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Abstract. In this paper we analyze the trade-off between admission costs and receiver rewards
of TCP Tahoe flows competing for buffer space. Since the buffer space is a scarce resource during
heavy traffic and congestion epochs, it is important to understand in which circumstances packet
dropping may be optimal. We develop a restless bandit model for assessing an economic value
of packets at routers they encounter in transmit. We then argue that the economic value of the
whole network increases if the packets with lower economic value are the preferred candidates for
dropping or marking in congestion avoidance mechanisms. Such changes are arguably expected
to lead both to a lower delay and higher network throughput.1

1 INTRODUCTION

With the growth of traffic volume and traffic heterogeneity in best-effort networks, congestion
control has been getting more importance. The initial näıve implementation of the queue tail
drop policy showed to be prone to creating various serious problems including bias against
bursty traffic and global synchronization, eventually resulting in congestion collapse [cf. 1].
Such a reactive congestion control has thus a significant negative impact on the efficiency of
scarce resources (bandwidth and buffer space) allocation in networks.

Alternative proposals focused on preventive congestion control developing congestion avoid-
ance mechanisms, such as RED [4], BLUE [3], and a palette of their variants, which try to
detect congestion in its early stage and warn the traffic sources expecting that they decrease
their transmission rates. Yet, packet losses in the Internet are still high and Quality of Service
(QoS) strongly suffers from this fact.

In order to avoid packet losses resulting from congestion avoidance mechanisms, explicit
congestion notification (ECN) has been proposed. ECN marks a bit in the packet header instead
of dropping the packet, notifying the receiver about the congestion experienced during the
transit. This information is then echoed back to the sender, which is expected to react.

Nevertheless, the choice of packets to be dropped or marked is done myopically—only consid-
ering the current state or recent history of router-based measures (such as queue length, packet
loss, link utilization, etc.). In particular, economic value of packets is not taken into account in
congestion avoidance mechanisms.

1This research has been supported in part by the Spanish Ministry of Education and Science under
grant MTM2004-02334 and an associated Postgraduate Research Fellowship, by the Autonomous Com-
munity of Madrid-UC3M through grant UC3M-MTM-05-075, and by the European Union’s Network of
Excellence Euro-NGI. This work was mostly done during the stay of Jacko at GERAD, Canada.
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Figure 1: A design of an end-to-end connection.

Closely tight to congestion avoidance is the issue of fairness. It arises in virtually all con-
gestion avoidance mechanisms proposed in the literature, and the approach that seems to be
generally accepted is to treat all packets (or flows) fairly according to their size, i.e., each packet
Byte is supposed to have the same economic value for the receiver. More importantly, it is
implicitly supposed that this value is the same throughout the whole route. There are, however,
strong reasons to challenge such an understanding of fairness.

Economic value of a network should be assessed through the service it provides—transport
of data. Thus, it must be a measure of all received data meeting receiver-specified Quality of
Service (QoS). In this paper we develop a theoretical framework for assessing economic value
of packets at routers they encounter on their route to the receiver. We then argue that the
economic value of the whole network increases if the packets with lower economic value are the
preferred candidates for dropping or marking in congestion avoidance mechanisms.

Dropping a packet on its route implies that all the scarce resources it has consumed so far
are wasted. It is then intuitively appealing that when a scarce resource is to be allocated to a
packet, the possibility of getting that packet lost in the remainder of its route must be taken
into account. In the networks, where precise information about the packet future path may not
be available, the “allocation-decision-maker” may infer or estimate required information. For
instance, observation of the ECN bits on the opposite way could be used to estimate it.

To illustrate the idea on an example, consider an end-to-end connection that includes two
bottleneck routers, as in Figure 1. If router R2 is busy (yet still have some free space in the
buffer) and router R1 is able to anticipate it, then congestion avoidance decisions at R1 should
take into account the transmission rate of an incoming flow. If the rate is small, so that R2
would be able to service it, the flow should be admitted at R1. On the other hand, if the
transmission rate is too high, so that R2 is likely to drop it, the flow should not be admitted at
R1; or, it could be a strong candidate for drop policy implemented in the congestion avoidance
mechanism at R1. Thus, defining flow value as the expected number of packets that arrive to
the receiver implies that packet value may differ in different points of the path.

