
Please cite this paper as:

Jacko, P. (2019). BinaryBandit: An Efficient Julia Package for Optimization and Evaluation of the
Finite-Horizon Bandit Problem with Binary Responses. Management Science Working Paper
2019:4, Lancaster University Management School, 13 pages.

Management Science

Working Paper 2019:4

BinaryBandit: An Efficient Julia Package for

Optimization and Evaluation of the Finite-

Horizon Bandit Problem with Binary

Responses

Peter Jacko

The Department of Management Science

Lancaster University Management School

Lancaster LA1 4YX

UK

© Peter Jacko

All rights reserved. Short sections of text, not to exceed

two paragraphs, may be quoted without explicit permission,

provided that full acknowledgment is given.

LUMS home page: http://www.lums.lancs.ac.uk

http://www.lums.lancs.ac.uk/

BinaryBandit: An efficient Julia package for
optimization and evaluation of the finite-horizon

bandit problem with binary responses

Peter Jacko
Department of Management Science

Lancaster University, UK

August 23, 2019

Abstract

Variants of the multi-armed bandit problem for design of sequential experiments have
been studied in several disciplines for almost a century, but the performance evaluation
of proposed designs or finding a Bayes-optimal design over the finite horizon has resisted
derivation of a closed formulae. Computational optimization and evaluation is thus the
only possible approach. The BinaryBandit package in Julia programming language has
been developed to provide such framework with a number of designs, easily extendable to
add new designs. The package is based on the use an efficient implementation of back-
ward recursion which gives accurate (up to computer accuracy) evaluation for small and
moderate horizons. For instance, on a standard laptop or desktop computer, the Bayes-
optimal design for the two-armed problem can be computed for offline use or evaluated in
online fashion in a few minutes (horizon around 1, 000), in a few hours (horizon around
2, 000), or in a few days (horizon around 4, 000). 32GB of RAM allows storing (e.g., for
offline use) of the whole design up to horizon around 1440; when its storing is not needed
(e.g., for Bayesian evaluation or for calculation of the initial action) it allows up to hori-
zon around 4440. These problems are significantly larger than what has been reported
in the literature, since moderate and large horizons have only been evaluated by simu-
lation, trading-off accuracy. This paper describes the details of the backward recursion
implementation and gives an example of the package usage.

Keywords: multi-armed bandit problem, design of sequential experiments, Bayesian decision
theory, dynamic programming, index rules, response-adaptive randomization, Julia.

1. Introduction
The multi-armed bandit problem represents in a simplified way the general question of how
we learn—or should learn—from past experience. It is a model of allocation of sequentially
arriving subjects to the available interventions (arms) with unknown rewards in order to re-
solve the trade-off between earning of rewards from arms that have performed well so far and
learning about the mean rewards with the aim to identify the highest-rewarding arm. Be-
cause such situations are omnipresent, such problems have been studied in several disciplines,
e.g., biostatistics, operations research, reinforcement learning, economics, telecommunica-

2 BinaryBandit: An efficient Julia package

tions, marketing, etc., with a variety of different weights on the objectives of earning and
learning, and with different features arising from practice.
A formulation of the problem using the Bayesian decision-theoretic framework allows for
Bayes-optimality. Practical application of this Bayesian approach has however been long hin-
dered by its computational complexity, since the optimal solution is known in analytical form
only for infinite horizon (Kelly 1981). A variety of practical approximations and heuristics
have been developed and studied across several disciplines in order to overcome this issue, but
their analysis failed to give exact results or bounds sufficiently close to Bayes-optimality for
finite horizon problems, which are the problems most relevant to many situations in practice.
In this paper we thus focus on the finite-horizon setting. We present a Julia package called
BinaryBandit1 which assumes that subject responses are binary (success/failure), motivated
by its widespread applicability and by being one of the most studied settings. We also restrict
the discussion to two arms, which often naturally appears per se or as a subproblem in some
multi-armed generalizations (e.g., if new arms appear over time), and serves as a starting point
for introducing additional problem features. See, e.g., Jacko (2019) for a multidisciplinary
survey in which this package has been used to present computational results in such a setting.
Future versions of the package are planned to include also settings with more than two arms.
Other packages are planned to be developed using similar ideas for responses other than
binary.
In this paper we describe the framework for computing the Bayes-optimal (a.k.a. Bayesian
decision-theoretic) design using backward recursion and its efficient algorithmic implemen-
tation in the BinaryBandit package. The package also includes functions for evaluation of
a variety of Bayesian and non-Bayesian designs using algorithms that are straightforwardly
adapted from this one, and are not described here in detail.

