L, considering the behaviour

of functions in GC,M,L will allow us to bound the elduer dimension. Functions g ∈ GC,M,L also

possess M Lipschitz derivatives. Specifically, we have the following result:

Proposition 7.4.3. All functions g ∈ GC,M,L are [−C,C]-bounded and possess M 2L-Lipschitz

smooth derivatives.

Proof of Proposition 7.4.3: We have that any function g ∈ GC,M,L is bounded since, f(a) ∈ [0, C]

for all a ∈ [0, 1]. The Lipschitz-smoothness of the mth derivatives can be shown as follows. For

any function g = f − f ′ where f, f ′ ∈ FC,M,L, m = 0, . . . ,M , and pair of actions a, a′ ∈ [0, 1],

|g(m)(a)− g(m)(a′)| = |f (m)(a)− f ′(m)
(a)− f (m)(a′) + f ′

(m)
(a′)|

≤ |f (m)(a)− f (m)(a′)|+ |f ′(m)
(a′)− f ′(m)

(a)|

≤ 2L||a− a′||,

where the first inequality holds by the triangle inequality, and the second by the L-Lipschitz

smoothness of the M th derivatives of functions in FC,M,L. �

We may define the eluder dimension in terms of GC,M,L. Doing so will make the definition more

compact and also be useful for the proof of Theorem 7.4.2. Let a1:k ∈ [0, 1]k denote a sequence of
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actions (a1, . . . , ak) and define

wk(a1:k, ε
′) = sup

f,f ′∈FC,M,L

{
(f(ak)− f ′(ak)) :

√∑k−1
i=1 ((f(ai)− f ′(ai))2 ≤ ε′

}
,

= sup
g∈GC,M,L

{
g(ak) :

√∑k−1
i=1 (g(ai))2 ≤ ε′

}
.

We then define the ε-eluder dimension as follows:

dimE(FC,M,L, ε) = max
τ∈N,ε′>ε

{
τ : ∃ a1:τ ∈ [0, 1]τ with wk(a1:k, ε

′) > ε′ for every k ≤ τ
}
.

We may now proceed with the proof of the eluder dimension bound.

Proof of Theorem 7.4.2: For any k ∈ N and sequence a1:k ∈ [0, 1]k, it follows from the definition of

wk(a1:k, ε
′) that the event {wk(a1:k, ε

′) > ε′} implies that there exists g ∈ GC,M,L such that g(ak) >

ε′ and
∑k−1

i=1 (g(ai))
2 ≤ (ε′)2. Conversely if for all g ∈ GC,M,L the event {g(ak) > ε′} is known to

imply
∑k−1

i=1 (g(ai))
2 > (ε′)2, then the event {g(ak) > ε′} also implies that wk(a1:k, ε

′) ≤ ε′. This

second idea will be central to proving Theorem 7.4.2.

We will show that for functions g ∈ GC,M,L if g(ak) > ε′ then g2(b) > (ε′)2/9 for all b

in a certain region around ak. This is a consequence of functions in GC,M,L having M smooth

derivatives. If g takes value greater than ε′ at a given point, then it must take relatively large values

within a certain neighbourhood of that given point. The size of this neighbourhood is a function

of the level of smoothness of g. As M increases, the size of this region where g2(b) > (ε′)2/9

increases. It follows that asM increases, the eluder dimension decreases, because if g(ak) > ε′, the

previous actions a1:k−1 must be increasingly far from ak for
∑k−1

i=1 (g(ai))
2 ≤ (ε′)2 to be satisfied.

To be precise about this behaviour and derive the required bound on the eluder dimension, we

will first lower bound the size of the neighbourhood in which g must take large absolute values if

g(a) > ε′ for some a ∈ [0, 1]. For a function g : [0, 1] → [−C,C] define the region where it takes
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absolute value greater than ε/3 as

B(g) := |{b : g(b)2 > ε2/9}|. (7.4.14)

Then for an action a ∈ [0, 1] define the minimum size of the set such that g2 must exceed ε2/9 if

g(a) > ε and g ∈ GC,M,L as

B∗C,M,L(a) := min
g∈GC,M,L:g(a)>ε

B(g), (7.4.15)

and the set of functions attaining this minimum as

G∗C,M,L(a) = argmin
g∈GC,M,L:g(a)>ε

B(g). (7.4.16)

Bounds on B∗C,M,L(a), derived by identifying and considering the form of functions in G∗C,M,L(a)

will allow us to bound the eluder dimension.

We will first provide lower bounds on B∗C,M,L for the special cases of M = 0 and M = 1,

and then show a general result for M ≥ 2. In the case of M = 0 the lower bound follows from

the Lipschitz property of all functions g ∈ GC,M,L. We give the lower bound on B∗C,0,L(a) for all

a ∈ [0, 1] in the following lemma.

Lemma 7.4.4. For a ∈ [0, 1], and C,L > 0 we have B∗C,0,L(a) ≥ ε
3L

.

Proof of Lemma 7.4.4: We have that |g(b)−g(b′)| ≤ 2L||b−b′|| for all g ∈ GC,M,L and b, b′ ∈ [0, 1].

Thus if g(a) > ε for some a ∈ [0, 1] we have that (g(b))2 > ε2/9 for all b ∈ [0, 1] : (min(0, ε −

2L|a − b|))2 ≥ ε2/9, equivalently b ∈ [0, 1] : |a − b| > ε
3L

. The conclusion that BC,0,L ≥ ε
3L

then

follows immediately. �

The following lemma gives a similar result for the case of M = 1. In this case the proof relies

on the observation that g′, the gradient of a function g ∈ G∗C,M,L(a), should satisfy g′(a) = 0, i.e.
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a should be a maximiser of g. The bound on the size of B∗C,1,L(a) then follows from the Lipschitz

property of g′. The result holds only for a sufficiently from the edges of [0, 1], since g′(a) need not

take value 0 to minimise |{b : g2(b) > (ε′)2/9}| if a is close to an edge. Fortunately, however, the

impact of these special edge cases is negligible when it comes to bounding the eluder dimension.

Lemma 7.4.5. For a ∈ [0, 1] such that a >
√

2ε
3L

and 1 − a >
√

2ε
3L

, and C,L > 0 we have

B∗C,1,L(a) ≥ 2
√

2ε
3L

.

Proof of Lemma 7.4.5: We have that |g′(b)−g′(b′)| ≤ 2L||b−b′|| for all g ∈ GC,1,L and b, b′ ∈ [0, 1].

Thus, for g with g′(a) = 0, we have |g′(b)| ≤ 2L||a − b|| for all b ∈ [0, 1]. For any b′ < b ∈ [0, 1]

we have g(b)− g(b′) =
∫ b
b′
g′(x)dx. It follows that for b < a ∈ [0, 1]

g(b) = g(a)− g(a) + g(b) = g(a)−
∫ a

b

g′(x)dx

≥ g(a)−
∫ a

b

2L(a− x)dx

= g(a)− La2 + 2Lab− Lb2

> ε′ − L(a− b)2.

A similar argument follows for b > a ∈ [0, 1] and thus g(b) > ε′ − L||a − b||2 for all b ∈ [0, 1]

given g(a) > ε′ and g′(a) = 0. It follows that under these conditions we have g2(b) > ε2/9 for all

b ∈ [0, 1] : (min(0, ε− L|a− b|2))2 ≥ ε2/9, equivalently b ∈ [0, 1] : |a− b| ≤
√

2ε
3L

.

If g′(a) 6= 0 then ∃ c ∈ [0, 1] with g(c) > g(a) > ε′ and g′(c) = 0. Then by the logic used for

the case with g′(a) = 0 it follows that g2(b) > ε2/9 for all b ∈ [0, 1] : ||b− c|| ≤
√

1
L

(g(c)− ε/3).

Since g(c) > ε′ it follows that if g(a) > ε′ then the region such that g2(b) > ε2/9 is larger if

g′(a) 6= 0 than if g(a) = 0. Thus we have g′(a) = 0 for all g ∈ G∗C,1,L(a) and BC,1,L(a) ≥
√

2ε
3L

for

all a ∈ [0, 1] such that a >
√

2ε
3L

and 1− a >
√

2ε
3L

. �

Figure 7.4.1a provides an illustration of the bounds on B∗C,M,L(a). When M = 0, functions
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g

a
−

2ε
3L

a
−

ε
3L a

a
+

ε
3L

a
+

2ε
3L

− ε 3

ε 3

ε
g under M=0
g under M=1

(a) This figure displays functions g ∈ G∗C,M,L(a) for M = 0 and M = 1. These functions take value greater
than ε at a, which is well separated from 0 and 1. The functions then decrease on the left and right in to the
interval [−ε/3, ε/3] at the quickest rate possible for functions in GC,M,L.

g

a
−

2ε
3L

a
−

ε
3L a

a
+

ε
3L

a
+

2ε
3L

− L

0

L

g' under M=0
g' under M=1

(b) This figure displays the first derivatives of functions g ∈ G∗C,M,L(a) for M = 0 and M = 1.

Figure 7.4.1: Functions g ∈ GC,M,L(a) for M = 0, 1 and their first derivatives.
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in G∗C,0,L(a) may decrease in value more quickly than when M = 1 and the functions in G∗C,1,L
are smoother. As a result the size of the region where g takes value greater than ε/3 is larger - i.e.

B∗C,M,L(a) is larger. This intuition carries forward asM continues to increase, since the smoothness

assumptions implied by the definition of GC,M,L become increasingly strong.

In Figure 7.4.1b we illustrate the derivatives of the functions in G∗C,0,L(a) and G∗C,1,L(a). In the

M = 0 case, since the first derivative need not be Lipschitz smooth, we have discontinuities at

a ± ε/3L. In the M = 1 case, B∗C,M,L is much larger because the first derivative is Lipschitz and

constrained to change gradually. As M increases, the first derivative of a function g ∈ G∗C,M,L(a)

will become increasingly smooth because discontinuities in the higher-order derivatives will also

not be permitted by the definition of GC,M,L.