The main objective of this paper is to verify that future-path information can improve the
resource allocation decisions, help understand how it translates into quantitative terms, and
propose improvements of congestion avoidance mechanisms which would take into account an
economic value of packets in the network. For that end, we analyze TCP Tahoe in the framework
of restless bandits. The restless bandit model is analytically tractable and extremely powerful
in assessing the economic value of the flow via the marginal productivity indices (see section 2).

Some of the recent theoretical proposals for future generation networks may benefit from
the results we present. For example, the flow-aware networking proposal [7] considers every
flow separately, and that is exactly how we model the problem in this paper. Further, in such
a network, one can introduce certain priority parameters of each flow that would capture their
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relative importance, e.g. by assigning importance weights to flow receivers. Combining this
with the marginal productivity indices may lead to a powerful control mechanism.

In subsection 1.1 we describe TCP Tahoe in more detail. In section 2 we introduce briefly
the bandit problem, develop a model of TCP Tahoe, and state its optimal control. Practical
implementation of our results is outlined in section 3. In section 4 we discuss model limitations
and an ongoing work.

1.1 TCP Tahoe

TCP Tahoe is a simple additive-increase/multiplicative-decrease (AIMD) transmission con-
trol protocol (TCP) we model in subsection 2.1. The actual packet transmission rate is main-
tained by the variable actualWindow, which ranges between the minimum value of 1 packet
and the maximum number of packets given by advertisedWindow. It has two phases: slow
start phase, which is between the minimum transmission rate and congestionThreshold, and
congestion avoidance phase, which is between congestionThreshold and advertisedWindow.

The dynamics of TCP Tahoe is as follows. After every period with no packets lost, TCP
Tahoe doubles the actualWindow during the slow start phase, whereas it increments the actu-
alWindow by 1 packet during the congestion avoidance phase. If a packet is lost, the generator
restarts the transmission rate at the minimum value of 1 packet. Note that it does not incorpo-
rate fast recovery nor fast retransmit.

2 RESTLESS BANDIT MODEL

The (multi-armed) bandit problem [cf. 5] is a resource allocation model capturing the fun-
damental trade-off between exploitation of the present (reactive control) and exploration of the
future (preventive control). An appealing feature of bandit models is the priority-index policy
solution. The classical examples of optimality of an index policy are the cµ-rule for multi-class
M/G/1 queues [2] and the Gittins index policy for the classic bandit problem [5]. For a more
complex restless bandit problem [6] introduced so-called marginal productivity indices that gen-
eralize all the above indices. Well-performing indices often have an economic interpretation,
which we exploit in this paper.

To make an analogy with our problem of interest, consider a router with finite buffer (scarce
resource), for which several flows (bandits) compete. Flows generate certain reward for receivers,
if they arrive to them (i.e., if they are admitted in the buffer). The difficulty is that these flows
are dynamically changing their transmission rate, so the rewards may increase or decrease later
on. Thus, the problem is whether to exploit the present rewards, or take a myopically-suboptimal
action which may yield higher rewards in the future. Based on the bandit problem results, we will
decompose this problem, analyze each flow separately, and calculate the marginal productivity
indices. In section 3 we then discuss practical implementation of these indices into congestion
avoidance mechanisms in order to improve the economical value of the whole network.

