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Resource Allocation in Telecommunications

• Congestion control

. maximize throughput (choose preferred flows)

• Routing

. minimize packet losses (choose preferred paths)

• Admission control

. minimize delays (choose preferred packets)

• Fairness

. maximize users’ utilities (choose preferred users)
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Resource Allocation in Robotics

• Arises within reinforcement learning

• Behavior coordination & navigation in animats

. maximize utility (choose preferred behavior)

• Ranking in web search robots

. minimize searching time (choose preferred document)

• Multi-target tracking & environment mapping

. maximize map correctness (choose preferred object)
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Static Case: Knapsack Problem
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Resource Allocation Problem

• Stochastic and dynamic

• There are a number of independent competitors

• Constraint: resource capacity

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• How to design a good dynamic priority rule?
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Stochastic Programming Framework

• Stochastic programming = Markov Decision Processes

• Discrete time model (t = 0, 1, 2, . . . )

• Competitor k ∈ K is defined by

. state space Nk, action space A

. expected one-period capacity consumption W a
k

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) and action process ak(t)
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Example: Job Sequencing Problem

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

. ck = cost of waiting for jobs k

. µk = service rate for jobs k

• Nk := {‘completed’, ‘waiting’}, Ak := {‘serve’, ‘wait’}

• expected one-period capacity consumption

W ‘serve’
k,‘completed’ := 1, W ‘serve’

k,‘waiting’ := 1,

W ‘wait’
k,‘completed’ := 0, W ‘wait’

k,‘waiting’ := 0;
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Example: Job Sequencing Problem

• expected one-period reward

R‘serve’
k,‘completed’ := 0, R‘serve’

k,‘waiting’ := −ck(1− µk),

R‘wait’
k,‘completed’ := 0, R‘wait’

k,‘waiting’ := −ck;

• one-period transition probability matrices

P ‘serve’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ µk 1− µk

,

P ‘wait’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ 0 1

.
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Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) ≤W, for all t = 0, 1, 2, . . .

• This problem is PSPACE-hard

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Whittle’s Relaxation

• Fill the capacity in expectation

. infinite number of constraints is replaced by one

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]

subject to
∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
≤

∞∑
t=0

βtW

• Provides an upper bound for RAP
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Lagrangian Relaxation

• Pay cost λ for using the capacity

. the constraint is moved into the objective

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
− λ

∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]

• Also provides an upper bound for RAP

• This decomposes due to competitor’s independence

into single-competitor subproblems (easier to solve)
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Priority Rules

• Assign to each competitor a dynamic price

. the rule at each moment is to be greedy:

prefer competitors with higher current prices

• The prices arise in the solution of the subproblem

. when λ is small, it is optimal to use all the capacity

. when λ is large, it is optimal to use no capacity

. prices are values of λ when optimal solution changes

. optimal policy: use capacity iff price lower than λ

• In general, this gives nearly-optimal solution to RAP
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Optimality of Priority Rules

• Often in problems with symmetric competitors

• E.g.: in routing to parallel queues, route to:

. the Shortest Queue (if min. delays)

• E.g.: sequencing of customers to service:

. the Shortest Service Time (if min. waiting time)

. the Least Empty Buffer Space (if min. losses)

. the Shortest Queue (if min. delays)

• These values are the “prices”
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Optimality of Priority Rules

• Also in asymmetric problems with simple dynamics

• cµ-rule (Cox & Smith ’61)

. several classes k ∈ K of arriving customers/packets

. ck = cost of waiting for class k

. µk = service rate for class k

. assigning priority to the class k with largest ckµk

. optimal in several simple resource allocation problems

• Gittins index rule (’72) for multi-armed bandit problem

• Klimov index rule (’74) for M/G/1 model with

feedback
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Priority Rules in More Complex Problems

• e.g.: Niño-Mora (’02)

. routing to parallel queues with asymmetric waiting

costs and service rates

• e.g.: Jacko (Ph.D. thesis ’09)

. routing to parallel queues with belated information

. congestion control for TCP flows

• Price computation:

. in general, by an algorithm in at most cubic time

. after an analysis, sometimes obtained in a closed form
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Example: Performance of a Priority Rule



17

Thank you for your attention
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Problems in Telecommunications

• Fall into resource allocation problems

• Advantages:

. decentralized control

. natural for creating priority tables

. dynamic prices yield structural results

. nearly-optimal (optimal in expectation)

• Disadvantages

. prices may not exist
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Problems in Telecommunications

• However, dynamic prices are scarcely used

. Niño-Mora ’02, ’06

. Raissi-Dehkordi & Baras ’02

. Goyal et al. ’06

. Jacko ’09

• Optimality of ad-hoc priority rules is usually analyzed

. Glazebrook et al. ’04, ’04, ’07

. Ehsan & Liu ’04, ’05, ’06, ’07
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Problems in Telecommunications

• Niño-Mora ’02:

. queues with finite buffers

. consider a rejection cost as the wage

. assume concave nondecreasing service rates

. assume convex nondecreasing holding costs

. price-based characterization of optimal threshold

policy

. as rejection cost grows, start rejecting customers

under longer queue

. priority rule heuristic for routing to parallel queues
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Problems in Telecommunications

• Niño-Mora ’06:

. queues with finite buffers

. analyzes loss-sensitive and delay-sensitive queues

. rejecting cost vs. discounted holding-forever cost

. loss-sensitive: fewest-empty-buffer-spaces rule

. delay-sensitive: shorter-queue rule

. both converge to cµ rule for infinite buffers

. throughput maximization is special case
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Problems in Telecommunications

• Goyal, Kumar & Sharma ’06:

. transmissions over polled multiaccess fading channel

. voice � streaming media � files

. infinite buffers, delayed information

. poll-and-response system

• Raissi-Dehkordi & Baras ’02:

. pulling broadcast scheduling (teletext with feedback)

. minimize weighted average waiting time
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Problems in Telecommunications

• Glazebrook et al. ’04:

. server allocation to impatient (perishable) tasks

. reduces to Gittins indices in a special case

• Glazebrook & Kirkbride ’04:

. routing of background jobs in distributed PC systems

. ad-hoc prices (static policy improvement)

• Glazebrook & Kirkbride ’07:

. routing to heterogeneous unreliable servers

. ad-hoc prices (DP policy improvement)
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Problems in Telecommunications

• Ehsan & Liu ’04, ’05, ’06, ’07:

. wireless server allocation with delays

. minimize expected holding costs

. ad-hoc prices (myopic)

. give sufficient optimality conditions (special cases)


