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1. Introduction

Economical decision making under uncertainty is one of the most important

challenges of everyday life. People have developed, based on their beliefs or intu-

ition, a variety of surprisingly simple heuristic rules to deal with many complex

situations that are often, also surprisingly, nearly-optimal. It is of a great practical

interest, especially when such decision making is to be automatized, to describe

the circumstances, in which such heuristics indeed lead to optimal decisions, and

to provide suboptimality bounds of these heuristic rules in general.

Typically, any reward-yielding activity requires to invest our effort, time,

money or another scarce resource, which is costly to use. To make a rational

choice, decision-maker needs to answer two basic questions: Is it worth to invest

the scarce resource in the activity? If so, How much of it should be invested? The

situation often gets more complicated due to availability of several alternative

reward-yielding activities, among which our scarce resource must be distributed.

In such a resource allocation problem, an additional question arises: How to choose

the activities to invest in?

In this Ph.D. thesis proposal we present a possible approach to answer those

three questions dynamically, that is, reconsidering the decision on the scarce re-

source allocation regularly in time. The need for dynamical decision-making arises

whenever the activities one invests in have any of the following features: (1) the

decision-maker does not have perfect information about the reward that the ac-

tivity yields, (2) the reward is known, but subject to a random factor, (3) the

reward is known, but changes over time. We will focus on the situation when (2)

and (3) hold simultaneously. Thus, we wish to deal with those cases, in which the

decision-maker faces a trade-off between exploitation (taking the certain reward

of today) and exploration (obtaining possibly higher reward tomorrow).

The Ph.D. thesis analyzing these situations may be of both theoretical and

practical value. Due to the large variety and significant complexity of dynamic

resource allocation problems, they are typically addressed, analyzed, respectively

solved by ad-hoc techniques. The achievable region approach, we propose to use,

has been proved recently to be well-grounded and tractable in several diverse

problems, and may be enriched and justified by our work. From the practical point

of view, the decision making under uncertainty arises in the areas as diverse as
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product (R&D) management, financial economics, optimal consumption planning,

telecommunications, medicine, engineering systems, etc., where a well-reasoned

advice is more than needed.

In order to arrive to the model that can accomplish our objectives, we first

discuss some basic features of a powerful modeling setting of Markov Decision Pro-

cesses in Section 2. Since our model typically enjoys significant complexity, classical

solution methods, such as Bellman equations, become intractable even in rather

simple cases. An alternative achievable region approach, which may overcome com-

putational difficulties, is outlined in Section 3. Section 4 contains a brief review

of the framework and applications of the classical bandit problem, which served as

an important modeling paradigm for dynamical resource allocation problems over

last two decades. Nevertheless, this model possesses a significant limitation due to

the unrealistic assumption that the part of the world, which the decision-maker

has not invested in, does not change. This assumption is dropped in the restless

bandit problem, presented in Section 5, where also its work-reward extension, the

setting we will be interested in, is formulated. After a discussion of the few at-

tempts of employing this model in practical applications, we outline in Section 6

our hypotheses and the future investigation lines.
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2. Markov Decision Processes

In decision making, a controller often has an opportunity to influence by her

actions the future evolution of an underlying system at various points in time. In

such a sequential decision process, there may be costs or rewards of some scarce

resources, incurred over time, that depend on the actions taken and the way in

which the system evolves. The goal of the controller may be to maximize the total

(expected) reward or minimize the total (expected) cost over a certain time hori-

zon. If the horizon is infinite, then one may need to use discounting or long-run

averaging in order to have a finite-valued objective (Stidham 2002). Nevertheless,

such alternations of objective function may also be relevant in some finite horizon

problems. Another interesting class of sequential decision problems, so-called op-

timal stopping problems, is concerned with finding a time horizon which leads to

the optimal value of controller’s objective.

When the information needed to predict the future evolution of the system

is contained in the current state of the system and depends on the current ac-

tion, we call such a sequential decision process a Markov decision process (MDP).

MDP has a great modeling power, which can provide results on the existence and

structure of good policies and on methods for the computation of optimal policies.

Therefore, it has naturally been used in a variety of applications in areas includ-

ing engineering systems, operations research, management science, economics and

applied probability.

The modeling and solving these optimization problems is sometimes referred

to as stochastic dynamic programming, since those problems are dynamic in that

actions are taken over time and actions taken now have repercussions in the fu-

ture, and stochastic in that they involve uncertainty of random state changes over

time. In some literature also other equivalent names are used, such as sequen-

tial stochastic optimization, and stochastic control (typically for continuous state

problems).

The theory of stochastic dynamic programming has been developed in two

rather separated streams, for discrete- and continuous-time models, respectively.

In further discussion we will focus on discrete-time MDPs, which is an important

setting from at least two points of view: (1) there is a large number of interesting

problems being naturally modeled in the discrete time setting and (2) this theory

3



is useful as an approximate computational technique for continuous-time models

(Davis 1993).

It turns out that a useful solution concept for an MDP is a non-anticipative

policy, which is defined as a set of rules specifying the action to be taken for each

decision point in time and for each possible state of the system. Such a policy

is appropriate, because MDPs are of Markovian nature, i.e. the future evolution

of the system depends on history only through the current state. Moreover, in

dynamic stochastic systems it is not possible to have information about future

states at a decision moment, therefore the decisions should not be based on them

(non-anticipative).

A policy thus answers a family of questions: What action should be taken

at a given time if the system is in a given state? As we will see later, a class of

stationary policies is often of high interest. A policy is stationary, if the answer

to the question just stated does not depend on the point in time (i.e. is time-

homogeneous). Stationary policies can thus be characterized in a simple way (as a

vector of cardinality equal to the number of system states), which allows an easier

implementation in practice.

The breakthrough in dynamic stochastic programming was an approach, now

called dynamic programming, invented by Richard Bellman in the 1950’s, which

exploits the fact that nothing is ever lost by postponing a decision until the last

possible moment. In doing so, we may be able to make a more accurate prediction

about the future evolution of the system. Actually, dynamic programming is a

quite effective method for solving MDPs (Stidham 2002).

The idea of the dynamic programming is reflected in the Principle of Optimal-

ity: at any point in time, an optimal policy must prescribe an action that optimizes

the sum of immediate reward (cost) and (expected) objective value obtained if an

optimal policy is applied from the subsequent point in time on. The mathematical

expression associated to the Principle of Optimality is the optimality equations

of dynamic programming, called the Bellman equations. For infinite-horizon prob-

lems, Bellman equations simplify so that they are not time-dependent; indeed,

the optimal objective value is a unique fixed point solution. For finite-horizon

problems, there are two common methods: value iteration and policy iteration.

Why dynamic programming gets so much importance is because of its both

theoretical and practical power. Dynamic programming provides a coherent the-
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oretical framework for studying sequential decision processes. As such, it leads

to several general theoretical results, for example, a necessary and sufficient con-

dition for optimality of a stationary policy in some broad cases. From practical

point of view it is remarkable that the dynamic programming approach reduces

optimization over the sequence of decisions in various points in time to a sequence

of parameter optimizations for every time point, thus, it may significantly decrease

the problem complexity.

