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Neoclassical Economics

• Standard problem of neoclassical economics:

. maximize aggregate utility w.r.t. budget constraint

• Standard assumptions (among others):

. goods/services are continuously-divisible

. budget (money) is continuously-divisible

. goods/services do not change over time

• Standard solution:

. marginal utility per unit of money spent must be

equal for each good
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Motivation

• Resource allocation when the assumptions do not hold:

. communications (routing, scheduling)

. robotics (tracking, ranking)

. marketing (assortment, inventory control)

. labor economics (job search)

. clinical trials (treatment selection)

• Can we still apply marginalism ideas?

• What policies are optimal?

• What policies are simple to implement?
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Talk Outline

• Resource allocation problem

• Framework

• Approach and adaptive greedy rules

• Known results

• Challenges
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Resource Allocation Problem (RAP)

• Stochastic and dynamic

• There is a number of independent competitors

• Constraint: resource capacity at every moment

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• This is a model of learning by doing!
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Questions to Answer

• [Economic] For a given joint goal, is it possible to

define dynamic quantities for each competitor that can

be interpreted as prices? And if yes,

• [Algorithmic] How to calculate such prices quickly?

• [Mathematical] Under what conditions is there a greedy

rule that achieves optimal resource capacity allocation?

• [Experimental] If greedy rules are not optimal, how

close to optimality do they come? And how do they

compare to alternative rules?



6

Static RAP: Knapsack Problem
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MDP Framework

• Markov Decision Processes (Stoch. dyn. programming)

• Discrete time model (t = 0, 1, 2, . . . )

• Competitor k ∈ K is defined by

. state space Nk, action space A

. expected one-period capacity consumption W a
k

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) ∈ Nk

• Action process ak(t) ∈ A – to be decided
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Example: Job Sequencing Problem

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

. ck = cost of waiting for jobs k

. µk = service rate for jobs k

• Nk := {‘completed’, ‘waiting’}, Ak := {‘serve’, ‘wait’}

• expected one-period capacity consumption

W ‘serve’
k,‘completed’ := 1, W ‘serve’

k,‘waiting’ := 1,

W ‘wait’
k,‘completed’ := 0, W ‘wait’

k,‘waiting’ := 0;
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Example: Job Sequencing Problem

• expected one-period reward

R‘serve’
k,‘completed’ := 0, R‘serve’

k,‘waiting’ := −ck(1− µk),

R‘wait’
k,‘completed’ := 0, R‘wait’

k,‘waiting’ := −ck;

• one-period transition probability matrices

P ‘serve’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ µk 1− µk

,

P ‘wait’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ 0 1

.
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Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) ≤W, for all t = 0, 1, 2, . . .

• This problem is PSPACE-hard

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Whittle’s Relaxation

• Fill the capacity in expectation

. infinite number of constraints is replaced by one

. sort of perfect market assumption

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]

subject to
∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
≤

∞∑
t=0

βtW

• Provides an upper bound for RAP
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Lagrangian Relaxation

• Pay cost λ for using the capacity

. the constraint is moved into the objective

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
− λ

∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]

• Also provides an upper bound for RAP

• Decomposes due to competitor’s independence into

single-competitor parametric subproblems

. solved by identifying the efficiency frontier
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Dynamic Prices

• We will assign each competitor a dynamic price

• They arise in the solution of the parametric subproblem

. optimal policy: use capacity iff price lower than λ

• Prices are values of λ when optimal solution changes

• They define indifference curves

• However, such prices may not exist!

• Price computation:

. in general, by parametric simplex method

. after math, sometimes obtained in a closed form
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Knapsack Rule

max
z

∑
k∈K,a∈Ak,nk

vak,nk
azk,a

s. t.
∑

k∈K,a∈Ak,nk

azk,a = W (GKP)

∑
a∈Ak,nk

zk,a ≤ 1 for all k ∈ K,

zk,a ∈ {0, 1} for all k ∈ K, a ∈ Ak,nk

where zk,a denotes whether competitor k is allocated

capacity a
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Adaptive Greedy Rules

• We are concerned with the following rule

. at each moment be greedy:

prefer competitors with higher current prices

. this is the greedy solution to (GKP)

• It is adaptive because the prices are dynamic

• Experiments and simulations suggest that it gives a

nearly-optimal solution to RAP

• In some simpler problems, it is optimal
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Application: Perishable Items

• Decision moments: s = T, T − 1, . . . , 1

. occupies space W , yields profit R

. if promoted, it remains unsold with probability p

. if not promoted, it remains unsold with probability

q > p

. once sold, it never resurrects

• Deadline: s = 0

. yields salvage value αR, α < 1 if not sold

• Aim: Fill in the promotion space so that the expected

aggregate total β-discounted revenue is maximized
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Price for Perishable Items

• Under a regularity condition

(1− q)− α(1− βq) ≥ 0

• Closed-form formula of the price of one item:

νt =
R

W

{
[(1− p)− α(1− βp)]− [(1− q)− α(1− βq)](1− βp)

(1− βq) + (βq − βp)(βp)t−1

}
• J. & Niño-Mora (2007), J. (2009, submitted 2011)

• For inventory of K perishable items, the prices can be

computed in O(KT )

• Graczová & J. (in preparation 2011)
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Performance of Knapsack Rule
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Performance of Greedy vs Knapsack Rule
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Challenges

• Modeling

. ...if modeling were as easy as mathematics...

• Proving (near-)optimality of greedy rules

. asymptotic optimality proved for symmetric case, as

number of competitors and resource capacity grow

• Incorporation of risk aversion, etc.
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Thank you for your attention