2. Related Software
To the best of our knowledge, there are no publicly available packages in any software that
would compute the Bayes-optimal design. This is commonly believed to be computationally
intractable for practical problems (see Jacko 2019, Section 7.1 Myth #1). Table 1 lists aca-
demic literature in which this design was reported, indicating that the authors were typically
limited to the horizon around 100, some of them mentioning that horizons beyond around
200 are intractable.
There are related packages devoted to the multi-armed bandit problem, e.g.,
BanditsBook: using simulation, it evaluates several designs, including UCB, ε-greedy, softmax
and several of their variants; packages are provided in Python, Julia, R and Ruby, with links to
packages in several other programming languages. https://github.com/johnmyleswhite/
BanditsBook

pymaBandits: using simulation, it evaluates several designs, including UCB, Gittins index
rule, Thompson sampling and several of their variants, for binary, Poisson and Exponential
responses; packages are provided in Matlab and Python. https://mloss.org/software/
view/415/

google/MAB: using simulation, it evaluates several designs, including UCB, ε-greedy, Thomp-
1The package can be found at https://github.com/PeterJacko/BinaryBandit.

https://github.com/johnmyleswhite/BanditsBook
https://github.com/johnmyleswhite/BanditsBook
https://mloss.org/software/view/415/
https://mloss.org/software/view/415/
https://github.com/PeterJacko/BinaryBandit

Peter Jacko 3

Publication T Tmax SW, HW, RAM

Steck (1964) 25 N/A N/A, UNIVAC 1105, 54 kB
Yakowitz (1969) 5 N/A Fortran, N/A, N/A
Berry (1978) 100 N/A Basic (?), Atari (?), N/A
Hardwick (1991) 160 1602 N/A, N/A, N/A
Ginebra and Clayton (1999) 150 180 N/A, N/A, N/A
Hardwick, Oehmke, and Stout (2006)3 100 200 N/A, N/A, N/A
Ahuja and Birge (2016)4 96 240 N/A, Mac 4GB
Williamson, Jacko, Villar, and Jaki (2017) 100 215 R, PC, 16GB
Villar (2018) 100 N/A Matlab, PC, N/A
Kaufmann (2018) 70 N/A N/A, N/A, N/A
This paper 4440 4440 Julia 1.0.1 & BB, PC, 32GB

Table 1: Horizons T with reported results and Tmax reported as the largest computationally
tractable on a standard computer by backward recursion in the literature on two-armed
problem with binary responses.

son sampling and several of their variants, for binary, Poisson and Gaussian responses; package
is provided in R. https://github.com/google/MAB

bandit: it provides commands useful to evaluate the 1:1 design and Thompson sampling for
binary and Poisson responses; package is provided in R. https://cran.r-project.org/web/
packages/bandit/bandit.pdf

contextual: is focusses on several generalizations of the bandit problem, but for our basic
setting, using simulation, it evaluates several designs, including UCB, ε-greedy, Thompson
sampling and several other, for binary and Gaussian responses; package is provided in R.
https://arxiv.org/pdf/1811.01926.pdf

banditlib: using simulation, it evaluates several designs, including UCB, ε-greedy, Thompson
sampling and several of their variants, for binary and Gaussian responses; package is provided
in C++. https://github.com/jkomiyama/banditlib

More packages (less related to ours) are described in https://arxiv.org/pdf/1811.01926.
pdf and https://en.wikipedia.org/wiki/Multi-armed_bandit.

3. Model
In this section we briefly describe the two-armed problem with binary responses as a Markov
decision process. See Jacko (2019, Section 3) for a more detailed formulation.
We consider arms labelled by k ∈ K := {C,D}. The response set is denoted by O := {0, 1}.
Subject responses are uncertain, i.e., modelled as Bernoulli-distributed with parameter 0 ≤
θk ≤ 1, the success probability, independent across arms. The responses are immediate.
Subjects arrive at time epochs t ∈ T := {0, 1, 2, . . . , T − 1}, where T ≤ +∞ is the time
horizon.

2T max = 320 was reported using a parallelized algorithm on the CNSF’s IBM 3090 with parallel facilities.
3This paper considered a generalized model with delayed responses.
4This paper considered a generalized model with subjects allocated in groups.

https://github.com/google/MAB
https://cran.r-project.org/web/packages/bandit/bandit.pdf
https://cran.r-project.org/web/packages/bandit/bandit.pdf
https://arxiv.org/pdf/1811.01926.pdf
https://github.com/jkomiyama/banditlib
https://arxiv.org/pdf/1811.01926.pdf
https://arxiv.org/pdf/1811.01926.pdf
https://en.wikipedia.org/wiki/Multi-armed_bandit

4 BinaryBandit: An efficient Julia package

States. The physical state is represented by the numbers of observed successes and failures
on arm C denoted by sC and fC , respectively, and the numbers of observed successes and fail-
ures on arm D denoted by sD and fD, respectively, which we denote by x := (sC , fC , sD, fD).
Note that at time epoch t, sC + fC + sD + fD = t. In addition to the physical state, there is
an information state, the parameters of the prior distributions for the success probability of
each arm, which does not change during the trial, thus we omit it from notation.
The prior distribution for arm k is the Beta distribution with parameters s̃k(0), f̃k(0). These
parameters can be interpreted as the numbers of pseudo-observations of successes and failures
before the start of the trial. The conventional assumption is to take the uniform distribution
as a prior distribution on each arm k, i.e., (s̃k(0), f̃k(0)) = (1, 1).