Still, for many problems this may be not enough to make the solution of

the problem tractable. A typical knot arising in practical computation is that the

dynamic programming recursions may be too many (or infinitely many) to allow

actual computation; the size of dynamic programming formulation is typically ex-

ponential on size of model (curse of dimensionality). Here comes out a necessity for

other approaches. One of the solution approach alternatives is linear programming

(LP) reformulation of Bellman equations. Since each Bellman equation includes

an optimization term, it can be relaxed to a set of linear inequalities, one for each

action. Once this has been done with all Bellman equations, one adds an objective

function that forces at least one inequality to be satisfied sharply for each state.

From the solution to this associated LP problem, one can readily get the optimal

policy for the original MDP. As Stidham (2002) points out, the LP approach is es-

pecially well suited to constrained MDPs, in which the optimal policy must satisfy

side constraints, what allows to reduce the set of admissible policies.

However, the LP reformulation as such does not help to deal with the curse of

dimensionality. A new approach, based on the concept of conservation laws, allows

to create new, much simpler, LP formulation of MDPs. We discuss this modeling

framework in the next section and present this approach applied to a particular

problem later in the text.
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3. Achievable Region Approach and Conservation Laws

The linear programming approach is closely connected to graphical interpre-

tation of problems and is thus very well suited for providing insights of the solution

methods and helping to exploit the problem structure. To each policy one can as-

sociate a performance vector ranging over all the system states. Then, a set of

admissible policies (which depends on a given problem) defines an achievable re-

gion (or performance region), which is, in other words, the space of all possible

performances. Structural properties of this achievable region lead to structural

properties in the given problem. We may therefore be interested in describing the

achievable region so that the optimization problem can be efficiently solved by

classical mathematical programming methods. When an analysis via this method-

ology is available, one can typically make clear and strong statements about the

(optimal) policies.

For stochastic dynamic problems (or MPDs), it is natural to specify admissible

policies as non-anticipative, i.e. a policy can only make use of past history (which

is in turn reflected in the current state of the system), but not of any future infor-

mation. Further, admissible policies must not affect the stochastic mechanism and

the reward (cost) structure of the system. Most of the applications of the achiev-

able region approach have focused on performance vectors that are expectations.

That should not be surprising, as the most appropriate measure one can utilize

in a dynamic stochastic system at a given point in time is an expectation of its

future behavior.

The earliest intentions to use this approach were done in queueing theory,

originated in Klimov (1974) and Coffman & Mitrani (1980), later followed by Fed-

ergruen & Groenevelt (1988) in a more general framework of a certain family of

queueing models. In the latter contribution it was showed that the performance

region in those models is a polytope of special type. An important concept of

(strong) conservation laws was introduced in Shanthikumar & Yao (1992), where

the previous results were extended by proving a powerful result about the achiev-

able region approach: When the performance vectors satisfy strong conservation

laws, the achievable region is a particular polytope (called the base of a polyma-

troid, previously known in combinatorial optimization), completely characterized

by those laws, and the set of vertices of the achievable region is equivalent to the
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set of performance vectors obtained by all index policies. Then, optimization of a

linear objective can be accomplished by a greedy algorithm, which indeed finds an

optimum in a vertex, hence ensuring that there is an optimal index policy (Stid-

ham 2002). We will discuss index policies in the next section, when a particular

stochastic dynamic problem, so called multi-armed bandit problem, is treated.

Bertsimas (1995) and Bertsimas & Niño-Mora (1996), drawing on the work of

Tsoucas (1991), extended those results to a more complex class of stochastic dy-

namic problems, which they, borrowing the name from a related paper by Whittle

(1988), called indexable. They defined generalized conservation laws, whose satis-

faction by performance vectors implies that the achievable region is a polytope of

special structure. Moreover, optimization of a linear objective over such a polytope

is solved by an adaptive-greedy algorithm based on Klimov’s (1974), which, again,

leads to an optimal index policy. More general results in a similar fashion using

partial conservation laws were obtained in Niño-Mora (2001), Niño-Mora (2002)

and a semi-Markov version in Niño-Mora (2005), where the analysis is closely tied

to the restless bandit problem, which will be discussed later in the paper.

Polytopes treated in the listed papers were exploited mainly in the context of

queueing systems and networks. Indeed, in a presentation of the achievable region

approach by Dacre et al. (1999), the method is explained with a reference to a sim-

ple queueing system. A formal exposition of conservation laws and their relation

to polyhedral structure of the performance regions of a broad class of queueing

stochastic systems can be found in Yao & Zhang (1997a). An extension of stochas-

tic dynamic problems with side constraints (i.e. controller specified constraints as

opposite to system-defined constraints for performance vectors), satisfying gener-

alized conservation laws, is analyzed in Yao & Zhang (1997b).

It is interesting to realize that the achievable region, defined by the perfor-

mance vectors associated with admissible policies, is independent from the opti-

mization objective. In the cases when the achievable region is a polytope, the linear

objective function may not be the only one to imply that the optimal policy is a

vertex (i.e. an index policy). Given a particular stochastic dynamic problem satis-

fying conservation laws (and therefore a particular polytope), one may be able to

define a class of nonlinear objectives and associated optimal index policies. Dacre

et al. (1999) touched this idea and indeed showed in a particular problem they

treated that an optimal policy is, by no surprise, a randomization of two index
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policies.

In dynamic programming, value iteration and policy improvement algorithms

are (virtually) routinely available and there is nothing equivalent in the achievable

region approach where plenty of creative thinking may be involved in a successful

application of the ideas (Dacre et al. 1999). The advantage of the latter is that it

can exploit the special structure of problem, where the general purpose algorithms

(such as dynamic programming) become cumbersome or intractable.
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4. Bandit Problems

In this section we review a dynamic resource allocation problem called multi-

armed bandit problem and a number of its extensions. Although it is a classical

problem of stochastic dynamic optimization, which can be formulated in a very

simple way, its solution had been a challenging open problem for a considerably

long time. The multi-armed bandit problem, originally described by Robins (1952),

is a simple model of a controller trying to optimize her decisions while acquiring

knowledge in the same time. It is a typical case of the trade-off between exploita-

tion (getting the highest immediate rewards) and exploration (learning about the

system and receiving possibly even higher rewards later).

The multi-armed bandit problem is named by an analogy to the one-armed

bandit machine. In the multi-armed case, the gambler has to decide which arm to

pull in order to maximize his total reward in a series of trials. In the following,

we will suppress the name bandit and will instead call the reward-yielding activity

a project, in order to highlight its broad applicability and stress the framework

it offers for dynamic resource allocation problems. Now we can rephrase that the

multi-armed bandit problem is concerned with the question of how to dynamically

allocate a single scarce resource amongst several alternative projects (Weber 1992).

In order to be able to analyze decision policies, whose worth is yielded by

the actual future evolution of the projects, the controller must assume certain

structure of project’s possible future behavior. In the most common formulations,

the projects are assumed to yield rewards following a given probability distribution

with unknown (or uncertain) parameter(s). However, a slightly different framework

of defining projects’ dynamics via stationary transition probabilities over a set of

project states with associated rewards often leads to a more tractable model.

The knowledge about the history of projects’ rewards (or, projects’ states)

may, in many cases, be helpful in the decision making process. To take advantage

of that information, it has been proved useful to model projects with Markovian

dynamics, thus obtaining an MDP formulation of the basic multi-armed bandit

problem, as follows.