Bounding B∗C,M,L for larger values of M is more involved. To do so we will first define a

particular function ha,M ∈ GC,M,L for each M ≥ 2 and a ∈ [0, 1] and bound B(ha,M). We will then

show that this function is in G∗C,M,L, and thus that B∗C,M,L(a) = B(ha,M). The form of ha,M will

vary depending on whether M is even or odd. We will first specify ha,M for M even.

For M ≥ 2 even, let ha,M be maximised at a with ha,M(a) > ε′, and let x1,M = x1,a,M =

maxx<a,ha,M (x)=ε/3 x be the point closest to a on the left where ha,M takes value ε/3. Define ∆M =

a− x1,M , and then further points y1,M = x1,M −∆M , x2,M = a+ ∆M , and y2,M = a+ 2∆M . We

then specify ha,M as a function with M th derivative given as

1

2L
h

(M)
a,M(z) =

 x1,M − z, z ∈ (y1,M , a),

z − x2,M , z ∈ [a, y2,M),

(7.4.17)

and whose lower order derivatives satisfy the following properties:

h
(m)
a,M(x1) = h

(m)
a,M(x2) = 0, 2 ≤ m ≤M,m even, (7.4.18)

h
(m)
a,M(y1) = h

(m)
a,M(a) = h

(m)
a,M(y2) = 0,m ≤M,m odd. (7.4.19)
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Since h(M)
a,M is Lipschitz this defines the function that can have h(M)

a,M(x) = 0 where ha,M crosses ε/3

and change most rapidly elsewhere. To bound B(hM) we first require expressions for the lower

order derivatives of hM . Having the restricted behaviour on {y1,M , x1,M , a, x2,M , y2,M} means that

these functions can be identified from h
(M)
a,M alone. The following lemma specifies the form of these

lower order derivatives. We focus on the left of a, as a symmetry argument will give an analogous

result for the right.

Lemma 7.4.6. For the function ha,M with M th derivative given by (7.4.17) where M is even, the

lower order derivatives satisfy

1

2L
h

(M−m)
a,M (z) =

 jm+1(x1,M)− jm+1(z), m ∈ {0, 2, 4, . . . ,M}

jm+1(a)− jm+1(z), m ∈ {1, 3, . . . ,M − 1}
z ∈ (y1,M , a) (7.4.20)

where

jk(z) =
k∑
i=1

zi

i!
(−1)k−iJk−i, k ∈ {1, . . . ,M + 1},

Jk = jk(aI{k even}+ x1I{k odd}),

and j0(z) = 1 for all z ∈ (y1, a).

We prove this lemma in Section 7.6.5 using an induction argument and the assumed zeros

of the mth derivatives. Since ha,M is unimodal, and symmetric about a, we have B(ha,M) >

x2,M − x1,M = 2(a− x1,M) = 2∆M . In the following lemma, we determine the order of B(ha,M)

by bounding ∆M for each even M ≥ 2.

Lemma 7.4.7. For the function ha,M with M th derivative given by (7.4.17) where M is even, there
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exist finite constants K1,M , K2,M > 0 such that

K1,M(ε/L)1/(M+1) ≤ B(ha,M) ≤ K2,M(ε/L)1/(M+1).

Proof of Lemma 7.4.7: Firstly observe that since ha,M(x1,M) = ε/3 we have by definition that

ha,M(a)− ha,M(x1,M) =

∫ a

x1,M

h′a,M(z)dz >
2ε

3
.

Using the definition of h′a,M in (7.4.20), we expand the centre term of the above display as follows,

∫ a

x1,M

h′a,M(z)dz =

∫ a

x1,M

h
(M−(M−1))
a,M (z)dz

= 2L

∫ a

x1,M

jM(a)− jM(z)dz

= 2L

∫ a

x1,M

jM(a)−
M∑
i=1

zi

i!
(−1)M−ijM−i

(
x1,MI{M − i odd}+ aI{M − i even}

)
dz

= 2L

[
jM(a)z −

M∑
i=1

zi+1

(i+ 1)!
(−1)M−ijM−i

(
x1,MI{M − i odd}+ aI{M − i even}

)]a
x1,M

= 2L
M∑
i=1

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
(−1)M−ijM−i

(
x1,MI{M − i odd}+ aI{M − i even}

)
= 2L

∑
i∈{2,4,...,M}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
jM−i

(
a
)

− 2L
∑

i∈{1,3,...,M−1}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
jM−i

(
x1,M

)
From the definition of the recurrence relation j, we have that for k even jk(a) may be writ-

ten, for some κl,k, l = 1, . . . k as jk(a) =
∑k

l=1 κl,ka
lxk−l1,M , i.e. for k even jk(a) is O(ak) and

O(xk−1
1,M). Similarly for k odd jk(x1,M) may be written, for some τl,k, l = 1, . . . , k as jk(x1,M) =
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∑k
l=1 τl,kx

l
1,Ma

k−l, i.e. for k odd jk(x1,M) is O(xk1,M) and O(ak−1).

It follows from this and the above display, that we may write

∫ a

x1,M

h′a,M(z)dz = 2L
∑

i∈{2,4,...,M}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)M−i∑
l=1

κl,M−ia
lxM−i−l1,M

− 2L
∑

i∈{1,3,...,M−1}

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)M−i∑
l=1

τl,M−ix
l
1,Ma

M−i−l,

and that there exist constants HM,L,i, i = 0, . . . ,M + 1 such that

ha,M(a)− ha,M(x1) =
M+1∑
i=0

HM,L,ia
M+1−ixi1,M = O((a− x1,M)M+1).

Since ha,M(a) − ha,M(x1,M) = 2ε/(3L) we have that x1,M = a − o((ε/L)1/(M+1)). By a

symmetry argument about a we will also have that x2,M = a + o((ε/L)1/M+1). Furthermore, by

symmetry of g′ about x1,M and x2,M we have that ha,M need not fall below −ε/3, as y1,M and y2,M

may be global minimisers of ha,M Thus for ha,M as described above, and M ≥ 2 even, we have

B(ha,M) = 2∆M = o((ε/L)1/(M+1))

for all a sufficiently far from the edges of [0, 1]. �

Lemmas 7.4.6 and 7.4.7 pertain only to the case where M is even. We must now consider the

complementary case of M odd. The function ha,M is different, but the argument used to bound

B(ha,M) is very similar.
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For M ≥ 3 odd let ha,M be a function in G0
C,M,L(a) with M th derivative specified as

1

2L
h

(M)
a,M(z) =


z − y1,M , z ∈ (y1,M , x1,M),

a− z, z ∈ [x1,M , x2,M),

z − y2,M , z ∈ [x2,M , y2,M),

(7.4.21)

and whose lower order derivatives satisfy conditions (7.4.18) and (7.4.19). This is chosen simi-

larly to in the case of M even as the fastest varying function which meets the constraints on the

derivatives on {y1,M , x1,M , a, x2,M , y2,M}. Again, we derive expressions for the lower order deriva-

tives of ha,M and focus on the left of a, since similar expressions follow for the right hand side by

symmetry.

Lemma 7.4.8. For the function ha,M with M th derivative given by (7.4.21) where M is odd, the

lower order derivatives satisfy

1

2L
h

(M−m)
a,M (z) =

 jm+1(z)− Jm+1, z ∈ (y1,M , x1,M),

Lm+1 − lm+1(z), z ∈ [x1,M , a),

(7.4.22)

where

jk(z) =
k∑
i=1

zi

i!
(−1)k−iJk−i, z ∈ (y1,M , x1,M),

Jk = jk(y1,MI{k odd}+ x1,MI{k even}),

lk(z) =
k∑
i=1

zi

i!
(−1)k−iLk−i, z ∈ [x1,M , a)

Lk = lk(aI{k odd}+ x1I{k even}),
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for k ∈ {1, . . .M + 1} and where j0(z) = l0(z) = 1 for all z ∈ (y1,M , a).

We prove Lemma 7.4.8 in Section 7.6.6. As in the case of M even, we can use this definition to

bound the size of B(ha,M), given in the lemma below. The proof is very similar to that of Lemma

7.4.7, and therefore we reserve it for Section 7.6.7.

Lemma 7.4.9. For the function ha,M with M th derivative given by (7.4.21) where M is odd, there

exist finite constants K3,M , K4,M > 0 such that

K3,M(ε/L)1/(M+1) ≤ B(ha,M) ≤ K4,M(ε/L)1/(M+1)

The combined insight from Lemmas 7.4.7 and 7.4.9 is that for any M ≥ 2 and a ∈ [2∆M , 1−

2∆M ] there exists a function ha,M ∈ GC,M,L with B(ha,M) = o((ε/L)1/(M+1)). We will demon-

strate that this o((ε/L)1/(M+1)) result is optimal, in the sense that B∗C,M,L(a) = o((ε/L)1/(M+1))

also.

Firstly, notice that g′(a) = 0 necessarily for all g ∈ G∗C,M,L(a). If for some g ∈ GC,M,L with

g(a) > ε′, g′(a) 6= 0 then either there exists c ∈ [0, 1] such that g(c) > g(a) and g′(c) = 0 or else

g(b) > g(a) for all b in either [0, a) or (a, 1]. If the first event happens, by the same theory that

says ∆M is increasing in g(a), there will be a region of width greater than 2∆M centred c where

g(b) > ε/3. If the second event happens, B(g) is plainly greater than 2∆M since a > 2∆M and

1 − a > 2∆M . We therefore deduce that g′(a) = 0 for all g ∈ G∗C,M,L(a) since B(ha,M) < B(g)

for any g with g(a) > ε′ and g′(a) 6= 0.

Next we observe that B(ha,M) is the optimal value of B(g) among functions g ∈ GC,M,L with

g(a) > ε′ and derivatives constrained as in (7.4.18) and (7.4.19). For any such g ∈ GC,M,L it is

true that B(g) = x2,g − x1,g where x1,g = maxx<a:g(x)=ε/3 x and similarly x2,g = minx>a:g(x)=ε/3 x.