Actions. At every time epoch t ∈ T the design must prescribe how the arrived subject
should be allocated to interventions. We consider an action set of two pure actions, which we
call action 1 (allocating to arm C) and action 2 (allocating to arm D). For convenience in
situations when both actions are optimal, we also consider an equally-weighted mixed action,
which we call action 3 (allocating to either arm with probability 1/2). Formally, the action
set is A = {1, 2, 3}. At time epoch T there is no decision to be made, which can be achieved
by setting 1 ≡ 2 ≡ 3.

Transition Probabilities. At every time epoch t ∈ T , in state x = (sC , fC , sD, fD), each
arm k has the posterior distribution given, because of conjugacy, by the Beta distribution
with parameters s̃k, f̃k, briefly Beta(s̃k, f̃k), where s̃k = s̃k(0) + sk and f̃k = f̃k(0) + fk. The
probability qk,x,o of observing response o ∈ O for the current subject if it is allocated to arm
k ∈ K in state x thus is

qk,x,1 = s̃k

s̃k + f̃k
qk,x,0 = f̃k

s̃k + f̃k

The (non-zero) transition probabilities hax,x′ of moving from state x to state x′ under action
a are

h1
x,x′ =

{
qC,x,1 if x′ = x + e1

qC,x,0 if x′ = x + e2
h2

x,x′ =
{
qD,x,1 if x′ = x + e3

qD,x,0 if x′ = x + e4

where ej is the standard basis vector.

Rewards. The expected one-period reward rax for all states x and all actions a is as follows:
rax = 0 for all states such that sC + fC + sD + fD ≤ T − 1 and rax = sC + sD for all states
such that sC + fC + sD + fD = T (i.e., the reward is the number of observed successes in all
states in which the trial can eventually end).

State and Action Processes. The evolution of a Markov decision process is captured by
the state process X(·), and the action process which depends on the state process, but can
be briefly written as A(·), where AX(t) ∈ A.

Peter Jacko 5

Designs. A particular design (policy) π prescribes the action process A(·). Let Π be the set
of designs that are non-anticipating and satisfy the above constraints on A(·). Let us denote
by Eπt [·] the Bayes expectation under design π ∈ Π conditioned on information available at
time epoch t ∈ T .

Objective. We focus on the Bayes number of successes as the principal performance mea-
sure, which is

Nπt (x) := Eπt

[
T∑
u=t

r
AX(u)
X(u)

∣∣∣∣∣X(t) = x

]
. (1)

The objective is to find an optimal design π∗ that maximises the mean Bayes number of
successes as evaluated at time epoch t = 0 when there are no observations (x = 0), i.e.,

π∗ := arg max
π∈Π

Nπ0 (0) . (2)

Instead of the Bayes number of successes, we report two equivalent measures: the Bayes pro-
portion of successes and the Bayes regret number of successes, as these provide complementary
interpretation and insights. The mean Bayes proportion of successes is

Pπt (x) := 1
T − t

Nπt (x) . (3)

We further define the mean Bayes regret number of successes,

Rπt (x) = E [max{θC , θD}]− Nπt (x) . (4)

For a problem with uniform distribution as a prior distribution on each arm, as considered
in this paper, E [max{θC , θD}] = 2/3. Note that all the three measures depend on parameter
T , although we have suppressed the explicit notation.

4. Computation of the Bayes-Optimal Design
The well-known Bellman’s principle of optimality for dynamic programming states that this
problem can be solved recurrently backwards in time, by the so-called backward recursion
algorithm, which implicitly finds the family of optimal designs starting from all possible
system states at all time epochs, as these altogether form the optimal design π∗. The optimal
design thus also gives Nπ∗t

(
(sk, fk)k∈K

)
which we will briefly denote by N∗t

(
(sk, fk)k∈K

)
, and

which for all possible system states (sk, fk)k∈K satisfies the system of Bellman equations

N∗t (x) = max
a∈A

rax +
∑

x′∈X
hax,x′N∗t+1

(
x′
) for t ∈ T (5)

N∗T (x) = max
a∈A

rax (6)

6 BinaryBandit: An efficient Julia package

which after plugging the definitions of rewards and transition probabilities gives

N∗t (sC , fC , sD, fD) = max
`∈K

{
s̃`

s̃` + f̃`
N∗t+1 (sC + δC,`, fC , sD + δD,`, fD)

+ f̃`

s̃` + f̃`
N∗t+1 (sC , fC + δC,`, sD, fD + δD,`)

}
for t ∈ T (7)

N∗T (sC , fC , sD, fD) = sC + sD (8)

where action ` ∈ K means allocating the (t+ 1)-st subject to arm ` and where the Kronecker
delta δk,` is used to update the posterior distribution with the response of that subject.
We will denote by a∗t (sC , fC , sD, fD) the optimal action obtained from the above equations
by taking arg max instead of max operator, where arg max returns action 3 in case of a tie
between actions 1 and 2.
The backward recursion algorithm starts by enumerating all the possible states in the final
time epoch, continuing backwards in time while employing the Bellman equation in every
state.