Multi-Armed Bandit Problem

There are K projects, labeled by k ∈ K. Let xk(t) ∈ Xk, for a finite state space

Xk, be the state of project k at time epoch t ∈ T = {0, 1, 2, . . . }. At each time
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epoch t the controller must decide about allocation of a scarce resource, which we

will call work, to one of the projects. If project k is selected to be worked on, an

immediate reward rk(xk(t)) is received and the project changes to state xk(t + 1)

according to a stationary Markov transition probability matrix Pk = {pk(i, j)};
the remaining projects remain frozen, i.e. no reward is earned and no state change

occurs.

The controller’s objective is to optimize a function related to the future re-

wards stream, which is typically taken as an expectation. The most relevant and

also the most investigated objective is maximization of the expected total dis-

counted reward given by

Eπ

[ ∞∑
t=0

βtr(t)

]
(1)

where 0 < β < 1 is a discount factor and r(t) is the reward earned in time epoch

t, defined as rk(xk(t)) if project k is being worked on at time t. The optimization

is done over a set of all admissible policies π ∈ Π, which are those that in each

time epoch t select one project to work on, based only on the actual state vector

x(t) = (xk(t))k∈K.

It is due to Gittins and his colleagues that this problem has been solved.

The initial publication of the results (Gittins & Jones 1974) attracted very little

attention; just the discussion meeting of Royal Statistical Society (Gittins 1979)

made the solution spread. The essence of the solution was definition of the Gittins

index, a function of project and its state, defined as a fair price for purchase of

the project in that state if the price offer is to remain open in the future (Whittle

2002). The optimal policy is to work on the project of currently greatest index;

therefore receiving name an index policy. The significance of this index result is

in that it decomposes the K-dimensional bandit problem into K one-dimensional

problems. The Gittins theory also has its continuous-time counterpart and can be

used in semi-Markov decision problems (Gittins 1979).

Gittins proposed to assign an index to each state x of each project k, which

can be expressed as

νk(x) = max
τ>0

E
{

τ−1∑
t=0

βtrk(xk(t))|xk(0) = x

}
E
{

τ−1∑
t=0

βt|xk(0) = x

} (2)
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where the maximization is over the set of all stopping times τ ∈ T ∪ {+∞} such

that τ > 0. In other words, the Gittins index defines a worth of each project

state calculated as the maximal attainable marginal expected reward (i.e. expected

reward per unit of expected discounted time), given that we start working on that

project from the first period. Notice that these quantities are time-independent

and depend only on information concerning bandit k.

An index policy is a working strategy which at each time epoch prescribes

to work on a project, whose current state’s Gittins index is greatest. It will be

convenient to denote, for each time epoch t, the Gittins index of project k as

νk(t) = νk(xk(t)).

It can be shown that νk(x) is well defined and bounded (in the finite state

space we assume). An important property of the Gittins index is that the maximum

in (2) is achieved, and in fact it is achieved by τk(x), the first time the project

comes to a state, whose Gittins index is lower than the original one,

τk(x) = min{t : νk(t) < νk(x)}. (3)

Notice that this property is easy to see in the multi-armed bandit problem with

frozen rested projects, but in more general settings does not necessarily hold.

From MDP theory (Blackwell 1965) it is known that if the set of possible

actions (allowed in a fixed time epoch) of a finite-state MDP is finite and the same

for all the system states, then there is a deterministic stationary Markov policy

that maximizes (1). This result, notes Gittins (1979), applies to the multi-armed

bandit model (note that the set of actions is given by to work and to rest), so

when looking for the optimal policy, attention may be restricted to deterministic

stationary policies, which significantly simplifies the structure of the problem.

Thereafter, Gittins outlined how to calculate project indices (using solutions of

some stopping time problems) and showed a difficult-to-follow proof of optimality

of such an index policy. As Varaiya et al. (1985) remarked, the optimality of

the index policy is almost trivially implied by two features of the multi-armed

bandit problem: that the rested projects are frozen and they contribute no reward.

Furthermore, the Markovian dynamics is useful only in that it permits a simple

calculation of Gittins index.
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Whittle (1980) then presented a proof by explicit solution of the dynamic

programming formulation of the problem. Weber (1992) took it even further by

introducing a brief and almost verbal proof, which afforded a better insight to the

problem and, as Whittle (2002) writes, deserves to be characterized by Erdös’ term

”God’s proof”. Weber used a concept of project’s fair charge the controller has to

pay if works on the project so that he arrived to a multiple of the Gittins index

and could show that it is optimal to select the project with highest fair charge.

One more proof of Gittins theorem was given in Bertsimas & Niño-Mora

(1996), where they used a mathematical programming formulation of the problem

and showed by the duality theorem that the Gittins index policy is optimal. This

approach turned to be very useful for analyzing and solving more general problems,

such as restless bandit problem, in which rested projects are allowed to change state,

discussed in the next section.

Extensions and Applications

The tax problem is sort of reverse of the bandit problem, where the project one

works on yields zero rewards and all the remaining projects are charged a (state-

dependent) tax, other things being equal. With an appropriate modification of the

Gittins index, Varaiya et al. (1985) showed that this problem is equivalent to the

multi-armed bandit problem and thus, it is solved by an index policy. They also

considered a situation where new projects are being made available showing that

the theory here applies as well, as was earlier showed by Whittle (1981) for the

multi-armed bandit problem.

Consider a generalization of the multi-armed bandit problem (and of the tax

problem as well), called shortly the non-zero version, where the projects yield a

reward regardless they are worked on or not (though the state can change only

in the project being worked on). As a consequence of a linear programming for-

mulation presented in Niño-Mora (2001) for the restless bandit problem, we have

that the non-zero version can be transformed to a multi-armed bandit problem

(i.e., with zero rewards from projects when rested) as follows. Denote in a non-

zero version by r̂1
k(x) the immediate active reward, which depends on a project

k’s current state x and is received if project k is selected to be worked on, and

by r̂0
k(x) its passive reward counterpart for having the project rested. Then, the
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optimal solution to the multi-armed bandit problem, whose rewards are

rk(x) = r̂1
k(x)− 1

1− β

r̂0
k(x)− β

∑
y∈Xk

pk(x, y)r̂0
k(y)

 ,

is the optimal solution to the non-zero version, and the objective value of the non-

zero version is obtained by summing up the objective value of the multi-armed

bandit problem and
1

1− β

∑
k∈K

∑
x∈Xk

α(x) · r̂0
k(x),

where α(xk) is the 0/1 indicator for project k being initially in state xk.

Another stream of extensions arises due to the fact that it is not always real-

istic to assume that the dynamics is of Markovian fashion or that the actual states

of projects can be fully observed in the time epoch the decision must be taken. In

some cases, the only thing that changes is that the calculation of Gittins index be-

comes cumbersome, intractable or impossible. However, it is not a general rule that

the theory of optimality of an index policy still applies. For multi-armed bandit

problem modeled as a Partially Observed MDP, see, for example, an application

to the multi-target tracking (Krishnamurthy & Evans 2001) or a discussion on the

optimality of greedy shooting strategy under incomplete information (Manor &

Kress 1997).

A set of interesting applications emerges when one realizes that multi-armed

bandit problem can be used for the study of optimal information acquisition and

learning by economic agents. Those models include Pandora’s Box, for which

Weitzman (1979) showed that optimal index strategies exist. As Sundaram (2003)

writes, it is common in economic theory to assume that firms and managers act

under perfect information when choosing price and output decisions. One of the

first papers to move away from this assumption was done by introducing the ban-

dit framework to economic theory. Later on, applications to market pricing, job

matching, technology choice and learning-by-doing, and agency theory were intro-

duced. One of the latest intentions is an application to R&D project management

(Denardo et al. 2004).