Apart from presenting a novel theoretical framework, [6] proved indexability and derived
marginal productivity indices of an admission control problem. He then employed the marginal
productivity indices in an index policy heuristic for the problem of routing to parallel queues.
The approach we adopt in this paper is somewhat analogous: we first derive the indices for a
flow admission control problem and then propose to use these indices in congestion avoidance
mechanisms. Yet, the two admission control problems significantly differ. In this paper we face
the trade-off between admission costs and receiver rewards of admitted flows, whereas [6] ana-
lyzed the trade-off between holding costs of admitted flows and rejection costs of rejected flows.
We further allow for a dynamically changing transmission rate (i.e., buffer space requirement),
while his model assumed random arrivals.
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Figure 2: Modeling TCP Tahoe as a Markov decision process.

2.1 Restless Bandit Model of TCP Tahoe

In what follows, restless bandit is used as a short name for a binary-action finite-state Markov
decision process (MDP) with parametric immediate rewards. In this section we set out to model
TCP Tahoe as a restless bandit (see Figure 2).

We set the model in discrete time, defining one time period as one round-trip time (RTT).
Let ν be a problem parameter denoting the admission cost paid for each unit of buffer required
by the TCP. We assume that all packets are of the same size, which is equal one buffer unit.

Our restless bandit model of TCP Tahoe can be defined as follows:

• State space is N = {0, 1, . . . , N − 1}, with N possible states; state n is defined by a pair
(wn, rn), where wn > 0 is interpreted as the buffer utilization required by the TCP (in
packets/RTT) and rn is a reward.

• Actions admitting and rejecting the flow are available in each state.

• Dynamics if admitted : If the TCP is in state n and the flow is admitted at a given period,
then during that period it generates reward rn, a cost νwn must be paid, and the generator
moves to state n + 1 for the next period (or remains in N − 1, if it is already there).

• Dynamics if rejected : If the TCP is in state n and the flow is rejected at a given period,
then there is no cost for buffer utilization nor any reward, and it moves to state 0 for the
next period.

We will interchangeably call the action of admitting the active action; rejecting will also
be called the passive action. Further, we suppose that states are ordered increasingly, so that
wn < wm for any n, m ∈ N with n < m. The reward rn can be interpreted as measuring a
one-period economic value (utility) of the admitted flow for the receiver; we use an expected
goodput measure in section 3. Note that passive action means rejecting the entire flow.

For TCP Tahoe, state n is an abstract concept denoting that its current transmission rate
is wn packets/RTT (i.e., wn is the value of the actualWindow variable), yielding those pack-
ets a reward rn. If advertisedWindow is assumed to be constant over time, then wN−1 =
advertisedWindow. Further, we have w0 = 1.

2.2 Optimization Problem

We consider the problem of finding an optimal index policy control of TCP Tahoe over an
infinite time horizon, for both discounted criterion with discount factor 0 < β < 1 and long-run
average criterion. In the remainder of this section we follow the analysis introduced in [6].
Our analytical focus will be on the former, whose marginal productivity indices can be directly
extended to the latter by taking limit β → 1. These two criteria are the most appropriate for
applications such as computer networks.

From the MDP theory it follows that there exists an optimal stationary policy independent
of the initial state, therefore we narrow our focus only to those policies and represent them via
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active sets S ⊆ N . In other words, a policy S prescribes to be active in states in S and passive
in states in SC := N \ S. This view is crucial in this approach, as it admits a combinatorial
optimization formulation of the optimal control problem, which we develop next.

Let us denote fSn the total expected discounted reward under policy S starting from state
n, defined by

fSn = ESn

"
∞X

t=0

βtr(t)

#
, (1)

where r(t) is the reward at time t identified by the actual state and the action applied. The
symbol ESn denotes the conditional expectation given that the initial state is n and the policy
applied is S. Similarly, gSn is the total expected discounted work under policy S starting from
state n

gSn = ESn

"
∞X

t=0

βtw(t)

#
, (2)

where w(t) is the buffer utilization (or simply work) at time t identified by the actual state and
the action applied. Then, formulated for initial state n, the optimization problem is

max
S⊆N

fSn − νgSn . (3)

2.3 Marginal Productivity Indices

Throughout this subsection we suppose that the immediate reward rn is concave in wn and
present an optimal index policy for such case. Because of space restrictions, we omit detailed
analysis and proofs.