4.1. Achieving Computational Efficiency Using BinaryBandit Package
Note that both N∗t (sC , fC , sD, fD) and a∗t (sC , fC , sD, fD) are 5-dimensional. Each of t, sC , fC ,
sD, fD can assume an integer value between 0 and T (i.e. T + 1 values), i.e., storing them
in an array requires (T + 1)5 elements. If each element takes the today’s software variables
standard size of 64 bits, such array takes around 74.5GB for T = 99 and around 7.1PB for
T = 999.
The possible states sC , fC , sD, fD at time epoch t ∈ T satisfy the conservation law sC +
fC + sD + fD = t, meaning that the total number of observations at time epoch t is t.
The fifth dimension thus can be calculated from knowing the other four, which allows using
4-dimensional arrays, which take around 762MB for T = 99 and around 7.3TB for T = 999.
In such 4-dimensional arrays, only the elements satisfying sC +fC +sD+fD ≤ T are relevant,
which take only around 4% of all the elements (except for very small values of T). More
precisely, there is

(T+4
4
)

= (T + 4)(T + 3)(T + 2)(T + 1)/24 of such relevant elements. In the
BinaryBandit package we thus store these in vectors (1-dimensional arrays) to enumerate only
the relevant states and use a storage mapping function to locate states. These take around
33.7MB for T = 99 and around 312.3GB for T = 999.
Additional reduction can be achieved if it is not required to output N∗t (x) for all the states
and time epochs. Indeed, package users are often interested only in N∗0 (0) and a∗0 (0), which
we refer to as the online calculation. It is obvious from the system of Bellman equations that
we only need to access N∗t+1 for computing N∗t , so N∗s for s > t + 1 do not need to be stored
during the computation. It is also clear that computing N∗t (x) only requires access to N∗t+1(x′)
where x′ > x, so if the algorithm, when computing N∗t , loops through states in a carefully
thought order, the newly computed values can be stored by rewriting N∗t+1. We can thus drop
the time epoch subscript and write N∗(x) for the value-to-go vector during the computation.
See Algorithm 1 for an algorithmic scheme for computing N∗0 (0). Note that computing the
value-to-go vector requires the storage mapping function whose details are not explained here
(the formulae can be found in the code). Vector N∗(x) has

(T+3
3
)

= (T + 3)(T + 2)(T + 1)/6
elements in the loop corresponding to time epoch t = T (it gets smaller in every loop step,

Peter Jacko 7

Algorithm 1 Algorithmic scheme for computing N∗0 (0)
INPUT: T
state_index = 0
for sD = 0 : T, fC = 0 : (T − sD), sC = 0 : (T − sD − fC) do

state_index += 1
N∗[state_index] = value computed using (8)

end for
for t = (T − 1) : −1 : 0 do
state_index = 0
for sD = 0 : t, fC = 0 : (t− sD), sC = 0 : (t− sD − fC) do
state_index += 1
N∗[state_index] = value computed using (7)

end for
end for
OUTPUT: N∗[1]

but it is typically not runtime-efficient nor necessary to change its size dynamically) and takes
around 1.3MB for T = 99 and around 1.2GB for T = 999 using the Float64 type. Using the
Float32 type it takes a half of these values, and we have found Float32 to provide a good
trade-off for practice between accuracy (theoretically, the accuracy is at least 4 significant
digits) and size of the problem (T = 3720 takes around 32GB which is the RAM standard on
performance desktop and laptop computers today, and even larger horizons can be computed
thanks automatic memory swapping although with a notable increase in runtime). In terms
of runtime, Julia is fast in processing for loops as long as arrays are accessed along columns
as these are stored in column-major order. To speed up the code, we also use the @inbounds
macro which removes array index out-of-bounds checks.
Figure 1 illustrates the computational complexity of online calculation of the Bayes-optimal
design using the function DP_2_action_lin of the BinaryBandit package with argument
float_version = 32 in order to set the stored value-to-go type to Float32. Note that to
improve accuracy, calculations of the Bellman equation are done using Float64 type for the
rewards and transition probabilities. It may be important to note that in the number of
elements (i.e., without multiplying by the memory required for each element), the memory
requirement presented in Figure 1(right) is 2 times larger than that of Gluss (1962) because
of his elimination of symmetric states, which can be done if the prior Beta distributions are
the same for the two arms. Although the idea is not new, its implementation using storage
mapping function is rare in the high-level scientific software of today.
The computational complexity of offline calculation (i.e., outputting the whole design, i.e.,
the optimal actions of all possible states) of this design is very similar to online calculation in
terms of the runtime, but radically different in terms of memory requirement. The array of
optimal actions cannot be reduced to 3 dimensions as we did with the value-to-go. Using the
storage mapping function we have

(T+4
4
)