A natural extension of the model, motivated by practice, is to include costs of

switching between projects. Indeed, in reality it is not harmless to stop working on

a project and to start to work on another one. Unfortunately, Banks & Sundaram
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(1994) showed that it is not possible, in the presence of switching costs, to define

an index on the projects such that the resulting strategy is invariably optimal

(Sundaram 2003). Similarly, non-optimality (in general) of the Gittins index in

problems with switching delays was presented by Asawa & Teneketzis (1996). A

nice survey on bandit problems with switching costs has been published by Jun

(2004). He discusses applications of such a setting in job search and labor mobility,

government policy, optimal search, experiments and learning, and game theory.

We wish to note that in the field of decision making, classical bandit prob-

lems are still under a significant interest. In the recent years, an analysis of a

risk-aversion in the bandit problem arised. Chancelier et al. (2005) studied the op-

timal strategies in a one-armed bandit problem for a risk-averse controller. Loch &

Kavadias (2002) incorporate risk aversion in their portfolio selection model, which

is a version of two-armed bandit problem with delayed freezing of the passive pro-

jects. A tractable model of bounded rationality, based on the multi-armed bandit

problem, was proposed by Bolton & Faure-Grimaud (2005). Further, Gabaix et

al. (2003) remarked that the assumption of perfectly rational agents is spotted by

intractability of many real decision making problems and alternative heuristical

solutions should be analyzed.

Some literature makes reference to practical examples of the bandit problem

in clinical trials, where different treatments need to be experimented with while

minimizing patient losses, or in adaptive routing efforts for minimizing delays in

a network. The questions that arise in all these cases are related to the problem

of balancing reward maximization based on the knowledge already acquired and

attempting new actions to further increase knowledge.
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5. Restless Bandit Problem

The restless bandit problem is a natural generalization of the multi-armed

bandit problem, which is capable to cover considerably broader set of practical

situations. To the classical model we add just two simply-stated features: (1) the

projects are allowed to evolve and yield rewards while rested (no freezing any-

more), and (2) we are to allocate the scarce resource parallely to a fixed number

of projects (instead of working on only one project). Nevertheless, such a modifi-

cation significantly increases the problem’s complexity and little from the Gittins

approach remains operative here. Indeed, the increased modeling power comes at

the expense of tractability: the restless bandit problem is P-SPACE hard, even in

the deterministic case (Papadimitriou & Tsitsiklis 1999). The research focus must

thus shift to the design of well-grounded, tractable heuristic policies.

In order to set up the restless bandit problem, we will build on the framework

and notation from the previous section. We will also find it useful to assign a

project the name t-active and t-passive if, in time epoch t, the project is decided

to be worked on and to be rested, respectively. As a convention, we denote by 1

the action to work and by 0 the action to rest. Notice that we now need to have

transition matrices P 1
k and P 0

k , and rewards r1
k(x) and r0

k(x) for project k being

active and passive, respectively.

Since one can easily get lost in the complicated notation this modeling frame-

work requires, we remark the following notation norms: sets are written in cal-

ligraphic font (such as K,X , T ), with their cardinalities being denoted by the

corresponding capital letters (e.g., K, X) similarly to other fixed constants (such

as M); subscripts are reserved to the project labels, and superscripts to the actions

(that can be 0 or 1). An MDP formulation of the restless bandit problem follows.

There are K projects, labeled by k ∈ K. Let xk(t) ∈ Xk, for a finite state

space Xk, be the state of project k at time epoch t ∈ T = {0, 1, 2, . . . }. At each

time epoch t the controller must decide about allocation of a scarce resource, which

we will call work, to M of the projects (1 ≤ M ≤ K is an integer). If project k

is selected to be worked on, an immediate reward r1
k(xk(t)) is received and the

project changes to state xk(t + 1) according to a stationary Markov transition

probability matrix P 1
k = {p1

k(i, j)}. If project k is rested, an immediate reward

r0
k(xk(t)) is received and the project changes to state xk(t + 1) according to a
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stationary Markov transition probability matrix P 0
k = {p0

k(i, j)}.

The controller’s objective is to maximize the expected total discounted reward

given by

Eπ

[ ∞∑
t=0

βtr(t)

]
(4)

where 0 < β < 1 is a discount factor and r(t) is the reward earned in time epoch

t, defined as the sum of the rewards earned from all t-active projects K1(t) and

the rewards earned from all t-passive projects K0(t),

r(t) =
∑

k∈K1(t)

r1
k(xk(t)) +

∑
k∈K0(t)

r0
k(xk(t)). (5)

The optimization is done over a set of all admissible policies π ∈ Π, which

are those that in each time epoch t select M projects to work on, based only on

the actual state vector x(t) = (xk(t))k∈K. That is, we require K1(t) = M and

K0(t) = K −M .

Whittle (1988) was the first who came out with a possible approach to treat

the restless bandit problem, although he primarily considered undiscounted case of

the problem (with a time-average reward criterion) in continuous time setting. He

described a dynamic programming formulation of a relaxation, where the infinite

number of constraints of having exactly M active projects at each time epoch

is replaced by one constraint of having M active projects on average (or, more

precisely, in expectation). Notice that the original constraint K1(t) = M , which

must hold for each time epoch t, can be taken in expectation and without any loss

discounted, so that by summing up we can arrive to a relaxed constraint

∞∑
t=0

βtEπ
[
K1(t)

]
=

∞∑
t=0

βtM =
M

1− β
. (6)

In order to develop the crucial step, we will introduce the following notation:

ak(t) ∈ A = {0, 1} is the action employed on project k at time epoch t. That is,

ak(t) = 1 if project k is t-active (i.e. k ∈ K1(t)), and ak(t) = 0 otherwise. Note

that ak(t) depends on a particular policy π applied to the system. Furthermore,

let rk(t) be the reward earned from project k at time t, i.e., formally

rk(t) =
{

r1
k(xk(t)), if project k is t-active, i.e. ak(t) = 1,

r0
k(xk(t)), if project k is t-passive, i.e. ak(t) = 0.

(7)
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Using the new notation, we can easily rewrite (5) as

r(t) =
∑
k∈K

rk(t) (8)

and notice also that

K1(t) =
∑
k∈K

ak(t). (9)

By plugging (8) into (4), plugging (9) into (6), and using the interchange

property of the expectation, we obtain the following formulation of the original

problem’s relaxation (Whittle’s relaxation):

max
π∈Π

∑
k∈K

Eπ

[ ∞∑
t=0

βtrk(t)

]
(10)

subject to
∑
k∈K

Eπ

[ ∞∑
t=0

βtak(t)

]
=

M

1− β

Whittle (1988) proposed to solve this problem by the classical Lagrangian

method. Let ν be a Lagrangian multiplier, then the Lagrangian of (10) is

L(π, ν) =
∑
k∈K

Eπ

[ ∞∑
t=0

βtrk(t)

]
− ν

(∑
k∈K

Eπ

[ ∞∑
t=0

βtak(t)

]
− M

1− β

)

which can be rewritten as

L(π, ν) =
∑
k∈K

Eπ

[ ∞∑
t=0

βt (rk(t)− νak(t))

]
+ ν

M

1− β
(11)

Therefore, the Whittle’s relaxation of the restless bandit problem can be

solved by maximizing

∑
k∈K

Eπ

[ ∞∑
t=0

βt (rk(t)− νak(t))

]
, (12)

i.e., by incorporation of a wage parameter ν into the problem. The wage ν must be

paid for each active project in each period. Notice that the expression (12) defines

a restless bandit problem without the condition on the number of active projects,

but instead with an obligation to pay wage ν every time the scarce resource is
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used. Furthermore, the solution is independent on the parameter M , which comes

into play only when calculating the value of the original objective function in (10).