For ha,M , we know that x1,ha,M = a − ∆M and x2,ha,M = a + ∆M , thus that x2,ha,M − x1,ha,M =

2∆M . The value of ∆M is determined by h′a,M , which we have previously pointed out changes
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at the fastest rate possible for a function with derivatives constrained according to (7.4.18) and

(7.4.19). Thus for any other function g with derivatives constrained according to (7.4.18) and

(7.4.19), x2,g − x1,g ≥ 2∆M and B(g) ≥ B(ha,M).

On the other hand, functions whose derivatives are not constrained according to (7.4.18) and

(7.4.19) may have x2,g − x1,g < 2∆M . However, such functions will take value less than −ε/3

at some points in [0, 1]. That is to say B(g) 6= x2,g − x1,g for such functions, since y1,g and y2,g

cannot not be global minimisers. We will show that B(g) > B(ha,M) for functions g ∈ GC,M,L

with g(a) > ε and x2,g − x1,g > 2∆M .

As before, we will consider the left hand side of a and allow the behaviour on the right hand to

be explained by a symmetry argument. If, for a function g ∈ GC,M,L with g(a) > ε′ and g′(a) = 0

(otherwise it would not be optimal anyway) we have x1,g > x1,M - i.e. the point on the left where

g takes value ε/3 is nearer to a than under ha,M - then we have that
∫ a
x1,g

g′(z)dz >
∫ a
x1,g

h′M(z)dz.

Since g′(a) = h′a,M(a) = 0, this implies that g′(y1,g) = 0 is not possible. There instead exists

a point y1,min < y1,g with g(y1,min) < −ε/3 and g′(y1,min) = 0. The contribution to B(g) from

the left side of a is then at least a − x1,g + 2(y1,g − y1,min). y1,g − y1,min = x1,g − x1,M by the

smoothness properties of functions in GC,M,L and thus the contribution to B(g) from the left of a

will be greater than that of B(ha,M). A similar result follows on the right of a, and we thus have

thatB(g) > B(ha,M) for functions with x2,g−x1,g < 2∆M . If x2,g−x1,g > 2∆M then the function

g is obviously not optimal.

By showing that ha,M is optimal amongst functions with similarly constrained derivatives, and

that B(ha,M) ≤ B(g) for functions g without these constraints, we have therefore demonstrated

that B∗C,M,L(a) = o((ε/L)1/(M+1)) for a ∈ [2∆M , 1− 2∆M ].

We complete the proof of Theorem 7.4.2 by noticing that if k = 9/B∗C,M,L + 2 then for any

sequence a1:k ∈ [0, 1] there must exist an index j ∈ {1, . . . , k} such that aj ∈ [2∆M , 1−2∆M ] and

there exist distinct at least 9 distinct points ali , li ∈ {1, . . . , j − 1}, i = 1, . . . , 9 with |aj − ali| ≤
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B∗C,M,L/2. Then if g(aj) > ε′ and g ∈ GC,M,L it follows that (g(ali))
2 > (ε′)2/9 for i ∈ {1, . . . 9}

and
∑j−1

i=1 (g(ai))
2 > (ε′)2.

Therefore if k ≥ 9/B∗C,M,L+ 2 there exists no sequence a1:k ∈ [0, 1]k such that wτ (a1:τ , ε
′) > ε′

for every τ ≤ k, and thus dimE(FC,M,L, ε) ≤ k = o((ε/L)1/(M+1)). �

7.5 Conclusion

The work in this chapter extends the understanding of Thompson Sampling for stochastic bandit

problems. The results are bounds on the Bayesian regret of Thompson Sampling for continuum-

armed bandits where the reward function possesses M Lipschitz derivatives and where the reward

noise is subexponential. We achieved these results by utilising two general notions, first stated in

Russo and Van Roy (2014): that the Bayesian regret of Thompson Sampling can be bounded in

terms of any valid upper confidence bound sequence, and that the least squares estimator possesses

a general theory of its convergence which can be applied for many function classes.

Our results represent a substantial advance on the generality of existing performance guarantees

available for TS. While previous results have focussed on d-dimensionally parametrised functions

or Gaussian process priors only, our framework captures TS based on non-parametric priors over

the reward function class. As such our results are applicable in much broader settings where only

limited assumptions about the reward function are possible. Furthermore, by considering sub-

exponential reward noise, as opposed to the common sub-Gaussian assumption, these results are

applicable to settings where the reward distribution may have somewhat heavier tails - such as

applications in finance, or our own in Poisson process event detection.

While exact sampling from the posterior distributions on which our analysis is based may be

challenging, these fundamental results are useful in two regards. They provide a useful benchmark-

ing tool for subsequent analyses, and generally inform us as to how the smoothness properties of
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the reward function class are likely to impact the performance of TS.

7.6 Further Proofs

7.6.1 Proof of Lemma 7.3.2

Consider random variables (Zi|i ∈ N) adapted to the filtration (Hn : n = 0, 1, ...). Assume

that E(eλZi) is finite for λ ≥ 0, and define the conditional mean µi = E(Zi|Hi−1) and conditional

cumulant generating function of the centred random variable [Zi−µi] as ψi(λ) = logE(exp(λ[Zi−

µi])|Hi−1). Let

Mn(λ) = exp

{ n∑
i=1

λ[Zi − µi]− ψi(λ)

}
. (7.6.23)

We then have by Lemmas 6 and 7 of Russo and Van Roy (2014) that (Mn(λ)|n ∈ N) is a martingale,

E(Mn(λ)) = 1 for all n, and that for all x ≥ 0, and λ ≥ 0,

P
( n∑

i=1

λZi ≤ x+
n∑
i=1

[λµi + ψi(λ)], ∀n ∈ N
)
≥ 1− e−x. (7.6.24)

We may use this result to build a confidence ball for the generic bandit problem with sub-

exponential noise. These confidence balls will be expressed in terms of least squares function

estimators. Define

Zt = (fθ(At)−Rt)
2 − (f(At)−R(t))2

= −(f(At)− fθ(At))2 + 2(f(At)− fθ(At))εi.

The conditional mean and conditional cumulant generating function of the centred version of Zi
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are as follows:

µi = E(Zi|Hi−1) = −(f(Ai)− fθ(Ai))2, (7.6.25)

ψi(λ) = logE(exp(λ[Zi − µi]|Hi−1) = logE(exp(2λ(f(Ai)− fθ(Ai))εi)|Hi−1). (7.6.26)

Therefore, by the sub-exponentiality assumption we have that

ψi(λ) ≤ 4λ2(f(Ai)− fθ(Ai))2σ2

2
, for |λ| ≤ b−1.

Thus by (7.6.24), (7.6.26), and the observation that
∑n

i=1 Zi = L2,n+1(fθ) − L2,n+1(f) by

definition,

P
(
L2,n+1(fθ)− L2,n+1(f) ≤ x

λ
+ (2λσ2 − 1)

n∑
i=1

(f(Ai)− fθ(Ai))2, ∀n ∈ N
)
≥ 1− e−x,

for all λ with |λ| ≤ b−1. Substituting λ = and x = log(1/δ), we have

P
(
L2,n+1(f) ≥ L2,n+1(fθ) + (1− 2λσ2)

n∑
i=1

(f(Ai)− fθ(Ai))2 − log(1/δ)

λ
, ∀n ∈ N

)
≥ 1− δ,

(7.6.27)

for all λ with |λ| ≤ b−1, completing the proof. �

7.6.2 Proof of Proposition 7.3.3

Let Fα be an α-covering of F in the sense that for any f ∈ F there is an fα ∈ Fα such that

||fα − f ||∞ ≤ α. Then by Lemma 7.3.2 and a union bound over Fα we have with probability at
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least 1− δ,

L2,n+1(fα)−L2,n+1(fθ) ≥ (1−2λσ2)
n∑
i=1

(fα(Ai)−fθ(Ai))2−1

λ
log

(
|Fα|
δ

)
, ∀n ∈ N, ∀fα ∈ Fα.

Then, by some simple addition and subtraction, we have for all f ∈ F , with probability at least

1− δ,

L2,n+1(f)− L2,n+1(fθ) ≥ (1− 2λσ2)
n∑
i=1

(f(Ai)− fθ(Ai))2 − 1

λ
log

(
|Fα|
δ

)
+ L2,n+1(f)− L2,n+1(fα)

+ (1− 2λσ2)
n∑
i=1

(fα(Ai)− fθ(Ai))2 − (f(Ai)− fθ(Ai))2, ∀n ∈ N, ∀fα ∈ Fα.

We may get the tightest version of this bound by introducing a minimum over the α-covering Fα,

giving the result that for all f ∈ F , with probability at least 1− δ,

L2,n+1(f)− L2,n+1(fθ) ≥ (1− 2λσ2)
n∑
i=1

(f(Ai)− fθ(Ai))2 − 1

λ
log

(
|Fα|
δ

)
+ min

fα∈Fα

{
L2,n+1(f)− L2,n+1(fα)

+ (1− 2λσ2)
n∑
i=1

(fα(Ai)− fθ(Ai))2 − (f(Ai)− fθ(Ai))2

}
, ∀n ∈ N.

We refer to the term minfα∈Fα
{
L2,n+1(f)−L2,n+1(fα) + (1− 2λσ2)

∑n
i=1(fα(Ai)− fθ(Ai))2−

(f(Ai)−fθ(Ai))2
}

as the discretisation error. The following result gives a high-probability bound

on its absolute value.
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Lemma 7.6.1. If fα satisfies ||f − fα||∞ ≤ α, and |λ| ≤ b−1, then with probability at least 1− δ,

∣∣∣∣L2,n+1(f)− L2,n+1(fα) + (1− 2λσ2)
n∑
i=1

(fα(Ai)− fθ(Ai))2 − (f(Ai)− fθ(Ai))2

∣∣∣∣
≤ 2αn(4C + α)(1− λσ2) + 2α

∑
i≤bn0c

√
2σ2 log(4i2/δ) + 2α

n∑
i≥dn0e

2b log(4i2/δ),

where n0 =
√

δ
4

exp σ2

2b2
.