= (T + 4)(T + 3)(T + 2)(T + 1)/24 relevant elements
in the action vector. Note however that the actions that need to be stored only take values
from A, i.e., 1, 2, 3, which can be stored using 2 bits. In the BinaryBandit package we thus
store the action vector by encoding every 4 consecutive actions in a single value of UInt8 type.
The offline calculation of the Bayes-optimal design is done using the function DP_2_policy_bin_lin

8 BinaryBandit: An efficient Julia package

Trial size

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

15
60

16
80

18
00

19
20

20
40

21
60

22
80

24
00

25
20

26
40

27
60

28
80

30
00

31
20

32
40

33
60

34
80

36
00

37
20

38
40

39
60

40
80

42
00

43
20

44
40

0.01 sec

0.1 sec

1 sec

10 sec

1 min

10 min

1 hr

10 hr

3 days

R
un

tim
e

(l
og

 s
ca

le
)

Trial size

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

15
60

16
80

18
00

19
20

20
40

21
60

22
80

24
00

25
20

26
40

27
60

28
80

30
00

31
20

32
40

33
60

34
80

36
00

37
20

38
40

39
60

40
80

42
00

43
20

44
40

1 MB

10 MB

100 MB

1 GB

10 GB

32 GB

100 GB

M
em

or
y

re
qu

ire
m

en
t

(l
og

 s
ca

le
)

Figure 1: An illustration of computational complexity of online calculation of the Bayes-
optimal design over a range of trial sizes.

Software RAM T = 60 T = 120 T = 180 T = 240 T = 300 Tmax

Julia 0.6.2 & ad hoc 12 GB 2sec 22sec 108sec 331sec 789sec 420
Julia 1.0.1 & ad hoc 12 GB 1sec 17sec 82sec 262sec 643sec 420
R & ad hoc 16 GB 1sec 12sec 59sec 191sec N/A 240
Julia 1.0.1 & BB 31 GB 0.0036sec 0.046sec 0.23sec 0.73sec 1.6sec 1440

R & ad hoc 5 GB 1sec 6sec 26sec 84sec 209sec 420
Julia 1.0.1 & BB 31 GB 0.0040sec 0.056sec 0.27sec 0.91sec 2.8sec 4440

Table 2: A comparison of runtime of the Bayes-optimal design for T = 60 : 60 : 300 and the
largest horizon Tmax (as a multiple of 60) which does not give an out-of-memory error using
code implementations by author’s colleagues and students. The top four are for offline calcu-
lation, the bottom two are for online calculation. BB refers to the use of the BinaryBandit
package.

of the BinaryBandit package. The standard Float64 type is used for the value-to-go vector
as the memory reduction by using the Float32 type does not help significantly as the action
vector is approximately T/4 times larger. A computer with 32GB RAM is able to solve the
problem of up to trial size T = 1, 440, keeping all the optimal actions in RAM during the
calculations. For practical purposes, however, it may be possible to store parts of the solution
on hard disk and thus relieve RAM memory to allow calculation for larger trial sizes.
A number of author’s colleagues and PhD students who had programmed this design for their
needs and have kindly provided runtimes of their code implementations, which are presented in
Table 2 for comparison, indicating that the BinaryBandit package is two orders of magnitude
faster than ad hoc codes and is able to solve a few times larger problems.
Algorithm 2 gives a simple example of use of the two above-mentioned functions.

5. Summary and Discussion
In this paper we have briefly presented the BinaryBandit package and illustrated the way in
which the computation of the Bayes-optimal design is implemented. Despite the algorithmic
scheme or the code may look very simple, it is a result of a considerate effort over the past two
years of finding an implementation which is both efficient in terms of computational resources

Peter Jacko 9

Algorithm 2 Example code
using BinaryBandit
T = 100
(DP_2_online , DP_2_value_online) = DP_2_action_lin(T , 32)
(DP_2_offline , DP_2_value_offline) = DP_2_policy_bin_lin(T)

and short in terms of the number of lines of code. Besides the two recommended functions for
the Bayes-optimal design presented here, the package currently implements other 8 variants of
these functions (which are slower or less memory-efficient). For each of these, the package also
has a corresponding variant allowing for user-defined final-period rewards. There is around
1000 lines of code for this design. In addition, there is a similar amount of code for the more
general constrained randomized Bayes-optimal design introduced in Williamson et al. (2017).
Besides optimization, the package also contains modules for evaluation of the Bayes optimal
and of other 12 designs, including the Myopic, UCB, Knowledge gradient, and other designs.
This evaluation is in the frequentist sense, assuming that the success probabilities θC , θD are
known. It is implemented using dynamic programming (replacing the max operator of the
Bellman equation by the respective action prescribed by a design) instead of by simulation,
yielding a perfectly accurate evaluation (subject to computational accuracy of the chosen
numerical type). Current performance evaluation measures include the mean and the standard
deviation of the number of successes, but work is in progress to additionally incorporate other
measures of interest such as the bias of the maximum-likelihood estimator, its standard error,
and measures (a.k.a. operating characteristics) related to hypothesis testing.
Next versions of the package are planned to include functions for Bayes-optimization and for
evaluation of bandit problems with more than two arms, such as the Gittins and Whittle index
rules, and to cover randomized designs such as those common in the biostatistics literature
for adaptive clinical trials. The package will be openly published (expected by the end of July
2019) and fully available for corrections, performance improvement and additions by other
developers.
As such the BinaryBandit package is useful both for practitioners to evaluate, compare and
implement existing designs, and for researchers to compare the performance of new design
against the existing ones.

