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Motivation: Wireless Downlink

e Channel conditions vary g

due to fading
e Exponential-length jobs @
e Channel conditions iIE
\-—J

8

Independent across users

1
e i.i.d. channel conditions .L‘
Ny
from slot to slot

e Base station can serve 1 user per slot



Talk Outline

e Resource allocation problem (restless bandit extension)
e MDP framework

e [hreshold policies and indexability

e Potential improvement (index) rule

e Application in wireless networks

e Performance evaluation by simulations

e Work In progress



Resource Allocation Problem (RAP)

e Stochastic and dynamic

e There are a number of independent users

e Constraint: resource capacity at every moment
e Objective: maximize expected “reward”

e Captures the exploitation vs. exploration trade-off

> always exploiting (being myopic) is not optimal
> always exploring (being utopic) is not optimal

e This is a model of learning by doing!



Adaptive Greedy Rules

e Assign a dynamic price (index value) to each user

e \We are concerned with the following rule

> given the situation at each moment, be greedy:
serve job with highest current price

e Experiments and simulations suggest that it gives a
nearly-optimal solution to RAP

e In some problems it is optimal

> cp-rule (Cox & Smith '61): job sequencing
> Gittins index rule ('72): multi-armed bandit problem
> Klimov index rule ('74): M/G/1 model w/ feedback



MDP Framework

e Markov Decision Processes
e Discrete time model (t=10,1,2,...)

e Job k£ € K is defined by

> state space N, action space A

> expected one-period capacity consumption W7
> expected one-period reward R}

> one-period transition probability matrix P},

o State process X (t) € N,

e Action process ai(t) € A — to be decided



Time-Varying Job Sequencing Problem

e Job/user/channel k € KC is defined by

> ¢ = cost of waiting for job £

> g, = probability to move to channel condition n
(steady-state distribution)

> Wi, = completion probability for job k& under
condition n (ordered: pig, < fhgni1)

e Find a serving sequence minimizing the total cost of
waiting of jobs k € K

o N :={0,1,2,..., N;}, Ay := {'serve’, 'wait'}

e 0 = ‘completed’ ; n = ‘waiting’ and condition is n



Time-Varying Job Sequencing Problem

e Expected one-period reward

Rserve =) Rserve — —Ck(l — ,uk,n)a
Rwalt =) Rwalt = —Cf;

e One-period transition probability matrices

0 1 Ny,
0 / 1 0 0 0 \
1 Mk 1 /714,1%,1 e ﬁk,lC_Ik,Nk
P = Uk2  Mk2Qk1 ---  Mk2GK N,

Nk\,uk,Nk Lk NGk 1 - - ﬁk,Nka,Nk)



Resource Allocation Problem

e Formulation under the 3-discounted criterion:

O

78 t
Iﬂfﬁc L Z b Rk Xk( )
kek | t=0 i

subject to Z W,g’ka = forallt =0,1,2,...
kek

e Analogously under the time-average criterion

e This problem is PSPACE-hard

> Intractable to solve exactly by Dynamic Programming
> Instead, we relax and decompose the problem



Whittle’s Relaxation

e Serve WV jobs in expectation

> infinite number of constraints is replaced by one
> sort of perfect market assumption

T — t pak(t)
max » E"|» AR
kel | 7=0 ]
: ™ - tya7ak(t) _ E t
subject to %E Zoﬁ Wk,lka(t) = Zoﬁ 44
c (= 1 =

e Provides an upper bound for RAP



Lagrangian Relaxation

e Pay cost v for using the server

> the constraint is moved into the objective

max E” Z 6tRk Y| — Y Z E” Z ﬁtW;’}k

kel i kelC |

e Also provides an upper bound for RAP

e Decomposes due to user independence into single-user
parametric subproblems

> solved by identifying the efficiency frontier




Optimal Solution to Subproblems

e Theorem 1: Threshold policy is optimal

> serve If the channel condition is above a threshold
> walit If the channel condition is below a threshold

e Theorem 2: Problem is indexable, which implies

> if v < an, then it is optimal to serve in the channel

condition n
>if v > an, then it it optimal to wait in the channel

condition n

o v, is the dynamic price (index value)

e This gives rise to opportunistic policy
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Potential Improvement Index

e Under discounted criterion:

Pl Cklk,n
S (1 i ﬁ) + 6 Z Qk,m(,uk,m — ,uk,n)
m>n

e Under time-average criterion:

PI CkHk,n PI
. Z Qk,m(,uk,m — /Lk,n) 7 R

m>n

> tie-breaking if in the best state: cpuy v,

e Rule: serve the job with highest actual Pl index
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Wireless Data Network

e CDMA 1xEV-DO: Slot duration t. = 1.67ms

e Let job length B be exponentially distributed

> Probability of departure if served A bits in slot is
Pb< B, <b+ A|B; > b] ~ A/E|B|

o Let si, be service rate (bps) in condition n, then

"y Skn ° tc

e Pl rule is independent of E|By]