By the definition of the least squares estimator, L2,n+1(f̂LSn ) ≤ L2,n+1(fθ). Therefore, with

probability at least 1− 2δ

(1− 2λσ2)
n∑
i=1

(f̂LSn (Ai)− fθ(Ai))2 ≤ 1

λ
log

(
|Fα|
δ

)
+ 2αn(4C + α)(1− λσ2)

+ 2α
∑
i≤bn0c

√
2σ2 log(4i2/δ) + 2α

n∑
i≥dn0e

2b log(4i2/δ)

for n0 as defined in Lemma 7.6.1. Thus taking the infimum over the size of α-covers we have, with

probability at least 1− 2δ,

n∑
i=1

(f̂LSn (Ai)− fθ(Ai))2 ≤ log(N(α,F , || · ||∞)/δ)

λ(1− 2λσ2)
+

2αn(4C + α)(1− λσ2)

1− 2λσ2

+
2α
∑

i≤bn0c

√
2σ2 log(4i2/δ) + 2α

∑n
i≥dn0e 2b log(4i2/δ)

1− 2λσ2

as required. �
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7.6.3 Proof of Lemma 7.6.1

As in the proof of Lemma 8 of Russo and Van Roy (2014) we have

|(fα(a)− fθ(a))2 − (f(a)− fθ(a))2| ≤ 4Cα + α2

|(Ri − f(a))2 − (Ri − fα(a))2| ≤ 2α|Ri|+ 2Cα + α2

for all a ∈ A and α ∈ [0, C]. Then summing over time, we have that

∣∣∣∣L2,n+1(f)− L2,n+1(fα) + (1− 2λσ2)
n∑
i=1

(fα(Ai)− fθ(Ai))2 − (f(Ai)− fθ(Ai))2

∣∣∣∣
≤

n∑
i=1

(1− 2λσ2)(4Cα + α2) + 2α|Ri|+ 2Cα + α2

≤
n∑
i=1

(1− 2λσ2)(4Cα + α2) + 2α(C + |εi|) + 2Cα + α2

=
n∑
i=1

2(4Cα + α2)(1− λσ2) + 2α|εi|.

Since εi is (σ2, b)-sub-exponential we have the following exponential bound

P(|εi| ≥ x) ≤

 2 exp(−x2/2σ2) if 0 ≤ x ≤ σ2/b

2 exp(−x/2b) if x > σ2/b.

Then, by the independence of reward noises, and union bound:

P
(
∃i ∈ N : |εi| ≥

√
2σ2 log(4i2/δ)I{i :

√
2σ2 log(4i2/δ) ≤ σ2/b}

+ 2b log(4i2/δ)I{i : 2b log(4i2/δ) > σ2/b}
)



CHAPTER 7. THOMPSON SAMPLING FOR LIPSCHITZ BANDITS 206

≤ δ

2

∞∑
i=1

1

i2
≤ δ.

Thus, with probability at least 1− δ,

∣∣∣∣L2,n+1(f)− L2,n+1(fα) + (1− 2λσ2)
n∑
i=1

(fα(Ai)− fθ(Ai))2 − (f(Ai)− fθ(Ai))2

∣∣∣∣
≤

n∑
i=1

2(4Cα + α2)(1− λσ2)

+ 2α

(√
2σ2 log

(
4i2

δ

)
I
{

log

(
4i2

δ

)
≤ σ2

2b2

}
+ 2b log

(
4i2

δ

)
I
{

log

(
4i2

δ

)
>

σ2

2b2

})
= 2αn(4C + α)(1− λσ2)

+ 2α
n∑
i=1

(√
2σ2 log

(
4i2

δ

)
I
{
i ≤

√
δ

4
exp

σ2

2b2

}
+ 2b log

(
4i2

δ

)
I
{
i >

√
δ

4
exp

σ2

2b2

})

and the required result follows. �

7.6.4 Proof of Lemma 7.3.4

The proof of Lemma 7.3.4 depends the following proposition of Russo and Van Roy (2014).

Proposition 7.6.2 (Proposition 8 of Russo and Van Roy (2014)). If (βt ≥ 0|t ∈ N) is a nonde-

creasing sequence and Ft := {f ∈ F : ||f − f̂LSt ||2,Et ≤
√
βt} then

T∑
t=1

I{wFt(At) > ε} ≤
(

4βT
ε

+ 1

)
dimE(F , ε) (7.6.28)

for all T ∈ N and ε > 0.

Now, define wt = wFt(At) and reorder the sequence (w1, . . . , wT ) → (wi1 , . . . , wiT ) in de-
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scending order such that wi1 ≥ wi2 ≥ · · · ≥ wiT . We have

T∑
t=1

wFt(At) =
T∑
t=1

wit

=
T∑
t=1

witI{wit ≤ κ(T )}+
T∑
t=1

witI{wit > κ(T )}

≤ Tκ(T ) +
T∑
t=1

witI{wit > κ(T )}.

As a consequence of (wi1 , . . . , wiT ) being arranged in descending order we have for t ∈ [T ] that

wit > ε ⇒
∑t

k=1 I{wFk(Ak) > ε} ≥ t. By Proposition 7.6.2, wit > ε is only possible if t ≤(
4βT
ε

+1
)

dimE(F , ε). Furthermore, ε ≥ κ(T )⇒ dimE(F , ε) ≤ dimE(F , κ(T )) since dimE(F , ε′)

is non-increasing in ε′. Therefore if wit > ε ≥ κ(T ) we have that t <
(

4βT
ε

+ 1
)

dimE(F , ε), i.e.

ε2 ≤
√

4βT dimE(F ,κ(T ))
t−dimE(F ,κ(T ))

. Thus, if wit > κ(T )⇒ wi,t ≤ min(C,
√

4βT dimE(F ,κ(T ))
t−dimE(F ,κ(T ))

), and finally

T∑
t=1

witI{wit > κ(T )} ≤ dimE(F , κ(T ))C +
T∑

t=dimE(F ,κ(T ))+1

√
4βT dimE(F , κ(T ))

t− dimE(F , κ(T ))

≤ dimE(F , κ(T ))C + 2
√
βT dimE(F , κ(T ))

∫ T

t=0

1√
t
dt

≤ dimE(F , κ(T ))C + 4
√
βT dimE(F , κ(T ))T . �

7.6.5 Proof of Lemma 7.4.6:

We prove this Lemma via an induction argument over m. Firstly, for m = 1, we have
1

2L
h(M−m)(z) = 1

2L
h(M−1)(z) =

∫
x1 − zdz = x1z − z2/2 + D. Since M − 1 is odd and

h ∈ G0
C,M,L(a) we have that h(M−1)(a) = 0 and the integration constant, D, must be a2/2 − x1a,

i.e. we have
1

2L
h(M−1)(z) = x1z − z2/2 + a2/2− ax1 = j2(a)− j2(z).
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Second, for some m′ with 2 ≤ m′ < M let us assume that

1

2L
h(M−m′)(z) = Jm′+1 − jm′+1(z) z ∈ (y1, a).

Finally we consider we consider h(M−m′−1). We have,

1

2L
h(M−m′−1)(z)

=

∫
Jm′+1 − jm′+1(z)dz

=

∫ m′+1∑
i=1

(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i − zi
i!

(−1)m
′+1−iJm′+1−idz

=
m′+1∑
i=1

z
(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−i

−
m′+1∑
i=1

zi+1

(i+ 1)!
(−1)m

′+1−iJm′+1−i +D

=
m′+1∑
i=1

z
(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−i

−
m′+1∑
i=1

zi+1

(i+ 1)!
(−1)m

′+1−iJm′+1−i +
m′+1∑
i=1

(
x1I{m′ odd}+ aI{m′ even}

)i+1

(i+ 1)!
(−1)m

′+1−iJm′+1−i

−
m′+1∑
i=1

(x1I{m′ odd}+ aI{m′ even})
(
x1I{m′ + 1 odd}+ aI{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−i

= zJm′+2−1 −
m′+2∑
s=2

zs

s!
(−1)m

′+2−sJm′+2−s − (x1I{m′ + 2 odd}+ aI{m′ + 2 even})Jm′+2−1

+
m′+2∑
s=2

(
x1I{m′ + 2 odd}+ aI{m′ + 2 even}

)s
s!

(−1)m
′+2−sJm′+2−s

=
m′+2∑
s=1

(
x1I{m′ + 2 odd}+ aI{m′ + 2 even}

)s − zs
s!

(−1)m
′+2−sJm′+2−s
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= Jm′+2 − jm′+2(z)

The first equality uses the assumed form of h(M−m′), the fourth evaluates the integration constant

D based on the knowledge that if m′ + 1 is odd, we will have h(M−m′−1)(a) = 0 and if m′ + 1 is

even, we will have h(M−m′−1)(x1) = 0, and the fifth uses a change of variable s = i+ 1. �

7.6.6 Proof of Lemma 7.4.8:

As in the case of M even, we prove this lemma via an induction argument over m. Firstly, for

m = 1 we have for z ∈ (y1, x1), 1
2L
h(M−1)(z) =

∫
z − ydz = z2/2 − yz + D. Since M − 1

is even and h ∈ G0
C,M,L(a) we have that h(M−1)(x1) = 0 and the integration constant, D, must

be yx1 − x2
1/2 = −J2. For z ∈ [x1, a), 1

2L
h(M−1)(z) =

∫
a − zdz = az − z2/2 + D, and

D = x2
1/2− ax1 = L2. Thus,

1

2L
h(M−1)(z) =

 j2(z)− J2, z ∈ (y1, x1)

L2 − l2(z), z ∈ [x1, a).

Secondly, for some m′, 2 ≤ m′ < M we assume that

1

2L
h(M−m′)(z) =

 jm′+1(z)− Jm′+1, z ∈ (y1, x1)

Lm′+1 − lm′+1(z), z ∈ [x1, a).