Computational Details
The results in this paper were obtained using Julia 1.0.1, distributed as JuliaPro, with the
FileIO, Printf, Gadfly, and Cairo packages. Julia itself and all packages used are available
from https://julialang.org/ and https://juliacomputing.com/products/juliapro.

Acknowledgments
The author is grateful to James Edwards and Livia Stark who have provided the data pre-
sented in Table 2 and to his colleagues and PhD students who attended his seminar and gave
valuable feedback on the early versions of the package and the paper. This package is being
developed by the Group on Optimal Adaptive Learning (G.O.A.L.) at Lancaster University,

https://julialang.org/
https://juliacomputing.com/products/juliapro

10 BinaryBandit: An efficient Julia package

UK (see http://www.lancaster.ac.uk/staff/jacko/goal/).

References

Ahuja V, Birge JR (2016). “Response-adaptive Designs for Clinical Trials: Simultaneous
Learning from Multiple Patients.” European Journal of Operational Research, 248, 619–
633.

Berry DA (1978). “Modified Two-Armed Bandit Strategies for Certain Clinical Trials.” Jour-
nal of the American Statistical Association, 73, 339–345.

Ginebra J, Clayton MK (1999). “Small-Sample Performance of Bernoulli Two-Armed Bandit
Bayesian Strategies.” Journal of Statistical Planning and Inference, 79(1), 107–122.

Gluss B (1962). “A Note on a Computational Approximation to the Two-Machine Problem.”
Information and Control, 5(3), 268–275.

Hardwick J, Oehmke R, Stout QF (2006). “New Adaptive Designs for Delayed Response
Models.” Journal of Statistical Planning and Inference, 136, 1940–1955.

Hardwick JP (1991). “Computational Problems Associated with Minimizing the Risk in a
Simple Clinical Trial.” Contemporary Mathematics: Statistical Multiple Integration, 115,
239–256.

Jacko P (2019). “The Finite-Horizon Two-Armed Bandit Problem with Binary Responses: A
Multidisciplinary Survey of the History, State of the Art, and Myths.” Management Science
Working Paper 2019:3, Lancaster University Management School.

Kaufmann E (2018). “On Bayesian Index Policies for Sequential Resource Allocation.” The
Annals of Statistics, 46(2), 842–865.

Kelly F (1981). “Multi-armed Bandits with Discount Factor Near One: the Bernoulli Case.”
Annals of Statistics, 9(5), 987–1001.

Steck R (1964). “A Dynamic Programming Strategy for the Two Machine Problem.” Mathe-
matics of Computation, 18(86), 285–291.

Villar SS (2018). “Bandit Strategies Evaluated in the Context of Clinical Trials in Rare
Life-Threatening Diseases.” Probability in the Engineering and Informational Sciences, 32,
229–245.

Williamson SF, Jacko P, Villar SS, Jaki T (2017). “A Bayesian Adaptive Design for Clinical
Trials in Rare Diseases.” Computational Statistics and Data Analysis, 113C, 136–153.

Yakowitz SJ (1969). Mathematics of Adaptive Control Processes. New York, NY: North-
Holland.

A. Code
In this section we provide the code of the functions described in this paper.

Peter Jacko 11

const BB_numerical_precision_64 = 1.0e-13 # instead of 16
const BB_numerical_precision_32 = 1.0e-4 # instead of 7

function DP_2_policy_lin_with_finale(number_of_allocations :: Int64 , value_to_go :: Array{ Float64 , 3 } , prior_success_arm_1 :: Int64 = Int64(1) , prior_failure_arm_1 :: Int64 = Int64(1) , prior_success_arm_2 :: Int64 = Int64(1) , prior_failure_arm_2 :: Int64 = Int64(1))
This function implements the DP design for 2 arms
value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2] of size (number_of_allocations)^3 is the value_to_go at the finale (after all allocations are made)
Output is the policy (i.e., actions for all states) with linear indices and the Bayes-expected number of successes

backwards recursion: the finale (i.e., number_of_observed_responses = number_of_allocations) not needed as it is given by value_to_go

backwards recursion: t-th step
action_lin = zeros(Int8 , div(number_of_allocations * (number_of_allocations + 1) * (number_of_allocations + 2) * (number_of_allocations + 3) - 1 * 2 * 3 * 4 , 24) + 1) # this is the correct size of the action
lin_index = 0
for number_of_observed_responses = (number_of_allocations - 1) : -1 : 0 , number_of_successes_arm_2 = 0 : number_of_observed_responses , number_of_failures_arm_1 = 0 : (number_of_observed_responses - number_of_successes_arm_2) , number_of_successes_arm_1 = 0 : (number_of_observed_responses - number_of_successes_arm_2 - number_of_failures_arm_1)