Suppose that in each period the controller is given a budget. If ν is the wage

per period of working on a project, the budget of Mν allows to work parallely on

M projects. The requirement of selecting M projects in each time epoch thus can

be equivalently stated as the requirement of spending the (full) budget Mν in each

period. The Whittle’s relaxation is nothing but an extension where borrowing and

lending over time is allowed (with a discount factor β, which can be interpreted

as a factor of the risk that the whole project system collapses (Loch & Kavadias

2002)). Indeed, the total discounted sum of all budgets is

Mν
(
1 + β + β2 + . . .

)
= ν

M

1− β
, (13)

which is precisely the constant term to be summed up to (12) in order to obtain

the objective value of the budget-less problem (10).

Whittle (1988) made a slightly different yet equivalent analysis of the problem

so that he arrived to the notion of subsidy for passivity, which in his framework

played an opposite role to our wage ν. Nevertheless, Whittle defined an index of

project k when in state x, denoted νk(x), as the value of ν which makes the two

actions for the project in isolation equally attractive, i.e. the best one can expect

to earn if working on the project,

max
π∈Π

Eπ

[ ∞∑
t=0

βt (rk(t)− νak(t)) | xk(0) = x and ak(0) = 1

]
, (14)

is the same as the best one can expect to earn if letting the project rest,

max
π∈Π

Eπ

[ ∞∑
t=0

βt (rk(t)− νak(t)) | xk(0) = x and ak(0) = 0

]
. (15)

We will refer to νk(x) as the Whittle’s index. The Whittle’s index reduces to

the Gittins index when the passive projects are frozen (i.e. for the multi-armed

bandit problem as well as for its non-zero version). Finally, he introduced the

indexability property of a project, which is needed for Whittle’s index to be mean-

ingful and exist, as it is natural to expect that Whittle’s indices induce a consistent

ordering of the projects. A project is said to be indexable for a given discount fac-

tor β if the set of states where the active action is optimal increases monotonically
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from the empty set to the full set of states as the wage parameter ν decreases from

+∞ to −∞.

It follows directly that, for an indexable project k, there exist Whittle’s indices

for each state, such that an optimal policy for the project-k subproblem of (12)

can be given as follows: ”take the active action in states x with νk(x) > ν, and

the passive action otherwise.” Niño-Mora (2001) showed that for any wage value

ν∗ 6= 0, the indexability of all projects implies that the optimal policy for the

Whittle’s relaxation is obtained by applying independently to each project the

single-project policy just described. The projects from the multi-armed bandit

problem (and its non-zero version) are indexable; hence, the Whittle’s index policy

is optimal in that model.

Whittle (1988) proposed to use as a heuristic for the restless bandit prob-

lem the following rule: ”work on the M projects with largest Whittle’s indices.”

However, he did not prove that this policy is optimal (and it is not, in general).

Weber & Weiss (1990) late showed that this policy exhibits a form of asymptotic

optimality under certain conditions.

An important step ahead for the application possibilities was an employment

of the achievable region approach to the restless bandit problem. First, Bertsimas

& Niño-Mora (2000) proposed a set of K increasingly improving bounds based

on K increasingly stronger linear programming relaxations, the last of which is

exact. They realized that the Whittle’s relaxation (10) can be reformulated in the

achievable region framework, where it is enough to focus on stationary policies.

This reduction is not restrictive, since it is known from MDP theory that there

exists an optimal policy, which is stationary. Notice that, for the one-project sub-

problem of (12), each stationary policy π ∈ Π can be equivalently characterized

by a set Sk ⊆ Xk of states in which the policy π prescribes to be active.

Bertsimas & Niño-Mora (2000) further described the Whittle’s relaxation as

a polynomial-size linear program, where the number of variables is 2X (twice

the number of all the projects’ states), which is solvable in polynomial time by

LP interior point algorithms (Niño-Mora 2001). Furthermore, they proposed a way

how to create other K−1 increasingly stronger relaxations, with a cost of increased

number of variables, the last of which is exact. They also developed an heuristic

index policy, alternative to the Whittle’s, which is always well defined (i.e., does

not require indexability of the projects).
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Niño-Mora (2001) introduced the concept of F-indexability, building on par-

tial conservation laws, which extend the generalized conservation laws (Bertsimas

& Niño-Mora 1996). It is known, that if a project satisfies the generalized con-

servation laws (GCL), it is indexable. That is, GCL provide a sufficient condition

for indexability. However, it turns out, that for the restless bandit projects GCL

are too narrow; i.e. restless bandit projects often do not satisfy GCL. In order

to analyze the restless bandit problem, he defined the partial conservation laws

relative to a family of state subsets F ⊆ 2Xk (F-PCL, or simply PCL). In the case

when F = 2Xk , the PCL are precisely the same as the GCL.

One can understand the family F as a set of stationary policies with special

structure. Thus, we are looking for an optimal stationary policy, given the restric-

tion that the policy (described by an active-set S) belongs to F . Many times,

such an approach may lead to a tractable framework for solving a special class

of restless bandit problems. However, the limitation of the PCL approach is that

it establishes the optimality of index policies under only some linear objectives

functions (that is, only for some reward vectors R(F)). Another complication is

that one must ”guess” the family F which includes the overaly optimal policy and

makes the solution tractable. On the other hand, the power of this approach is that

F-indexability of a restless bandit project implies (Whittle’s) indexability under

the whole range of admissible rewards R(F), hence the projects can be analyzed

in isolation.

Work-Reward Restless Bandit Problem

Now we will slightly modify the original setting so that we arrive to a more

general formulation of the restless bandit problem, to which PCL-approach still

applies (Niño-Mora 2002).

There are K projects, labeled by k ∈ K. Let xk(t) ∈ Xk, for a finite state space

Xk, be the state of project k at time epoch t ∈ T = {0, 1, 2, . . . }. At each time

epoch t the controller must decide about allocation of M units of a scarce resource,

which we will call work (M > 0 is a real number). If project k is selected to be

active, a nonnegative immediate work w1
k(xk(t)) is spent, an immediate reward

r1
k(xk(t)) is received and the project changes to state xk(t + 1) according to a

stationary Markov transition probability matrix P 1
k = {p1

k(i, j)}. If project k is

selected to be passive, an immediate reward r0
k(xk(t)) is received and the project

changes to state xk(t+1) according to a stationary Markov transition probability
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matrix P 0
k = {p0

k(i, j)}. For convenience, we denote by w0
k(x) = 0 for all x ∈ Xk

the immediate work spent under the passive action. To allow the problem to have

a solution, M cannot be greater than the sum of all immediate works needed, i.e.,

M ≤
∑
k∈K

max
x∈Xk

w1
k(x). (16)

The controller’s objective is to maximize the expected total discounted reward

given by

Eπ

[ ∞∑
t=0

βtr(t)