We now consider h(M−m′−1). For z ∈ (y1, x1) we have,

1

2L
h(M−m′−1)(z)

=

∫
jm′+1(z)− Jm′+1dz
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=

∫ m′+1∑
i=1

zi −
(
y1I{m′ + 1 odd}+ x1I{m′ + 1 even}

)i
i!

(−1)m
′+1−iJm′+1−idz

=
m′+1∑
i=1

(
zi+1

(i+ 1)!
−
z
(
y1I{m′ + 1 odd}+ x1I{m′ + 1 even}

)i
i!

)
(−1)m

′+1−iJm′+1−i +D

=
m′+2∑
s=2

zs

s!
(−1)m

′+2−sJm′+2−s − zJm′+2−1 + (y1I{m′ + 2 odd}+ x1I{m′ + 2 even})Jm′+2−1

−
m′+2∑
s=2

(
y1I{m′ + 2 odd}+ x1I{m′ + 2 even}

)s
s!

(−1)m
′+2−sJm′+2−s

= jm′+2(z)− Jm′+2

This follows the same steps as the proof forM even, but with the opposite sign and slightly different

definition of j. The proof for z ∈ [x1, a) follows the same steps as the above and the proof for M

even. The required result follows by induction. �

7.6.7 Proof of Lemma 7.4.9

By the definition of x1,M we have ha,M(a)−ha,M(x1,M) =
∫ a
x1,M

h′a,M(z)dz > 2ε/3. We rewrite

the LHS of this relation as follows,

∫ a

x1,M

h′a,M(z)dz = 2L

∫ a

x1,M

LM − lM(z)dz

= 2L

[
LMz −

M∑
i=1

zi+1

(i+ 1)!
(−1)M−iLm−i

]a
z=x1,M

= 2L
M∑
i=1

(
ai+1

i!
− ai+1

(i+ 1)!
− x1,Ma

i

i!
+

xi+1
1,M

(i+ 1)!

)
(−1)M−iLM−i.

This is the same expression derived for ha,M(a)− ha,M(x1,M) as in the M even case, and thus the

same conclusion follows. �



Chapter 8

Conclusions

In this closing chapter, we review the contributions of this thesis and discuss some open prob-

lems and opportunities for further work that have been uncovered during the process of this re-

search.

8.1 Contributions

In Chapter 1 we presented the sequential event detection problem. This is a problem with

applications across multiple disciplines and industries, arising when point process data need to

be observed, resource needs to be intelligently allocated to do so, and there is the opportunity to

receive feedback on the quality of previous resource allocations and improve them. We outlined

that a successful strategy to solve such a problem must combine three effective components - an

inference scheme; an optimisation approach; and a policy to balance exploration and exploitation.

In this thesis we have tackled the challenge of designing, implementing, and analysing such

strategies. We developed useful models which capture the challenges of these problems in a variety

of settings. We have proposed some simple but powerful algorithms which are tailored to the prob-

211
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lem and readily implementable. We have conducted detailed theoretical and empirical analysis of

these algorithms, showing their efficacy and contributing to the broader understanding of problems

in sequential decision making, applied probability, and Bayesian non-parametrics. We summarise

these contributions in further detail below.

Models

We are aware of no formal models for sequential event detection problems existing prior to

this work. We have proposed two widely applicable models of the problem, as multi-armed bandit

problems which have been useful tools for our algorithm design and analysis, and which we hope

will provide value for further research in these areas and beyond.

Specifically, in Chapter 4 we proposed a combinatorial bandit model of the problem with a

discrete action space. This model captures the problem of deploying multiple sensors to disjoint

subintervals and allows us to model filtering of events with a wide range of detection probability

functions. Filtering refers to the phenomenon where the events may be detected or not probabilis-

tically - for instance because the observation quality depends on the allocation of resource. The

formulation also permits efficient solution via integer programming.

In Chapter 5 we proposed a continuum-armed bandit model of the problem. This version is

similar in that it captures the problem of deploying multiple sensors to disjoint subintervals but it

is more flexible in that it allows these subintervals to start and end at any point along an observable

region, so long as they are nonoverlapping. The model allows for a flexible cost of searching to be

included, letting the user capture the trade-off between increasing the size of the observable region

and increasing the cost of their surveillance.
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Algorithms

For the two models described above, we have combined effective inference, optimisation, and

bandit methods to produce provably useful solution algorithms.

For the combinatorial model with filtering, we proposed an upper confidence bound approach

which is adapted to the concentration of the inference on the rate function under filtering. The ap-

proach is simple to implement and can be deployed quickly in practice thanks to a bespoke integer

programming formulation which enjoys fast solvability. We also empirically demonstrate the reli-

ability of the approach. Compared to Thompson Sampling and greedy approaches for the problem,

the upper confidence bound approach behaves in a more consistent manner. This is an important

quality for decision-makers who in practice may only encounter a single learning problem and

therefore must focus on the variability of an algorithm’s performance, not only its expected regret.

For the CAB model, we proposed a Thompson Sampling approach, which used a progressive

discretisation of the action space to handle the challenges of there being infinitely many arms to

choose between and make inference on the reward distribution of. We showed that the algorithm

outperformed UCB and greedy competitors. In this setting, rewards were downweighted by an

additive cost per unit searching. Under this reward function UCB algorithms performed poorly,

as they were overly optimistic and took many rounds to assign indices below the cost level to

any part of the discretised space. This was not an issue in the setting of Chapter 4 because the

filtering model which downweighted the reward of playing actions covering larger spaces was

multiplicative, rather than additive. This meant UCB prioritised making observations in regions

with relatively high indices (with respect to those of other regions) rather than in regions with

whose indices have absolute value above the cost level.
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Theoretical Understanding

Throughout the thesis we have been able to validate our choices of inference scheme, optimisa-

tion approach, and sequential decision making policy by deriving theoretical results guaranteeing

their efficacy.

In Chapter 4 we adapted de la Peña’s inequality to give a new martingale result for the fre-

quentist mean of filtered Poisson observations. This allowed us to bound the variation of the UCB

indices used in our approach to the CMAB version of the sequential event detection problem and

derive anO(log(T )) bound on regret. This showed that the FP-CUCB approach is order optimal, as

it matched the Ω(log(T )) lower bound we derived on the regret of any uniformly good algorithm.

We also demonstrated that the full-information optimisation problem encountered at each stage of

the CMAB problem is part of a class of NP-hard problems.

In Chapter 5 we presented a bound on the Bayesian regret of our progressive discretisation-

based Thompson Sampling algorithm for the CAB variant of the problem. We showed that the

regret is Õ(T 2/3). A lower bound has not been identified for this particular problem, although the

Lipschitz bandit of Kleinberg (2005) is similar and has a Ω(T 2/3) lower bound, suggesting that the

proposed Thompson Sampling approach is a good algorithm. We also demonstrated the feasibility

of the algorithm by proving that the complexity of the optimisation step in each iteration is of the

order the number of bins, which we fix to O(T 1/3).

In the aforementioned algorithms of Chapters 4 and 5, the inference is based on the assump-

tion of a piecewise constant rate function with independent levels. A natural extension is to study

algorithms based on inference schemes which capture more complex, spatially smooth rate func-

tions. As a key component of any regret analysis is exploiting tight bounds on the variability of the

decision-making indices, we studied the posterior contraction properties of Gaussian Cox Processes

in Chapter 6.

We derived finite-time bounds on the posterior contraction of the Sigmoidal and Quadratic
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Gaussian Cox Processes given independent, non-identically distributed data. Existing results had

focussed only on the asymptotic contraction rate of the sigmoidal version under independent full

realisations of the underlying Poisson process. Our results therefore extend beyond this work in a

number of aspects that are relevant to design and analysis of sequential decision making algorithms

with Cox process inference. Finite-time concentration properties enable finite-time analysis of

algorithms, handling non-identically distributed data covers the case where not all parts of the

observable region are observed in each round and studying multiple models adds to the general

understanding of Gaussian Cox Processes and in our case has suggested that the sigmoidal version

is preferable.

Finally, in Chapter 7 we studied the performance of TS applied to CABs in a setting more gen-

eral than sequential event detection. We considered a CAB problem with reward function drawn

from a class of functions with M ∈ N bounded, Lipschitz derivatives and sub-exponentially dis-

tributed observation noise. The main results of the chapter are generalisations of Bayesian regret

analysis of parametric bandit problems in Russo and Van Roy (2014). We showed that these tech-

niques, which bound regret in terms of the eluder dimension and complexity of the function class

from which the reward distribution is drawn, can be extended to non-parametric function classes,

and derive sublinear bounds on the Bayesian regret of TS.

8.2 Further Work

In addition to delivering solution approaches and answering questions around how to optimally

make sequential decisions in event detection problems, we have identified numerous opportunities

for further study through the research of this thesis. There are opportunities to develop research in

each of the three areas in which we have made contributions, and we will divide our discussion of

potential further work accordingly.
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Models

The problem formulation we have used (and modified only slightly across the chapters) through-

out the thesis has been intentionally straightforward. Both since this maintains a generalisability

over many applications and since it has allowed us to focus on particular issues pertaining to infer-

ence and the analysis of sequential decision making problems.

Going forward, the ideas developed in this thesis could certainly be applied to more complex

variants of the sequential event detection problem, and certain variations on our simple problem

present themselves as natural alternatives motivated by real applications. We shall discuss a selec-

tion of these and some intuition as to how to handle them in the remainder of this subsection.

One may consider higher dimensional observable regions, e.g. detecting events with satellite

or drone technology may frequently necessitate looking at 2D regions rather than simply lines or

borders. In the CAB setting of Chapter 7, one may consider d dimensional action sets [0, 1]d instead

of just the unit interval [0, 1] we studied.