Assumption 1 (Concave Rewards). There is a real-valued function r with r(0) ≥ 0, which
is concave on the domain {0, w0, . . . , wN−1}, such that rn = r(wn).

Theorem 1. Under concave rewards the problem (3) is indexable, having the marginal produc-
tivity index of state n for the discounted criterion be given by

νn =

rn +
n−1P
m=0

βm+1(rn − rm)

wn +
n−1P
m=0

βm+1(wn − wm)

(4)

and for the long-run average criterion by

νn =

(n + 1)rn −
n−1P
m=0

rm

(n + 1)wn −
n−1P
m=0

wm

. (5)

Proposition 1. Under concave rewards we have νn ≤ rn/wn.

3 PRACTICAL CONSIDERATIONS

We now narrow our focus to problem (3) under long-run average criterion, which is more
appropriate for real-time situations. The discounted criterion could be useful in networks with
relatively large round-trip times or short lifetime (not discussed here). Practitioners would also
agree that flows that are, before arriving at the receiver, expected to encounter subsequent gate-
ways with buffers (see Figure 1 for illustration) will satisfy the assumption of concave rewards.
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l \ p 0.0001 0.001
1 19998 1999
5 3999 399

Table 1: The maximum integer values of advertisedWindow assuring concavity of r(w).

3.1 Indices for TCP Tahoe

For the sake of simplicity, we suppose that the TCP Tahoe parameters can be expressed
as powers of 2. In particular, advertisedWindow = 2W−1 and congestionThreshold = 2T−1 for
some positive integers T ≤ W . For TCP Tahoe we have wn = 2n for all n ≤ T − 1, and
wn = 2T−1 + n− (T − 1) for all T ≤ n ≤ 2W−1− 2T−1 + T − 1, having T + 2W−1− 2T−1 states.
Recall that the work wn gives the number of packets sent by the flow generator.

The reward function is the expected goodput, i.e. the expected number of useful Bytes
received by the receiver: r(w) = (1 − p1)

w(1 − p2)
w . . . (1 − pl)

wws, where 0 ≤ pk < 1 is the
probability of losing a packet on the k-th link of the connection after it passes the router, at
which we implement the congestion avoidance mechanism. Further, s > 0 is the useful size in
Bytes of each packet and we assume l ≥ 1. See the actually considered connection in Figure 1,
but with l links (i.e., l − 1 routers) along the connection after the router R1.

Thus, the receiver gets a reward of ws if the entire flow arrives, and nothing if at least one
of the packets is lost in the network. In the following, we simplify the expression assuming
a constant dropping probability pk = p for all k = 1, 2, . . . , l, so that r(w) = (1 − p)lwws.

The function r(w) is concave if and only if w ≤ −2

l ln(1− p)
, which is approximately 2/(lp) (see

Table 1).
Now we are ready to see the marginal productivity indices of TCP Tahoe in quantitative

terms. Figure 3 displays the marginal productivity indices with different values of congestion-
Threshold, for advertisedWindow = 512 packets and packet size s = 1. State 0 with flow equal
to 1 packet has the highest priority index, and the indices are smaller for larger actualWindow.
That is, the economic value of each packet becomes smaller as the transmission rate increases.

Apart from the TCP Tahoe with no congestion avoidance phase (discrete points), Figure 3
exhibits the marginal productivity indices for TCP Tahoe with congestionThreshold equal to
a half and a quarter of advertisedWindow. The inclusion of the congestion avoidance phase
slightly diminishes the indices in the congestion avoidance interval, while those that are below
congestionThreshold are not affected. Recall the formula (5): the indices only depend on the
states with smaller flows. In particular, they are independent of advertisedWindow.