]
(17)

where 0 < β < 1 is a discount factor and r(t) is the reward earned in time epoch

t, defined as before, cf. (5). The optimization is done over a set of all admissible

policies π ∈ Π, which are those that in each time epoch t allocate M units of work,

based only on the actual state vector x(t) = (xk(t))k∈K. That is, we require∑
k∈K1(t)

w1
k(xk(t)) = M at each time t. (18)

Notice that the problem as just described is quite restricted and may not

always have a feasible solution. Indeed, the restriction (18) on work utilization

implies that it must be w1
k(x) = w1

k(y) for all x, y ∈ Xk. Whittle would make the

following relaxation of the problem: replace the infinite number of work utilization

constraints at each time epoch (18) by one constraint of using work of M units

on average (or rather, in expectation). Such a constraint would be (analogously to

the Whittle’s relaxed constraint),

∞∑
t=0

βtEπ

 ∑
k∈K1(t)

w1
k(xk(t))

 =
∞∑

t=0

βtM,

or,
∞∑

t=0

βtEπ

[∑
k∈K

wk(t)

]
=

M

1− β
, (19)

where wk(t) is the immediate work spent on project k at time epoch t (which,

clearly, depends on the action employed).

Such a relaxation does not limit the values of w1
k(x) and moreover, it may

be solved in the same way as the Whittle’s relaxation in the case of the classical
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restless bandit problem. Indeed, now we can express the problem (17) with the

relaxed restriction (19) as (work-reward relaxation)

max
π∈Π

∑
k∈K

Eπ

[ ∞∑
t=0

βtrk(t)

]
(20)

subject to
∑
k∈K

Eπ

[ ∞∑
t=0

βtwk(t)

]
=

M

1− β

Following the Whittle’s ideas, problem (20) can be solved, using the La-

grangian method, by maximizing

∑
k∈K

Eπ

[ ∞∑
t=0

βt (rk(t)− νwk(t))

]
, (21)

where the wage parameter ν must be interpreted as the wage per unit of immediate

work. Notice that, as before, the solution is independent on the parameter M . The

budget per period interpretation of Mν remains.

In what follows, we will focus on a project k in isolation and we drop the

project label. An analogy to the Whittle’s index for state x would be the value of

ν which makes the two actions for the project equally attractive, i.e. the best one

can expect to earn if working on the project,

max
π∈Π

Eπ

[ ∞∑
t=0

βt (r(t)− νw(t)) | x(0) = x and a(0) = 1

]
, (22)

is the same as the best one can expect to earn if letting the project rest,

max
π∈Π

Eπ

[ ∞∑
t=0

βt (r(t)− νw(t)) | x(0) = x and a(0) = 0

]
, (23)

where a(t) denotes the action applied on the project in time epoch t.

However, this definition may not be valid for all states. In particular, if for a

state x it is w1(x) = w0(x), r1(x) = r0(x), and p1(x, y) = p0(x, y) for all y ∈ X ,

then expressions (22) and (23) are equal for all ν. Following Niño-Mora (2002),

we will call such states uncontrollable, and all the remaining states, for which

the analogy to the Whittle’s index exists, controllable. We denote the set of all

controllable states by C ⊆ X , assuming that C ≥ 1.
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We restrict our attention to stationary admissible policies, among which MDP

theory assures an overaly optimal admissible policy to exist. We can characterize

each stationary policy π by an active-set S ⊆ C of controllable states in which the

policy π prescribes to be active, denoting by 2C the set of all those sets S. Project

indexability is defined as by Whittle, just narrowed to controllable states. More

generally, given a family of active-sets F ⊆ 2C , a project is said to be F-indexable

for a given discount factor β if the minimal set of states where the active action is

optimal belongs to F and increases monotonically from the empty set to the full

set of states as the wage parameter ν decreases from +∞ to −∞. By the theory of

PCL (Niño-Mora 2001), the family F must be nonempty and satisfy the following

two properties:

(i) F is augmentable, i.e. for each set S ∈ F such that S 6= C there exists a state

x ∈ C \ S for which S ∪ {x} ∈ F ,

(ii) F is accessible, i.e. for each set S ∈ F such that S 6= ∅ there exists a state

x ∈ S for which S \ {x} ∈ F .

Under indexability, to each controllable state x is attached a marginal produc-

tivity index ν(x) (MPI) such that the policy for one-project subproblem of (20)

”take the active action in controllable states x with ν(x) > ν, and the passive

action otherwise (including noncontrollable states)” is optimal. It is clear that any

policy that differs only in the actions for uncontrollable states will be optimal as

well.

The rest of this section aims to show how to calculate the indices ν(x), building

on a family of tractable subproblems. Suppose that project is initially in state

x ∈ X and consider the following ν-wage problem, the state-x subproblem of (21):

max
S∈F

ESx

[ ∞∑
t=0

βtr(t)

]
− νESx

[ ∞∑
t=0

βtw(t)

]
, (24)

where in the expectation we assume the first-period state is x, or, schematically,

max
S∈F

fSx − νgSx . (25)

From (25) and MDP theory it follows immediately that to any wage ν there

corresponds a minimal optimal active-set S∗(ν) ⊆ C such that

S∗(ν) = {x ∈ C : ν∗(x) > ν} ∈ F , for all ν.

23



Niño-Mora (2005) showed that F-indexable projects are those, which obey the eco-

nomics law of diminishing marginal returns to work consistently with F . Namely,

if one considers the achievable work-reward region spanned by points (gSx , fSx ) for

all S ∈ F , it is a convex region, whose upper boundary is a piecewise linear (and

concave) function, where the states’ MPIs are the function slopes.

We call fSx the β-discounted (x,S)-reward measure and gSx the β-discounted

(x,S)-work measure (or, simply, the reward and work measure, respectively). No-

tice that if we denote by a1(t, x) and a0(t, x) the following indicators,

a1(t, x) =
{

1, if the project is at time t in state x ∈ S,

0, else,

a0(t, x) =
{

1, if the project is at time t in state x ∈ X \ S,

0, else,

then r(t), which is a S-dependent term, can readily be expressed as

r(t) =
∑
x∈X

r1(x) · a1(t, x) +
∑
x∈X

r0(x) · a0(t, x), (26)

and, similarly, S-dependent w(t) is

w(t) =
∑
x∈X

w1(x) · a1(t, x) +
∑
x∈X

w0(x) · a0(t, x) =
∑
x∈X

w1(x) · a1(t, x). (27)

The indicators a1(t, x) and a0(t, x) are the decision variables of the problem

(25), as they are the only policy-dependent terms there. Hence, we remark that the

measures may be viewed as fSx = fSx (a1(t, x), a0(t, x)) and gSx = gSx (a1(t, x)), i.e.

the reward measure is a function of all decision variables, and the work measure

is a function of all the decision variables related to the active action. A more

general setting, where the decision variables were nonnegative real numbers for

which a1(t, x)+a0(t, x) = 1 (probabilities) instead of 1/0 indicators, was analyzed

for semi-Markov projects in Niño-Mora (2005).

Using the achievable region approach, Niño-Mora (2002) introduced a suf-

ficient condition for F-indexability, which significantly helps in many, otherwise

intractable, practical problems. In order to present this condition, we introduce

a new terminology. The policy, whose active-set is S, will be called S-policy. Let
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〈a,S〉 be the policy which takes action a ∈ A in the current time epoch and adopts

the S-policy thereafter.