In principle these higher dimensional problems can be tackled with very similar strategies - the

change in the action space and dimension of the observable region will not change the necessity to

balance exploration and exploitation and Thompson Sampling or upper confidence bound principles

will still be effective. The implementation and associated theoretical analyses may however become

more complex.

In the settings of Chapter 4 and 5, as the cell means are modelled as independent, changing the

dimension of the observable region should not alter the theoretical analysis. A non-trivial modelling

question would centre around what restrictions to place on the shape of viable contiguous subre-

gions (combinations of cells/bins) and how to represent this usefully in an integer programming

formulation of the full information problem.

In the setting of Chapter 7, as we note within the chapter, we anticipate that it should be feasi-

ble to extend the bound of the elduer-dimension of the Lipschitz smooth function classes to higher
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dimensional inputs. The same analytical techniques which construct functions with derivative be-

haviour at the limits of what is permitted within the function class can be extended to functions in

multiple dimensions, and should give an expression for the eluder dimension that is polynomial in

the dimension of the function support. These bounds could then be propagated through the existing

analyses to give yet more general regret guarantees for Thompson Sampling on smoother-than-

Lipschitz bandits.

Similarly, one may wish to relax the assumption the subregions assigned to sensors must be

disjoint. For instance if detection probabilities are low, but the rate function only takes values in

one small area, an action which permits deploying multiple sensors to said area may be far better

than those permitted by our action sets. Again, this is unlikely to alter the optimal principles

for sequential decision making, and variants of our existing algorithms could likely be deployed

successfully. The challenge would come in formulating efficient optimisation approaches to the

more complex problem where overlapping is permitted, and dealing with domain specific issues

around multiple sensors detecting the same event etc.

Extensions which will have more of an impact on the sequential decision making aspect of

our algorithms are those which alter the assumptions around how events are generated and the

stationarity of the reward function.

If event locations are supposed to be non-independent, we may favour a different model. Self-

excitation processes such as the Hawkes process (Hawkes, 1971) capture the phenomenon where

the occurrence of an event increases the probability of further events nearby. Determinantal point

processes (see e.g. Lavancier et al. (2015)), on the other hand, are one class of model which capture

the opposite phenomenon, where events may repel each other. These models could, for instance,

be chosen instead of the NHPP to capture settings where event locations are non-independent.

Thompson Sampling approaches could be readily proposed based on Bayesian Inference in these

models, but theoretical analysis and/or the design of UCB policies may be more challenging due to
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the complex nature of the likelihoods.

If we maintain the NHPP model, but the rate function of the changes during the problem hori-

zon, then observed data should not be handled in the same way we have. Designing an effective

strategy will rely on some assumptions as to how the rate function changes. If we believe it is

likely to change gradually, a sliding-window or discounting approach which either discard data

after a certain number of rounds or downweight older data when making inference would be a

reasonable choice. Such approaches have been deployed in simpler bandit problems (Garivier and

Moulines, 2011; Kocsis and Szepesvári, 2006). If sudden changes are more likely, an approach

which incorporates a changepoint detection algorithm may be more appropriate.

If we cannot make even these assumptions on the generation of events, an adversarial formula-

tion of the problem may be necessary - i.e. we may wish to consider a non-stochastic bandit model

of sequential event detection and design randomised algorithms whose worst case performance is

sublinear for any sequence of rewards. If we wish to go further and assume that events are actively

placed in patterns that are hard to learn or generally to minimise the number of events detected, a

fully game-theoretic formulation (Fudenberg and Levine, 1998) of the problem may be appropriate.

Algorithms

The core algorithms we proposed and analyse extend the (frequentist) UCB and Thompson

Sampling principles to Poisson process bandit problems. As we reviewed in Chapter 3, there are a

number of other algorithmic approaches to simpler bandit problems - i.e. those with lighter tailed

noise or simpler feedback - such as the KL-UCB algorithms which form an index by numerical

maximisation of a function of KL-divergence and Bayes-UCB algorithms which use quantiles of

the posterior distribution as decision making indices. For continuum-armed bandits there is the

GP-UCB algorithm which maximises a upper confidence bound on the reward function to select

actions, and a variety of other methods from Bayesian optimisation which can be extended to bandit
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problems.

There is scope to extend and implement these methods for Poisson process bandit problems,

and to tackle the (potentially more complex) analysis required to derive bounds on their regret. In

simpler bandit problems, methods such as KL-UCB and Bayes-UCB can be shown to outperform

UCB1 and Thompson Sampling, and as such there is a possibility that such methods could perform

better than those introduced in this thesis. While extension of these principles to the finite-action

space problem may be quite straightforward - from an algorithm design point of view if not with re-

gards to the analysis - a particular challenge would be incorporating the spatial information present

in the continuum-armed version of the problem in to such a problem. We know that under Gaussian

Cox Process models, the posterior is intractable, and as such designing an algorithm which forms

upper confidence bounds or can draw quantiles of the posterior may be challenging.

Theoretical Understanding

All of the proposed modelling and algorithmic developments above bring with them the oppor-

tunity to derive the kinds of concentration and regret analyses we have presented in this thesis for

their specific modification. Such contributions will carry with them varying levels of intellectual

challenge and novelty. We will not discuss these here. Rather we will focus on certain open ques-

tions and opportunities for further study that remain around the methods and problems considered

in this work.

• Regret of Thompson Sampling with Gaussian Cox Process inference: The bounds in

Chapter 6 are derived with analysis of a Thompson Sampling approach in mind. An open

problem remains to determine whether these bounds can actually be used to bound the

Bayesian regret of such an algorithm. Knowing that posterior mass is concentrated near the

true function means that the distance between the sampled rate function λ̃ which TS makes

decisions based on and the true rate function λ0 is bounded with high probability. The struc-
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ture of the problem means that the instantaneous regret will then also be bounded with high

probability. The challenge in using this high probability bound is one of non-identifiability

- we do not have any guarantee of the contraction at specific points, only the overall con-

traction over the space. We intend to continue investigation in to what results can be derived

using the GCP bounds in the future.

• Lower bounds for problems with point process feedback: Under the combinatorial model

of Chapter 4, we were able to derive a logarithmic order lower bound on regret. In this model

of the problem, while we may have observed event locations, they provided no additional in-

formation beyond that given by the count of observed events in each cell, since we assumed

the rate function to be piecewise constant with independent levels. In the more complex

continuum armed setting where the rate function is not piecewise constant however, the feed-

back of event locations affects how we infer the rate function. Intuitively, it follows that it

may therefore affect the regret lower bounds for the continuum armed bandit version of the

problem. For this reason in Chapter 5, we do not claim to have knowledge of the true lower

bound for our problem and point only to those for related problems as being suggestive as to

the ballpark of the true lower bound. Deriving the correct lower bound for the problem with

observed event locations as feedback remains an open problem and interesting research op-

portunity. Solving this open problem may also carry insights which can be carried forward to

producing better algorithms for our problem and for lower bounding regret in other learning

problems with complex feedback.

• Contraction of Gaussian (Cox) Processes with non-independent samples: The results of

Chapter 6 may be useful for studying the contraction of the GCP posterior under the reward

model of Chapter 5 - where all events in a selection region are observed, subject to cost. To

consider the reward model of Chapter 4 in the CAB setting would require martingale versions

of the posterior contraction results, since the filtering introduces dependencies between the
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rewards and actions, and thus across the reward sequence. Ghosal and Van Der Vaart (2001)

study a version of non-independent data where successive observations are realisations of a

Markov Chain. Work to derive martingale versions of the GCP contraction results would

commence with looking at the extension of this fundamental work. As done with the non-

identically distributed theory in Chapter 6, the ideas would then need to be carried through

the Gaussian process and Poisson process theory, deriving analogues of the results of van der

Vaart and van Zanten (2009) and Belitser et al. (2015) for non-independent data. The impact

of such results (particularly the Gaussian process contraction) could extend to other prob-

lems with non-independent sequential observations such as Bayesian optimisation and active

learning.

• Performance of Thompson Sampling based on Variational Inference: As we described

in Chapter 2, the most efficient implementations of GCP inference (Donner and Opper, 2018;

John and Hensman, 2018) are based on variational inference. As a result, efficient implemen-

tations of Thompson Sampling will in practice rely on approximate inference and therefore

sampled indices will necessarily be drawn from approximations of the true posterior. Indeed,

even Markov Chain Monte Carlo inference is only exact in the limit, so any implementations

of Thompson Sampling where closed-form updates of the posterior are not available will

inevitably include such an approximation.

Existing analyses of Thompson Sampling approaches typically assume exact inference, ig-

noring such approximations, which is of course possible when closed form posteriors are

available. As the use of variational methods increase, and the study of Thompson Sampling

moves to ever more complex problems, an understanding of the effect of such approxima-

tions on sequential decision making will become important, not only in the Poisson process

bandit. A few papers have begun to explore the use of variational inference in Thompson

Sampling. However these either only present empirical evaulation as in Urteaga and Wig-
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gins (2018) or consider very specific models where bespoke bounds on the quality of the

variational approximation are available (Qi et al., 2018).

• Variance of Thompson Sampling: In the empirical analysis of Chapter 4, we find evidence

that the variance of the reward accumulated by the Thompson Sampling approach changes

depending on the prior used. Indeed there is an order of magnitude difference between the

empirical variances of the different parametrisations of Thompson Sampling in some exper-

iments. This raises the question of how the variance of the reward obtained by Thompson

Sampling is linked to the prior parameters and to the problem instance - can we derive the-

oretical guarantees on variance akin to those on expected (Bayesian) regret? We are not the

only ones to raise this question - Lattimore and Szepesvári (2018) have the following to say

on the subject: “We should be wary [...] that injecting noise into our algorithms might come

at a cost in terms of variance. What is gained or lost by the randomization in Thompson

sampling is still not clear, but we leave [...] a suggestion to the reader to think about some of

the costs and benefits”.