@inbounds begin

lin_index += 1
belief_of_success_arm_1 = ((prior_success_arm_1 + number_of_successes_arm_1) / (prior_success_arm_1 + prior_failure_arm_1 + number_of_successes_arm_1 + number_of_failures_arm_1))
belief_of_success_arm_2 = ((prior_success_arm_2 + number_of_successes_arm_2) / (prior_success_arm_2 + prior_failure_arm_2 + number_of_observed_responses - number_of_successes_arm_1 - number_of_failures_arm_1))

value_to_go_if_action_1 = belief_of_success_arm_1 * (1.0 + value_to_go[1+ number_of_successes_arm_1 + 1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2]) + (1.0 - belief_of_success_arm_1) * value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 + 1 ,1+ number_of_successes_arm_2]
value_to_go_if_action_2 = belief_of_success_arm_2 * (1.0 + value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2 + 1]) + (1.0 - belief_of_success_arm_2) * value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2]

if (value_to_go_if_action_1 - value_to_go_if_action_2) > BB_numerical_precision_64 * (value_to_go_if_action_1 + value_to_go_if_action_2)

value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2] = value_to_go_if_action_1
action_lin[lin_index] = 1 # action 1 (i.e., arm 1)

elseif (value_to_go_if_action_2 - value_to_go_if_action_1) > BB_numerical_precision_64 * (value_to_go_if_action_1 + value_to_go_if_action_2)

value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2] = value_to_go_if_action_2
action_lin[lin_index] = 2 # action 2 (i.e., arm 2)

else #if value_to_go_if_action_1 approx== value_to_go_if_action_2

value_to_go[1+ number_of_successes_arm_1 ,1+ number_of_failures_arm_1 ,1+ number_of_successes_arm_2] = (value_to_go_if_action_1 + value_to_go_if_action_2) / 2
action_lin[lin_index] = 3 # randomise between actions 1 and 2

end

end # @inbounds
end

return action_lin , value_to_go[1 ,1 ,1]

end

12 BinaryBandit: An efficient Julia package

function DP_2_policy_lin(number_of_allocations :: Int64 , prior_success_arm_1 :: Int64 = Int64(1) , prior_failure_arm_1 :: Int64 = Int64(1) , prior_success_arm_2 :: Int64 = Int64(1) , prior_failure_arm_2 :: Int64 = Int64(1))
This function implements the DP design for 2 arms
Output is the policy (i.e., actions for all states) with linear indices and the Bayes-expected number of successes

value_to_go :: Array{ Float64 , 3 } = zeros(Float64 , number_of_allocations + 1 , number_of_allocations + 1 , number_of_allocations + 1)
DP_2_policy_lin_with_finale(number_of_allocations , value_to_go , prior_success_arm_1 , prior_failure_arm_1 , prior_success_arm_2 , prior_failure_arm_2)

end

Float32 version of value_to_go
function DP_2_action_lin_with_finale(number_of_allocations :: Int64 , value_to_go :: Array{ Float32 , 1 } , prior_success_arm_1 :: Int64 = Int64(1) , prior_failure_arm_1 :: Int64 = Int64(1) , prior_success_arm_2 :: Int64 = Int64(1) , prior_failure_arm_2 :: Int64 = Int64(1))

This function implements the DP design for 2 arms
Uses linear indexing for value_to_go
Output is the immediate action and the Bayes-expected number of successes

backwards recursion: the finale (i.e., number_of_observed_responses = number_of_allocations) not needed as it is given by value_to_go

backwards recursion: t-th step
value_to_go_if_action_1 = 0.0 # needed after the for loop
value_to_go_if_action_2 = 0.0 # needed after the for loop
for number_of_observed_responses = (number_of_allocations - 1) : -1 : 0

value_to_go_lin_index = 0
for number_of_successes_arm_2 = 0 : number_of_observed_responses , number_of_failures_arm_1 = 0 : (number_of_observed_responses - number_of_successes_arm_2) , number_of_successes_arm_1 = 0 : (number_of_observed_responses - number_of_successes_arm_2 - number_of_failures_arm_1)
@inbounds begin

value_to_go_lin_index += 1
belief_of_success_arm_1 = ((prior_success_arm_1 + number_of_successes_arm_1) / (prior_success_arm_1 + prior_failure_arm_1 + number_of_successes_arm_1 + number_of_failures_arm_1))
belief_of_success_arm_2 = ((prior_success_arm_2 + number_of_successes_arm_2) / (prior_success_arm_2 + prior_failure_arm_2 + number_of_observed_responses - number_of_successes_arm_1 - number_of_failures_arm_1))