The marginal productivity indices are nonincreasing and they are below the curve r(wn)/wn

(Proposition 1), included in Figure 3 for comparison. Further, especially for values within the
congestion avoidance phase and close to the maximum concavity-assuring actualWindow value,
the index is negative. That is, if the admission cost parameter ν is positive, the optimal action
is to reject that flow. Even if we had ν = 0, which could be the case of infinite buffer, it is
optimal not to admit the flow.

Roughly speaking, the marginal productivity index decreases sublinearly from 1 to 0 as the
actualWindow increases from 1 packet to the maximum concavity-assuring value. Note that
Figure 3(d) shows valid indices only for actualWindow smaller than 400 packets (see Table 1).
For larger values the concavity assumption is not satisfied and the curve is only illustrative.

Finally, comparing Figure 3(a) to (d) we can observe the effect of future-path packet dropping
probability. In Figure 3(a), with the smallest dropping probability and the smallest number of
connection links, the economic value of each packet diminishes slightly, maintaining around 90%
of its value even at the transmission rate of 512 packets. Figure 3(c) presents roughly ten-
times more deteriorated connection with respect to Figure 3(a) and suggests that each packet
transmitted at the highest rate only has a half of the single-transmitted packet value. In even
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Figure 3: Marginal productivity indices (MPI) as a function of actualWindow between 1 and
512 packets. The indices refer to TCP Tahoe with congestionThreshold = 512 packets (discrete
points), 256 packets (dotted line), and 128 packets (dashed line), respectively. The solid curve
depicts the function r(w)/w.

less reliable connection in Figure 3(d) the packet value decreases dramatically, and becomes
negative even at moderate transmission rates.

3.2 Implementation of Priority Indices in Congestion Avoidance Mechanisms

Consider any congestion avoidance mechanism (e.g., RED) with the following property: on
an arrival of a packet, it calculates the probability of dropping it, generates the random event,
and eventually drops the packet. We will now discuss how this mechanism may be modified so
that it takes into account the economic value of the packet during the dropping decision stage.

The economic value of a packet can be evaluated via the marginal productivity index mul-
tiplied by its goodput size in Bytes, say νnsn. Let the dropping probability calculated by the
congestion avoidance mechanism for this packet at a given time be pn. We next discuss what
should be the dropping probability pm if a packet with economic value νmsm arrived instead.

For fair admission control we may want to impose that the expected economic loss for drop-
ping packets should be equal. Hence,

pm =
νnsn

νmsm
pn. (6)
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As a consequence, either all or none of the incoming packets have a zero dropping probability.
When the buffer is heavily congested and pn = 1, then all other packets should experience

the same dropping probability. Yet in that case, according to (6), the dropping probability pm

will be larger than 1 for less valued packets, and smaller than 1 for more valued packets.
An alternative formula that satisfies pn = 1 ⇐⇒ pm = 1, is the following:

pm = 1− (1− pn)
νnsn

νmsm . (7)

Note that the two formulae are roughly equivalent for small values of dropping probability pn.
Any of them can hence be implemented in the original RED, in which the dropping probability
is maintained at very low levels (except for the aggressive stage when all incoming packets
are being dropped). For congestion avoidance mechanisms, in which the dropping probability
smoothly increases to 1, the latter should be the preferred formula.

4 CONCLUSIONS AND ONGOING WORK

In this paper we have developed a model of TCP Tahoe and derived its optimal index
policy. We have further proposed an implementation of those indices, measuring the marginal
productivity of admitting a packet, in congestion avoidance mechanisms, arguing that such a
modification can lead to more efficient utilization of network scarce resources.

The main limitation for generalization of our results is that TCP Tahoe does not have an
implementation of fast recovery nor fast retransmit. An analogous analysis in the restless bandit
framework for other TCP variants is under development. Nevertheless, the main drawback of
any restless bandit model is the allowance for only one type of reaction to congestion.

From the practical point of view, however, we believe that the outcome of our model is
roughly preserved also in more complicated mechanisms. The reason being that the economic
value depends on the actual transmission rate much more strongly than on other aspects of the
dynamics of the mechanism. These considerations are part of on-going work.
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