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Neoclassical Economics

e Standard problem of neoclassical economics:

> maximize aggregate utility w.r.t. budget constraint

e Standard assumptions (among others):

> goods/services are continuously-divisible
> budget (money) is continuously-divisible
> goods/services do not change over time

e Standard solution:

> marginal utility per unit of money spent must be
equal for each good



Motivation

e Resource allocation when the assumptions do not hold:

> communications (routing, scheduling)

> robotics (tracking, ranking)

> marketing (assortment, inventory control)
> labor economics (job search)

> clinical trials (treatment selection)

e Can we still apply marginalism ideas?
e What policies are optimal?

e What policies are simple to implement?



Talk Outline

e Resource allocation problem

e Framework

e Approach and adaptive greedy rules
e Known results

e Challenges



Resource Allocation Problem (RAP)

e Stochastic and dynamic

e There is a number of independent competitors
e Constraint: resource capacity at every moment
e Objective: maximize expected “reward”

e Captures the exploitation vs. exploration trade-off

> always exploiting (being myopic) is not optimal
> always exploring (being utopic) is not optimal

e This is a model of learning by doing!



Questions to Answer

e [Economic] For a given joint goal, is it possible to
define dynamic quantities for each competitor that can
be interpreted as prices? And if yes,

e [Algorithmic|] How to calculate such prices quickly?

e [Mathematical] Under what conditions is there a greedy
rule that achieves optimal resource capacity allocation?

o [Experimental] If greedy rules are not optimal, how
close to optimality do they come? And how do they
compare to alternative rules?



Static RAP: Knapsack Problem




MDP Framework

e Markov Decision Processes (Stoch. dyn. programming)
e Discrete time model (t=10,1,2,...)

e Competitor k € IC is defined by

> state space N, action space A

> expected one-period capacity consumption W7
> expected one-period reward R}

> one-period transition probability matrix P},

o State process X (t) € N,

e Action process ai(t) € A — to be decided



Example: Job Sequencing Problem

e Find a serving sequence minimizing the total cost of
waiting of jobs k € K

> ¢ = cost of waiting for jobs k
> 4 = service rate for jobs k

o N := {‘completed’, ‘waiting'}, A := {'serve’, 'wait’}

e expected one-period capacity consumption

serve’ _ serve’ _
Wk ‘completed’ 17 Wk ‘waiting’ 17
W ‘wait’ 0’ wW." ‘wait’ . — 0;

k,'completed’ k,'waiting’



Example: Job Sequencing Problem

e expected one-period reward

‘serve’ L ‘serve’ .
Rk,‘completed’ =0, Rk,‘waiting' " _Ck(l _ Mk)?
‘wait’ L ‘wait’ L .
Rk,‘completed’ . 07 Rk,‘waiting' = —Ck;

e one-period transition probability matrices

‘completed” ‘waiting’

P:ervev . ‘completed| 1 0 |
‘waiting L 1 — pg
‘completed’” ‘waiting’
P:];Naitr . ‘completed 1 0

‘waiting 0 1
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Resource Allocation Problem

e Formulation under the S-discounted criterion:

e EW > AR

O

7T€H

_t=0

subject to Z I/[/,ff’fxlC < forallt =0,1,2,...

e This prob

> Intracta
> |nstead,

kelkC

em is PSPACE-hard

ble to solve exactly by Dynamic Programming
we relax and decompose the problem
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Whittle's Relaxation
e Fill the capacity in expectation

> infinite number of constraints is replaced by one
> sort of perfect market assumption

T — t pak(t)
max » E"|» AR
kel | 7=0 ]
: ™ - tya7ak(t) E t
subject to Z}CE Zoﬁ Wk,lka(t) < Zoﬁ 44
ke = I =

e Provides an upper bound for RAP



Lagrangian Relaxation

e Pay cost A for using the capacity

> the constraint is moved into the objective

max
mell

e Also provides an upper bound for RAP

kel

ETF

O

ZﬂtRk Xk (t)

| t=0

—AZE”

> S,

_t=0

e Decomposes due to competitor's independence into
single-competitor parametric subproblems

> solved by identifying the efficiency frontier
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Dynamic Prices

e We will assign each competitor a dynamic price

e They arise in the solution of the parametric subproblem

> optimal policy: use ca
e Prices are values of A\ w

e They define indifference

pacity iff price lower than A

nen optimal solution changes

curves

e However, such prices may not exist!

e Price computation:

> in general, by parametric simplex method
> after math, sometimes obtained in a closed form
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Knapsack Rule

s. t. Z azr, =W (GKP)
Z Zha <1 for all k£ € IC,

2o € {0,1} forall ke K,a € Axp,

where z;, , denotes whether competitor k is allocated
capacity a



Adaptive Greedy Rules

e \We are concerned with the following rule

> at each moment be greedy:
prefer competitors with higher current prices
> this is the greedy solution to (GKP)

e It Is adaptive because the prices are dynamic

e Experiments and simulations suggest that it gives a
nearly-optimal solution to RAP

e In some simpler problems, it i1s optimal
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Application: Perishable ltems

e Decision moments: s =TT —1,...,1

> occupies space W, yields profit R
> if promoted, it remains unsold with probability p
> if not promoted, it remains unsold with probability

q>Dp
> once sold, it never resurrects

e Deadline: s =0

> yields salvage value aR, a < 1 if not sold

e Aim: Fill in the promotion space so that the expected
aggregate total B-discounted revenue is maximized
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Price for Perishable Items

e Under a regularity condition
(1-¢)—a(l—0q) 20

e Closed-form formula of the price of one item:

(1 —¢q) —a(l = Bg)](1 - 620)}
(1 —Bq) + (Bg — Bp)(Bp)*~!

e J. & Nino-Mora (2007), J. (2009, submitted 2011)

=4 1=p) = alt = )] -

e For inventory of K perishable items, the prices can be
computed in O(KT)

e Graczovd & J. (in preparation 2011)
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Performance of Greedy vs Knapsack Rule
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Challenges
e Modeling
> ...If modeling were as easy as mathematics...

e Proving (near-)optimality of greedy rules

> asymptotic optimality proved for symmetric case, as
number of competitors and resource capacity grow

e Incorporation of risk aversion, etc.
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Thank you for your attention
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