value_to_go_if_action_1 = belief_of_success_arm_1 * (1.0 + value_to_go[value_to_go_lin_index + div((number_of_observed_responses + 2) * (number_of_observed_responses + 3) - (number_of_observed_responses - number_of_successes_arm_2 + 2) * (number_of_observed_responses - number_of_successes_arm_2 + 3) , 2) + number_of_failures_arm_1 + 1]) + (1.0 - belief_of_success_arm_1) * value_to_go[value_to_go_lin_index + div((number_of_observed_responses + 2) * (number_of_observed_responses + 3) - (number_of_observed_responses - number_of_successes_arm_2 + 2) * (number_of_observed_responses - number_of_successes_arm_2 + 3) , 2) + (number_of_observed_responses - number_of_successes_arm_2 + 2)]
value_to_go_if_action_2 = belief_of_success_arm_2 * (1.0 + value_to_go[value_to_go_lin_index + div((number_of_observed_responses + 2) * (number_of_observed_responses + 3) , 2)]) + (1.0 - belief_of_success_arm_2) * value_to_go[value_to_go_lin_index + number_of_failures_arm_1 + div((number_of_observed_responses + 2) * (number_of_observed_responses + 3) - (number_of_observed_responses - number_of_successes_arm_2 + 2) * (number_of_observed_responses - number_of_successes_arm_2 + 3) , 2)]

if (value_to_go_if_action_1 - value_to_go_if_action_2) > BB_numerical_precision_64 * (value_to_go_if_action_1 + value_to_go_if_action_2)

value_to_go[value_to_go_lin_index] = Float32(value_to_go_if_action_1)

elseif (value_to_go_if_action_2 - value_to_go_if_action_1) > BB_numerical_precision_64 * (value_to_go_if_action_1 + value_to_go_if_action_2)

value_to_go[value_to_go_lin_index] = Float32(value_to_go_if_action_2)

else #if value_to_go_if_action_1 approx== value_to_go_if_action_2

value_to_go[value_to_go_lin_index] = Float32((value_to_go_if_action_1 + value_to_go_if_action_2) / 2)

end

end # @inbounds

Peter Jacko 13

end
end
if (value_to_go_if_action_1 - value_to_go_if_action_2) > BB_numerical_precision_64 * (value_to_go_if_action_1 + value_to_go_if_action_2)

action = Int8(1) # action 1 (i.e., arm 1)

elseif (value_to_go_if_action_2 - value_to_go_if_action_1) > BB_numerical_precision_64 * (value_to_go_if_action_1 + value_to_go_if_action_2)

action = Int8(2) # action 2 (i.e., arm 2)

else #if value_to_go_if_action_1 approx== value_to_go_if_action_2

action = Int8(3) # randomise between actions 1 and 2

end

return action , Float64(value_to_go[1])

end

function DP_2_action_lin(number_of_allocations :: Int64 , float_version :: Int64 = Int64(64) , prior_success_arm_1 :: Int64 = Int64(1) , prior_failure_arm_1 :: Int64 = Int64(1) , prior_success_arm_2 :: Int64 = Int64(1) , prior_failure_arm_2 :: Int64 = Int64(1)) #
This function implements the DP design for 2 arms
Uses linear indexing for value_to_go
Output is the immediate action and the Bayes-expected number of successes (as Float64 irrespectively of the value of "precision")

if float_version == 16

value_to_go_16 :: Array{ Float16 , 1 } = zeros(Float16 , div((number_of_allocations + 1) * (number_of_allocations + 2) * (number_of_allocations + 3) - 1 * 2 * 3 , 6) + 1)
DP_2_action_lin_with_finale(number_of_allocations , value_to_go_16 , prior_success_arm_1 , prior_failure_arm_1 , prior_success_arm_2 , prior_failure_arm_2)

elseif float_version == 32

value_to_go_32 :: Array{ Float32 , 1 } = zeros(Float32 , div((number_of_allocations + 1) * (number_of_allocations + 2) * (number_of_allocations + 3) - 1 * 2 * 3 , 6) + 1)
DP_2_action_lin_with_finale(number_of_allocations , value_to_go_32 , prior_success_arm_1 , prior_failure_arm_1 , prior_success_arm_2 , prior_failure_arm_2)

else

value_to_go :: Array{ Float64 , 1 } = zeros(Float64 , div((number_of_allocations + 1) * (number_of_allocations + 2) * (number_of_allocations + 3) - 1 * 2 * 3 , 6) + 1)
DP_2_action_lin_with_finale(number_of_allocations , value_to_go , prior_success_arm_1 , prior_failure_arm_1 , prior_success_arm_2 , prior_failure_arm_2)

end

end

14 BinaryBandit: An efficient Julia package

Affiliation:
Peter Jacko
Department of Management Science
Lancaster University Management School
Lancaster, LA1 4YX, UK
E-mail: p.jacko@lancaster.ac.uk
URL: http://www.lancaster.ac.uk/staff/jacko/

mailto:p.jacko@lancaster.ac.uk
http://www.lancaster.ac.uk/staff/jacko/

	Introduction
	Related Software
	Model
	Computation of the Bayes-Optimal Design
	Achieving Computational Efficiency Using BinaryBandit Package

	Summary and Discussion
	Code