This is not, merely, an academically interesting question. Consider the case of a decision-

maker wishing to make an informed choice of which bandit algorithm to apply to some

sequential decision-making problem which is of importance to them. While decisions are

made repeatedly within a learning process, the decision of which algorithm to employ is only

made once for a given problem. For this reason, the decision-maker should think carefully

about the variance of their options (potential algorithms) as well as the expected return (or

regret), just as they should when evaluating any other decision or investment.

There are existing attempts to consider risk within stochastic bandits. Sani et al. (2012) con-

sider an alternative framework to expected regret minimisation, where they aim to reduce

risk by minimising a mean-variance version of regret. Galichet et al. (2013) consider a vari-

ant of the bandit problem centred around identifying arms with maximal lower quantiles -
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reducing the risk of large losses. These works consider the variance and/or the distribution

of the regret to an extent, but both propose and analyse new algorithms which perform well

for these performance metrics. What is crucially missing from the literature (to the best of

our knowledge) is an understanding of the variance of the reward accumulated by existing,

popular algorithms.

We note that the variance of common algorithms has been addressed to some extent in ad-

versarial bandits - for instance in Section 11.5 of Lattimore and Szepesvári (2018), Bubeck

et al. (2018), Bubeck and Sellke (2019), and Pogodin and Lattimore (2019). However as with

other aspects of bandit theory, there is little transfer across between the worst-case analysis

in the unstructured environment of adversarial bandits and stochastic bandits.
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Verifying conditions on sieves

Throughout the analysis of Chapter 6 the sequences used in defining the sieves are subject to

numerous conditions and assumptions, in order that we may demonstrate the conditions of Theorem

6.4.3 are met for the GCP models. By choosing L2:10 as specified in the main body, these conditions

are met by definition for values of n as specified. There are numerous such conditions to verify, and

doing so can be non-trivial. In this section we show the link between the conditions and constraints

on L2:10, n and demonstrate fully that the necessary results hold.

QGCP model

Recall, the definitions of the following sequences:

δn = 2||g0||∞n−α/(4α+d) logρ(n) + n−2α/(4α+d) log2ρ(n),

δ̄n = 2||g0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n)

ζn = L2n
(2α+d)/(4αd+d2) log2ρ/d(n) + L3n

(αd+d2)/(4αd+d2) log3ρ/d(n) + L4n
d/(4α+d) log4ρ/d(n)

βn = L5n
(2α+d)/(8α+2d) log2ρ+(d+1)/2(n) + L6n

(α+d)/(8α+2d) log3ρ+(d+1)/2(n)

+ L7n
d/(8α+2d) log4ρ+(d+1)/2(n)

224
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with L2, ..., L7 satisfying

L2 + L3 + L4 > max(A, e)

L2L
3
5 >

(
8 max(1, ||g0||∞)

(3/L1)3/2d1/4
√

2τ

)2

L5 + L6 + L7 >
4L1 max(1, ||g0||∞)

3
√
||µ||

L2 ≥ (8c5||g0||2∞)/D1

L3 ≥ (8c5||g0||∞)/D1

L4 ≥ 2c5/D1

L5 ≥ max

(√
16K5Ld2K1+d

1

log2ρ(3)
,
√

32||g0||2∞c5

)

L6 ≥ max

(√
16K5Ld3K1+d

1

log3ρ(3)
,
√

32||g0||∞c5

)

L7 ≥ max

(√
16K5Ld4K1+d

1

log4ρ(3)
,
√

8c5

)

for n ≥ max(3, n3, n4, n5). Here n3 is the smallest integer n such that

4||g0||2∞ log2d+2−2ρ(n) ≥ m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3
∑4

i=2 Li
4||g0||3∞

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d

n4 is the smallest integer n such that

2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1||g0||∞ + L1

)
≤ 4||g0||2∞n(4α+2d)/(8α+2d) log2ρ+2d+2(n)

− log

(
n(6α+d)/(4α+d) log6ρ(n)

)
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and n5 is the smallest integer n such that

n(2α+d)/(4α+d) log2ρ(n) ≥ q1

4c5||g0||2∞
log
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)
)
.

In the remainder of this subsection, we show that the following conditions, which are all re-

statements of required results in our main analysis, hold for the sequences described above.

ζn > max(A, 1) (A.0.1)

(3/L1)3/2d1/4β3/2
n

√
2τζn > 2δ̄3/2

n (A.0.2)

(3/L1)βn
√
||µ|| > δ̄n (A.0.3)

mζdn

(
log

(
(3/L1)3/2d1/4β

3/2
n

√
2τζn

δ̄
3/2
n

))1+d

≤ nδ̄2
n (A.0.4)

2 log

(
6βn
√
||µ||

L1δ̄n

)
≤ nδ̄2

n (A.0.5)

β2
n > 16K5ζ

d
n

(
log

(
3ζn
δ̄n

))1+d

(A.0.6)

D1ζ
d
n

(
logq2(ζn)

)
≥ 2c5nδ

2
n (A.0.7)

β2
n ≥ 8c5nδ

2
n (A.0.8)

ζq1−d+1
n ≤ exp(c5nδ

2
n), (A.0.9)

Verifying (A.0.1)

For n = 3, log(n) > 1 thus ζn > L2 + L3 + L4 for all α ∈ [0, 1], and d ≥ 1. It follows that

(A.0.1) is satisfied for n = 3 given L2 + L3 + L4 > max(A, e). To show it holds for all n > 3 we

simply note that ζn is an increasing function.
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Verifying (A.0.2)

First consider,

δ̄n = 2||g0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n)

≤ 4 max(1, ||g0||∞)n−α/(4α+d) log2ρ+2d+2(n)

⇒ 2δ̄3/2
n ≤ (4 max(1, ||g0||∞))3/2n−3α/(8α+2d) log3ρ+3d+3(n))3/2

= (4 max(1, ||g0||∞))3/2n−3α/(8α+2d) log3ρ+3(d+1)/4(n) log9(d+1)/4(n)

Let z1 = (3/L1)3/2d1/4
√

2τ ,

z1

√
β3
nζn ≥ z1 log4ρ+3(d+1)/4(n)

(
L5n

2α+d
8α+2d + L6n

α+d
8α+2d + L7n

d
8α+2d

)3/2

×
(
L2n

2α+d

4αd+d2 + L3n
α+d

4αd+d2 + L4n
d

4αd+d2
)1/2

≥ z1 log3ρ+3(d+1)/4(n)

√
L3

5L2n
6α+3d
8α+2d .

Thus values of L2, L5 such that

z1

√
L2L3

5n
6α+3d
16α+4d

+ 3α
8α+2d > 8 max(1, ||g0||∞) log9(d+1)/4(n)

are sufficient to verify (A.0.2). For n ≥ 3, d > 1 and α ∈ [0, 1] n
12α+3d
16α+4d > log9(d+1)/4(n) so

L2L
3
5 >

(
8 max(1, ||g0||∞)

(3/L1)3/2d1/4
√

2τ

)2

is a sufficient condition to verify (A.0.2).
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Verifying (A.0.3)

First consider,

L1δ̄n ≤ 4L1 max(1, ||g0||∞)n−α/(4α+d) log2ρ+2d+2(n),

and

3
√
||µ||βn ≥ 3

√
||µ||(L5 + L6 + L7)n(2α+d)/(8α+2d) log2ρ+(d+1)/2(n).

Plainly n(2α+d)/(8α+2d) log2ρ+(d+1)/2(n) > n−α/(4α+d) log2ρ+2d+2(n) for n ≥ 3, so

L5 + L6 + L7 >
4L1 max(1, ||g0||∞)

3
√
||µ||

is a sufficient condition to verify (A.0.3).

Verifying (A.0.4)

Consider,
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log(n) +

4ρ
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log(log(n))
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n
2α+d
4α+d log4ρ(n)
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=
m(Ld2 + Ld3 + Ld4)
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Condition (A.0.4) is then satisfied for all n such that

4||g0||2∞ log2d+2−2ρ(n) ≥ m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3
∑4

i=2 Li
4||g0||3∞

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d

Verifying (A.0.5)

Consider,
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= 2 log
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Verifying (A.0.6)

Consider
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. Grouping terms

of the same order we require the following for all sufficiently large n

L2
5 log2ρ(n) ≥ 16K5L

d
2K1+d

1 ,

L2
6 log3ρ(n) ≥ 16K5L

d
3K1+d

1 ,

L2
7 log4ρ(n) ≥ 16K5L

3
4K1+d

1 ,

to satisfy (A.0.6). Thus, the following are sufficient conditions to satisfy (A.0.6) for all n ≥ 3

L5 ≥

√
16K5Ld2K1+d

1

log2ρ(3)
, L6 ≥

√
16K5Ld3K1+d

1

log3ρ(3)
, L7 ≥

√
16K5Ld4K1+d

1

log4ρ(3)
.

Verifying (A.0.7)

Consider,

2c5nδ
2
n = 2c5

(
4||g0||2∞n

2α+d
4α+d log2ρ(n) + 4||g0||∞n

α+d
4α+d log3ρ(n) + n

d
4α+d log4ρ(n)

)
,
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and

D1ζ
d
n logq2(ζn) ≥ D1

(
L2n

2α+d
4α+d log2ρ(n) + L3n

α+d
4α+d log3ρ(n) + L4n

d
4α+d log4ρ(n)

)

for ζn > e - i.e. such that log(ζn) ≥ 1. Then condition (A.0.1) and L2 ≥ (8c5||g0||2∞)/D1,

L3 ≥ (8c5||g0||∞)/D1 and L4 ≥ 2c5/D1 are sufficient conditions to verify (A.0.7).

Verifying (A.0.8)

Consider,

8c5nδ
2
n = 8c5

(
4||g0||2∞n

2α+d
4α+d log2ρ(n) + 4||g0||∞n

α+d
4α+d log3ρ(n) + n

d
4α+d log4ρ(n)

)
,

and

β2
n ≥ L2

5n
2α+d
4α+d log2ρ(n) + L2

6n
α+d
4α+d log3ρ(n) + L2

7n
d

4α+d log4ρ(n).