For any state x ∈ X and a feasible S-policy (i.e. S ∈ F), the (x,S)-marginal

reward measure is defined as

%Sx = f 〈1,S〉
x − f 〈0,S〉

x , (28)

and the (x,S)-marginal work measure as

ωSx = g〈1,S〉
x − g〈0,S〉

x . (29)

Thus, these (x,S)-marginal reward and work measures capture the increase in the

respective (x,S)-reward and (x,S)-work measures, which results from being active

instead of passive in the first time epoch and following the S-policy afterwards.

Notice that for uncontrollable states, it is %Sx = ωSx = 0 for all S, since applying

both actions in such a state has precisely the same effect.

In the light of applications, it seems natural that ωSx should be positive in all

controllable states whenever S ∈ F .1 Under this assumption, we can define for a

controllable state x and a feasible active-set S ∈ F the (x,S)-marginal productivity

rate by

νSx =
%Sx
ωSx

. (30)

These quantities are useful for the calculation of MPIs by an efficient MPI(F)

adaptive-greedy algorithm introduced in Niño-Mora (2001). Given a family of poli-

cies F , the algorithm checks whether the project states can be ordered as it is

needed for F-indexability. If affirmative (i.e. we say that the work-reward coeffi-

cients are F-admissible), it outputs the marginal productivity indices ν(x) for all

controllable states x.

In summary, if the two following conditions hold,

(i) ωSx > 0 in all controllable states x ∈ C and all feasible active-sets S ∈ F ,

1 (Subject to further investigation.) This condition is not necessary for problem

to have an index-based solution. Another sufficient, still not necessary, condition

might be that %Sx and ωSx be nonzero and have the same sign for any x ∈ C,S ∈ F .

(Note that this would not necessarily imply the Whittle’s indexability.)
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(ii) work-reward coefficients are F-admissible,

then the project when in state x, stated as problem (25), is F-indexable with

the optimal policy ”take the active action in controllable states x with ν(x) > ν,

and the passive action otherwise (including noncontrollable states)” (Niño-Mora

2001).

To conclude the section, suppose that there is an initial probability distribu-

tion α, where α(x) > 0 for any state x is the probability that the project is initially

in state x. By MDP theory, there is an optimal stationary policy of (25), which

is independent on such initial distribution, which implies that the optimal policy

described in the previous paragraph must be the policy independent on initial dis-

tribution. Thus, this policy is also optimal for the one-project subproblem of (21).

Therefore, if all projects are F-indexable (with, in general, project-dependent fam-

ilies Fk) for all their states x, then the optimal policy for solving the work-reward

relaxation (20) is: ”work at time epoch t on all projects that are in a controllable

state, whose MPI is greater than ν.”

Further Extensions and Applications

The approach outlined in this section analyzed the restless bandit problem

with the discounted criterion. If has been shown recently (Niño-Mora 2005c), that

the multi-armed bandit problem with the expected total discounted reward over

a finite horizon can be modeled as the restless bandit problem with the infinite

discounted objective (4). Other criteria have also been considered in the literature

on restless bandit problems. Whittle (1988) treated the restless bandit problem

maximizing average reward over an infinite horizon; the approach was extended

in the PCL framework by Niño-Mora (2001, 2002), in the latter paper applied to

queueing admission control problem. Further, given the theoretical problems of

the time-average criterion, Niño-Mora (2005b) considered also a bias-optimality

criterion, when analyzing multiclass delay-sensitive queues. Finally, Niño-Mora

(2005) introduced a new mixed average-bias criterion in the application of the

LP approach to the optimal control of M/G/1 queues, where the approach was

developed for countable state space projects and continuous time (semi-Markov

projects).

Note that different forms of objective function imply, in general, distinct def-

initions of fSx and gSx . Thus, every criterion yields a new MPI, some of which exist
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and give good index policies in models where the Whittle index does not exist (e.g.

mixed average-bias and bias-optimality criteria). Furthermore, the F-indexability

should be view as relative to given optimality criterion, i.e. relative to measures

fS and gS .

Many important practical situations can be modeled as a restless bandit prob-

lem, however, in many interesting cases, direct solution methods (e.g. dynamic pro-

gramming) cannot be applied because of the combinatorial explosion of the number

of variables. Hence, the problems are typically treated by simulation-based meth-

ods, which may provide nearly-optimal solutions. The achievable region approach

may be an alternative to simulation methods, giving optimal or nearly-optimal

solutions with significantly decreased computational complexity. Outside of the

world of queueing models (which also includes an interesting class of broadcasting

optimization problems), we have found a very small amount of literature, in which

the restless bandit framework have yet been employed.

O’Meara & Patel (2001) proposed the restless bandit problem as a framework

for modeling topic-specific indices in modern Web-search engines. They addressed

questions of efficient query routing and automatic service management, e.g. How

can each engine automatically select its own topic specialization for the benefit of

all? Moreover, each engine must construct and maintain its own database, where

the robot’s quality to be maximized is given by a relevance scoring function. The

topic-specific web robot problem can be decomposed into two separate decisions:

what documents to request, and how many concurrent requests to make in order to

fully utilize system throughput. Scheduling of the document requests must be done

as quickly as possible. A simulation-based dynamic programming is used in order

to characterize the optimal self-controlling mechanism, by developing a neuro-

dynamic algorithm due to computational infeasibility of classical direct-solution

methods of dynamic programming.

In the field of robotics, Faihe & Müller (1998) discussed limitations of the

methods for robot behaviors coordination within the the neuro-dynamic framework

and proposed to use restless bandits indices to prescribe the robot’s behavior. They

showed on a simple postman robot problem that the restless bandit method is

effective and in general better than the former. Optimality of a greedy dispatch rule

for cooperative control of multi-agent systems, arising in spacecraft constellations,

was analyzed in Rao & Takamba (2005). Washburn, Schneider, & Fox (2002)
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dealt with the problem of radar tracking of multiple agents, mentioned already by

Whittle (1988) as one of the possible applications, developing approximate index

solutions.

Regarding business applications, Loch & Kavadias (2002) used a variation of

the restless bandit model with non-stationary passive probabilities (freezing after

one period) to analyze the optimal budget allocation to new product develop-

ment projects. They remarked that such R&D portfolio management problems

are usually difficult to define because of the combinatorial complexity of project

combinations. They found optimal index-like policies for several cases they ana-

lyzed (including manager’s utility function). A similar approach was also applied to

dynamic assortment for ”Fast fashion” retailers (such as Zara, Mango), discussed

in Caro & Gallien (2005).
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6. Hypotheses and Future Investigation Outline

While the restless bandit problem as introduced by Whittle (1988) has been

shown to be a powerful modeling paradigm in the field of queueing theory, where

the work is indivisible, it seems that the work-reward restless bandit problem, or

its relaxation, is especially well suited for a plenty of real-life situations arising in

business and financial economics. Some items presented in the previous section are

new, including the budget interpretation of Mν and the decomposition (26)-(27)

with the notion that the work measure gSx depends on all and only the decision

variables related to the active action.