> only tie-breaking becomes: csy, v, /E| B



Other Scheduling Disciplines

e Relatively Best (Qualcomm CDMA standard, 2000):

RB . Hk,n
Vem "=
E i mtk.m
m=1

> ~ Proportionally Fair scheduler (Borst, 2005)
e Score Based (Bonald, 2004): u > = qum

e Proportionally Best: v.° = Pk
’ Mk, Ny

> maximum stability region (Aalto & Lassila, 2010)

14



Systems with Random Arrivals

e Pl rule has maximum stability region

> the only rule under general ¢;'s

e Pl equivalent to RB in “symmetric’ systems

> performance characterized as processor sharing

o We eva

uate performance in simulations

> consider 2 different classes of jobs
> Ar: probability of arrival from class &
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Numerical Simulations: Scenario 1
e Varied \; so that p varies from 0.5 to 1
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Numerical Simulations: Scenario 1

e Varied \; so that p varies from 0.5 to 1

Mean number of users
Y
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Numerical Simulations: Scenario 1

e Sample path of the number of users, o = 0.95
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Numerical Simulations: Scenario 1

e Sample path of the number of users, o = 0.95
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Numerical Simulations: Scenario 1

e Indifference curves for mean number of users

Mean number of class-2 users
P
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Numerical Simulations: Scenario 1

e Indifference curves for mean number of users

Mean number of class-2 users

0 2 A 5 8
Mean number of class-1 users

21



Numerical Simulations: Scenario 2
e Varied class-1 job length so that p varies from 0.5 to 1
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Numerical Simulations: Scenario 2

e Varied class-1 job length so that p varies from 0.5 to 1

Mean number of users
Y
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Numerical Simulations: Stoch. Dominance

e Typical picture of empirical CDFs
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Simulations Summary

e Pl consistently outperforms all the other rules
e Or its mean performance is equivalent to the best one

e Simulations strongly suggest stochastic dominance of
Pl over the other rules

e The stability region is the maximum for Pl rule, while
it is not for cu and RB rules
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Conclusion

e Framework to study opportunistic policies

> RB (PF), PB roughly recovered under other rewards

e Tractable framework to obtain a new Pl policy

> asymptotically fluid-optimal (AEJV '10)
> the only maximally stable policy in general (AL "10)
> excellent performance in small-scale problems

e Pl policy implies (roughly):

> In low load: be channel-opportunistic
> in high load: take into account job size (cu)
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Future Research

e Work in progress

> heavy-traffic/overload analysis of Pl
> Pl with abandonments
> non-iid channel evolution (fading or mobility)

e Open problems

> optimal solution (structure)

> online learning of Pl parameters

> theoretical justification of second-order index
> correlation among users’ channels
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Thank you for your attention
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Example: Job Sequencing Problem

e Find a serving sequence minimizing the total cost of
waiting of jobs k € K

> ¢ = cost of waiting for job £
> 1, = completion probability for job £

o N := {‘completed’, ‘waiting'}, A := {'serve’, 'wait’}

e Expected one-period capacity consumption

serve’ serve’ _
Wk ‘completed’ 17 Wk ‘waiting’ 17
W ‘wait’ 0’ wW." ‘wait’ . — 0;

k,'completed’ k,'waiting’



Example: Job Sequencing Problem

e Expected one-period reward

‘serve’ L ‘serve’ .
Rk,‘completed’ =0, Rk,‘waiting' " _Ck(l _ Mk)?
‘wait’ L ‘wait’ L .
Rk,‘completed’ . 07 Rk,‘waiting' = —Ck;

e One-period transition probability matrices

‘completed” ‘waiting’

P:erve’ . ‘completed| 1 0
‘waiting [bE 1 — g
‘completed’” ‘waiting’

P};Nait, . ‘completed] 1 0

‘waiting 0 1
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Dynamic Prices (Index Values)

e We will assign a dynamic price to each user

e Arises in the solution of the parametric subproblem

> optimal policy: use server iff price greater than v
e Prices are values of v when optimal solution changes

e However, such prices may not exist!

> indexability has to be proved

e Price computation (if they exist):

> in general, by parametric simplex method
> by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

e For finite-state finite-action MDPs there exists an
optimal policy that is deterministic, stationary, and
independent of the initial state

> we narrow our focus to those policies
> represent them via serving sets S C N/
> policy & prescribes to serve in states in S and wait in

states in S¢ := N\ S

e Combinatorial v-cost problem: rgaﬁfcR‘g — VW, where
C

O O

RS =E5 [ ) ﬁthb((’éi) C WS =ES | ) 6tW§(<tt))
=0 =
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Geometric Interpretation

o (WS R?) gives rise to 2-dim. performance region
e Indexability means the performance region is convex

e Optimal (threshold) policies are extreme points of the
upper boundary of the performance region

e Index values are slopes of the upper boundary

e Indexability is sort of a dual concept to threshold
policies

> but not equivalent!



Performance Region
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Performance Region
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Performance Region
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Performance Region

37



Performance Region

38



Performance Region
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