Then (A.0.7) is satisfied with L2
5 > 32||g0||2∞c5, L2

6 > 32||g0||∞c5, and L2
7 > 8c5.

Verifying (A.0.9)

Consider

exp(c5nδ
2
n) = exp

(
c5

(
4||g0||2∞n

2α+d
4α+d log2ρ(n) + 4||g0||∞n

α+d
4α+d log3ρ(n) + n

d
4α+d log4ρ(n)

))
,

≥ exp

(
4c5||g0||2∞n(2α+d)/(4α+d) log2ρ(n)

)
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and

ζq1−d+1
n ≤

(
L2n

(2α+d)/(4αd+d2) log2ρ/d(n) + L3n
(α+d)/(4αd+d2) log3ρ/d(n) + L4n

d/(4αd+d2) log4ρ/d(n)

)q1
,

≤
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)

)q1
The condition is then satisfied for all n such that

n(2α+d)/(4α+d) log2ρ(n) ≥ q1

4c5||g0||2∞
log
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)
)
.

SGCP model

Recall the definitions of the following sequences:

δn = n−α/(2α+d logρ(n)

δ̄n = n−α/(2α+d logρ+d+1(n)

ζn = L8n
1

2α+d (log(n))2ρ/d,

βn = L9n
d

2(2α+d) (log(n))d+1+2ρ,

λn = L10n
d

κ(2α+d) (log(n))4ρ/κ

with L8, L9, L10 satisfying

L8 > max

(
A, 1,

(
2c5

D1

)1/d
)

L9 ≥
√

8c5

L10 >

(
c5

c0

)1/ρ
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L8L
3
9L

3/2
10 >

2

()6cL1)3/2τ
√
d

L9L
1/2
10 >

1

6cL1

√
||µ||

for n ≥ max(3, n6, n7, n8). Here n6 is the smallest integer such that

n
d

2α+d > max

(
2 log(12cL1L9L

1/2
10 ) + 1, log(2L1L

1/2
10 ) + 1,

1

c5

(
log(Lq1−d+1

8 ) + 1
))
,

n7 is the smallest integer such that

log2d+2(n) > mLd8

(
log((6cL1)3/2

√
2τL8L3

9L
3/4
10 d

1/4) +
κ(6d+ 6α + 2) + 3d

4κ(2α + d)
log(n)

+ log
(

log3ρ/2+3ρ/κ+ρ/d−d−1(n)
))1+d

,

and n8 is the smallest integer such that

log2ρ(n) >
16K5D1L

d
8

L2
9

(
log(
√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)
log(n)

)1+d

.

In the remainder of this subsection, we show that the following conditions, which are all re-

statements of required results in our main analysis, hold for the sequences described above.

(6cL1)3/2d1/4β3/2
n λ3/4

n

√
2τζn > 2δ̄3/2

n (A.0.10)

6cL1βn
√
λn||µ|| > δ̄n (A.0.11)

ζn > max(A, 1) (A.0.12)

mζdn

(
log
((6cL1)3/2λ

3/4
n β

3/2
n d1/4

√
2τζn

δ̄
3/2
n

))1+d

< K3nδ̄
2
n (A.0.13)
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2 log
(12cL1βn

√
λn||µ||

δ̄n

)
< K4nδ̄

2
n (A.0.14)

log
(2L1λ

1/2
n

δ̄n

)
< K5nδ̄

2
n (A.0.15)

β2
n > 16K5ζ

d
n

(
log
(λ1/2

n ζn
δ̄n

))1+d

(A.0.16)

c0λ
ρ
n > c5nδ

2
n (A.0.17)

D1ζ
d
n ≥ 2c5nδ

2
n (A.0.18)

ζq1−d+1
n ≤ ec5nδ

2
n (A.0.19)

β2
n ≥ 8c5nδ

2
n (A.0.20)

In turn we demonstrate that each of the conditions (A.0.10) through (A.0.20) hold.

Verifying (A.0.10)

Consider

(6cL1)3/2d1/4β3/2
n λ3/4

n

√
2τζn

= (6cL1)3/2d1/4L
3/2
9 n

3d
4(2α+d) log

3d+3
4

+3ρ(n)L
3/4
10 n

3d
4κ(2α+d) log3ρ/κ(n)

√
2τL8n

1
2α+d (log(n))2ρ/d

= (6cL1)3/2
√

2τL8L3
9L

3/4
10 d

1/4n
3d

4(2α+d)
+ 3d

4κ(2α+d)
+ 1

2(2α+d) log
3d+3

4
+3ρ+3ρ/κ+ρ/d(n)

and

2δ̄3/2
n = 2n

−3α
2(2α+d) log3ρ/2+3(d+1)/2(n)
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So (A.0.10) can be rewritten:

(6cL1)3/2
√

2τL8L3
9L

3/4
10 d

1/4n
3d

4(2α+d)
+ 3d

4κ(2α+d)
+ 3α+1

2(2α+d) log3ρ/2+3ρ/κ+ρ/d− 3d−3
4 (n) > 2,

which holds for L8, L9, L10 such that L8L
3
9L

3/2
10 > 2

(6cL1)3/2τ
√
d
.

Verifying (A.0.11)

We may rewrite (A.0.11) as

6cL1

√
||µ||L9L

1/2
10 n

1
2 logρ+2ρ/κ−d−1(n) > 1

which holds for all L9, L10 such that L9L
1/2
10 > 1/(6cL1

√
||µ||).

Verifying (A.0.12)

If n ≥ 3 then ζn holds for all L8 ≥ max(A, 1).

Verifying (A.0.13)

Consider

mζdn

(
log
((6cL1)3/2λ

3/4
n β

3/2
n d1/4

√
2τζn

δ̄
3/2
n

))1+d

= mLd8n
d

2α+d log2ρ(n) log

(
(6cL1)3/2

√
2τL8L3

9L
3/4
10 d

1/4n
3d

4(2α+d)
+ 3d

4κ(2α+d)
+ 3α+1

2(2α+d) log3ρ/2+3ρ/κ+ρ/d−d−1(n)

)1+d

and

nδ̄2
n = n

d
2α+d log2ρ+2d+2(n)
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Thus (A.0.13) holds for all n such that

log2d+2(n) > mLd8

(
log((6cL1)3/2

√
2τL8L3

9L
3/4
10 d

1/4) +
κ(6d+ 6α + 2) + 3d

4κ(2α + d)
log(n)

+ log
(

log3ρ/2+3ρ/κ+ρ/d−d−1(n)
))1+d

Verifying (A.0.14)

We may rewrite (A.0.14) as

2 log

(
12cL1L9L

1/2
10 n

1
2

+ d
2κ(2α+d) log2ρ/κ+ρ−d−1(n)

)
< n

d
2α+d log2ρ+d+1(n)

which holds for all n such that

n
d

2α+d > 2 log(12cL1L9L
1/2
10 ) + 1.

Verifying (A.0.15)

We may rewrite (A.0.15) as

log

(
2L1L

1/2
10 n

d
2κ(2α+d)

+ α
2α+d log2ρ/κ−ρ−d−1(n)

)
< n

d
2α+d log2ρ+d+1(n)

which holds for all n such that

n
d

2α+d > log(2L1L
1/2
10 ) + 1.
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Verifying (A.0.16)

Consider

β2
n = L2

9n
d

2α+d logd+1+4ρ(n)

and

16K5ζ
d
n

(
log
(λ1/2

n ζn
δ̄n

))1+d

= 16K5D1L
d
8n

d
2α+d log2ρ(n)

(
log
(√L10L8n

2κ+d
2κ(2α+d) log2ρ/κ2+2ρ/d(n)

n
−α

2α+d logρ+d+1(n)

))1+d

= 16K5D1L
d
8n

d
2α+d log2ρ(n)

(
log(

√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)1+d

So (A.0.16) can then be rewritten as

L2
9 logd+1+2ρ(n) > 16K5D1L

d
8

(
log(

√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

))1+d

which holds for all n such that

log2ρ(n) >
16K5D1L

d
8

L2
9

(
log(
√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)
log(n)

)1+d

Verifying (A.0.17)

We may rewrite (A.0.17) as

c0L
ρ
10n

dρ
κ(2α+d) log4ρ2/κ(n) > c5n

d
2α+d log2ρ(n)

If ρ/κ > 1 this holds for all L10 > (c5/c0)1/ρ.
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Verifying (A.0.18)

We may rewrite (A.0.18) as

D1L
d
8n

d
2α+d log2ρ(n) > 2c5n

d
2α+d log

2+2d
2+d/α (n)

which is satisfied for all L8 > (2c5/D1)1/d.

Verifying (A.0.19)

Consider

ζq1−d+1
n = Lq1−d+1

8 n
q1−d+1
2α+d log

2ρ(q1−d+1)
d (n)

and

exp(c5nδ
2
n) = exp

(
c5n

d
2α+d log2ρ(n)

)
.

Then (A.0.19) holds for all n such that

n
d

2α+d >
1

c5

(
log(Lq1−d+1

8 ) + 1
)
.

Verifying (A.0.20)

We may rewrite (A.0.20) as

L2
9n

d
2α+d logd+1+4ρ(n) ≥ 8c5n

d
2α+d log2ρ(n).

which is satisfied for all L9 ≥
√

8c5.
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Dimitris Bertsimas and José Niño-Mora. Conservation laws, extended polymatroids and multi-

armed bandit problems; a polyhedral approach to indexable systems. Mathematics of Operations

Research, 21(2):257–306, 1996.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-

stationary rewards. In Advances in neural information processing systems, pages 199–207, 2014.

Hildo Bijl, Thomas B Schön, Jan-Willem van Wingerden, and Michel Verhaegen. A sequen-

tial monte carlo approach to thompson sampling for bayesian optimization. arXiv preprint

arXiv:1604.00169, 2016.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-

cians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance re-

duction: A unified approach to bayesian optimization and level-set estimation. In Advances in

Neural Information Processing Systems, pages 1507–1515, 2016.
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