Focus now on the work-reward restless bandit problem. As noted earlier, the

restriction (18), saying that in each time epoch exactly M units of work must be

used, is very restrictive. In many interesting applications, including financial ones,

it is also allowed to spend less than M units of work, i.e., (18) would change to an

inequality. Indeed, if Mν is the one-period budget to be allocated among the pro-

jects, it is possible in real-life that the controller spends less than this amount (and

looses the budget not spent, or moves it to future periods). Then, if she is also able

to borrow from the future budgets, we arrive to the work-reward relaxation. Fur-

thermore, suppose that the one-period budget is not constant over time, but rather,

the budgets are variable (but predetermined), denoted B(0), B(1), B(2), . . . . Then,

the total discounted budget is ∑
t∈T

βtB(t), (31)

and the average work expenditure will, by equalizing (31) and (13), be

M =
1− β

ν

∑
t∈T

βtB(t). (32)

Thus, the variable budget version of the problem can be reformulated as

the (fixed-budget) work-reward restless bandit problem. One can think of several

possible heuristics for solving the problem of spending at most the budget given in

each period. If fractional work investment is allowed (when one can spend a fraction

of the immediate work needed resulting to a fractional immediate reward, i.e. the

w1(x) should be called the maximal allowed immediate work), the optimal policy

seems to be ”work fully on the projects with the highest indices while the total

work is not greater than the budgeted work B(t)
ν , and spend the remaining work
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on the passive project with the highest index”. If fractional work investment is not

permitted, the optimal policy would be given by a solution of the corresponding

knapsack problem of all projects. In all the financial applications, only projects

with positive expected reward should be considered.

Another relevant extension of the work-measure restless bandit problem is the

one where each project has a deadline, when, depending on the project’s state, a

terminal reward is received and no more reward can be earned from that project

after the deadline moment. Usually, the deadline moment is fixed a priori, so the

controller’s decision on the work allocation must be based on whether the project

is in a favorable state or not. In such a setting, it can sometimes be useful to

define a special absorbing state meaning the project is ready, i.e., no more work

is needed and it is only waiting for the reward from the deadline moment (e.g.

when a project is a production process). However, in other cases, (e.g. studying

for various exams), not working on a project may cause a change to a less favorable

state (because of forgetting). Note that when the deadline is not fixed from outside,

one can think about an optimal stopping problem: Until what time is it worth to

continue working on a project? When the controller decides to stop, she ”sells the

project” and gets the terminal reward. Such terminal reward stopping problem

(for choosing a thesis advisor and buying a house) was discussed and the deadline

extension proposed in Jacko (2005). Notice that the terminal reward model covers

a set of important financial applications, including options and actions trading.

Consider again the work-reward restless bandit problem, where fractional

work is allowed. In many budget allocation situations, there is a set of priori-

tized projects, or ”must-be-worked” projects (given by a higher authority, such

as the strategic business plan, legal requirements, survival-needed activities etc.).

E.g., an individual must spend a part of her budget on food, because if not, his

investment in the education would not yield the desired (or, expected) future re-

wards. It would be interesting to define the optimal policy for such a problem.

One of the possible approaches may be to substitute the general discount factor

β by a family of project dependent (or, even better, state-action dependent) one-

period discount factors, which, as noted earlier, can be interpreted as factors of

the risk that the whole project system collapses (more precisely, 1−β(x, a) would

be the probability that the whole system collapses, if a project changes to state

x and action a is applied there). Notice that such modification may allow many
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problems, which are not F-indexable at each state for a given discount factor β,

to be indexable for state-dependent discount factors, because any restless bandit

is indexable if the discount factor is small enough (Niño-Mora 2001).

In a more general case of the work-reward problem, one may consider that

some positive immediate work w0
k(x) must also be spent under the passive action.

It seems, that the approach may work in an analogous way whenever there is an

equality restriction on w1
k(x) + w0

k(x) for each state x ∈ Xk. If there is no such

restriction, one must treat the passive immediate work as a new scarce resource

independent on the active immediate work, and, typically, choose to restrict just

one of the two scarce resources. Thus, we naturally come to a multiple scarce

resource restless bandit problem. In such a setting, there must be a utilization

restriction for each scarce resource. It seems that to have a feasible solution to such

a problem would require more than two actions — one active action for each scarce

resource plus one passive action. This generalization would significantly expand

the set of interesting applications by including all the dynamic allocation problems

in which several ”workers” work parallely. However, the concept of indexability is

not trivially extendable to higher dimensions.

All the preceding discussion on optimal policies assumes F-indexability of the

projects. However, there are many interesting problems which are likely not to be

indexable, so there is a strong theoretical need for a more general conditions. We

propose two ideas (which are likely to be altered after the complete proof is ready)

under which index policies, given by MPIs, will be optimal. But before doing that,

we state a new sufficient condition for F-indexability, which is more relaxed than

the Niño-Mora’s (2001) sufficient condition.

Suppose that the active immediate work w1(x) > 0 for all controllable states

x of a given project. If the project satisfies

(i) for every S ∈ F , there exists a controllable state x ∈ C \S such that S∪{x} ∈
F and ωS(x) > 0,

(ii) work-reward coefficients are F-admissible (the algorithm should be modified

so that in every step the selected state has ωS(x) > 0),

then it is F-indexable. We suspect that this condition is also necessary for F-

indexability, which would offer full and tractable characterization of indexable

projects. It is subject to further investigation, whether relaxing the w1(x) > 0
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condition would alter our hypothesis.

Suppose w1(x) > 0 for all controllable states x of a given project (in order

to ensure that the active-set with the lowest expected work is the empty set).

The project when in state x is said to be weakly F-indexable for a discount factor

β, if the minimal optimal active-set belongs to F and increases monotonically

from the empty set to a set H ∈ F as the wage parameter ν decreases from +∞
to −∞, where H is such that for all S ∈ F it is gHx ≥ gSx (that is, H is an

active-set with the highest expected work). The Whittle’s indexability and Niño-

Mora’s F-indexability require that H = C. For the weak F-indexability, slightly

stronger properties of F than under F-indexability are required. The family F
must be nonempty and satisfy that for any S ∈ F such that S 6= ∅, there exists

a permutation π = (π1, π2, . . . , πS) of the states in S such that for all Si, i =

1, 2, . . . , S, having S0 = ∅, it is ω
Si−1
πi ≥ 0. In words, F must be such that one

can ”arrive” from the empty set to any S ∈ F by adding states with nonnegative

marginal work.

Though the condition on F is stronger than in the case of F-indexability, a suf-

ficient condition for the weak F-indexability simplifies to the weak F-admissibility

of the work-reward coefficients. This condition is defined on a modified version

of the Niño-Mora’s MPI(F) adaptive-greedy algorithm, which checks the ordering

of states in H and ensures the weak F-indexability. The algorithm is subject to

further investigation.

The following idea deals with a class of problems, in which an index policy

is optimal only for the wage parameter ν > νmin, which is relevant, because neg-

ative values of the wage parameter ν are usually not sensible. Suppose all the

assumptions for weak F-indexability hold. The project when in state x is said to

be partially F-indexable for a discount factor β, if the minimal optimal active-set

belongs to F and increases monotonically from the empty set to a set H ∈ F
as the wage parameter ν decreases from +∞ to νmin. A sufficient condition for

partial F-indexability would be analogous to the one for weak indexability, with

a different algorithmic test, which identifies the value νmin.

Apart of the applications outlined in this section, which are the most direct

ones of the work-reward restless bandit problem, one can consider the appropriate,

more complex version of the whole range of models that have been analyzed in

the multi-armed bandit problem framework. Moreover, it seems that nobody has
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proposed a theory of the restless bandit problem in such an important extension as

for partially observed projects and for the systems with delayed state observations.
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