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a b s t r a c t

This paper is concerned with a new type of congestion control method that we call
anticipative congestion control, which exploits probabilistic information available at a
network node about congestion at other nodes. Motivated by the Internet flows behaving
according to the Transmission Control Protocol, we consider a flow with time-varying
input stream. We design a Markov decision process model for flow admission control
and characterize the Whittle index in a closed form. This index measures the efficiency
of flow data transmission at a router. We prove that such an index policy is optimal and
that it further implies optimality of threshold policies. We apply the results to obtain an
expression of the index for a single-bottleneck flow under several types of fairness criteria.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with what we call anticipative congestion controlwhich is a method whereby the router that has to take
a decision to control congestion, such as dropping/marking a flow/packet, does it based not only on its own congestion
information, but also on the probability that the accepted flow/packet will be dropped downstream. As Floyd and Fall [1]
pointed out, traffic lacking end-to-end congestion control may cause congested links sending packets that will only be
dropped later in the network. Since dropping a packet on its route implies that all the scarce resources it has consumed
so far are wasted, such an anticipative congestion control may be highly valuable for the network performance in periods
of congestion. It is then intuitively appealing that when a scarce resource is to be allocated to a packet, the possibility of
getting that packet lost in the remainder of its route should be taken into account. A first important assumption of this work
is, therefore, that routers have probabilistic information about actual congestion downstream. Another assumption of our
proposal is that the method is applied to Internet flows behaving according or similar to the Transmission Control Protocol
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Fig. 1. A design of an end-to-end connection.

(TCP). The distinguishing feature of TCP is the time-varying input stream (sending rate), which is being deterministically and
dynamicallymodified by the sender reacting to the congestion signals received from the network. However, such congestion
signals (that include dropped ormarked packets) are perceived as stochastic, since they depend on the activity of other users
and on the algorithms implemented at network routers.

We build on an improved idea ofWischik [2], who concluded that a fair dropping/marking of a flow should reflect (i) how
much of the capacity it uses, and (ii) the congestion state at the router.We extend the latter to (ii′) the congestion state at the
router and the remainder of the route. More information at network nodes may result in a more efficient resource allocation.
Notice that the information about network congestion gathered by intermediate nodes has a significantly lower propagation
delay than the one that end-users obtain from packet acknowledgments. Similarly, the delay in the response to congestion
is also lower for nodes than for users. The recently proposed explicit congestion notification (ECN) mechanism may not only
decrease packet losses directly by marking instead of dropping packets, but may also provide useful information for a more
efficient resource allocation at network nodes.

To illustrate the idea on a simple example, consider an end-to-end connection that includes two bottleneck routers, as
in Fig. 1. If Router2 is busy (yet still has some free capacity in the buffer) and Router1 is able to anticipate it, then congestion
notification decisions at Router1 should take into account the input rate of an incoming flow. If the rate is small, so that
Router2 would be able to transmit the arriving data, then they should be transmitted at Router1. On the other hand, if the
input rate is too high, so that Router2 is very likely to drop it, the flow should be dropped already at Router1; or, it could be
a strong candidate for getting a congestion signal from the congestion notification mechanism implemented at Router1.

The data of the flow generate certain reward for its receiver, if they are delivered, which can be achieved only if they are
transmitted by the router. The difficulty is that these flows are dynamically changing their input rate, so the rewards may
increase or decrease over time. Thus, the question is whether to exploit the present rewards by transmitting at the input
rate, or to take a myopically suboptimal action which may yield higher rewards further downstream or to the following
packets arriving at the router.

The objective of this paper is to formalize such an intuition. We deal with typical concave utility functions, which
were summarized as α-fairness in [3] and generalized in [4]. For particular values of α, α-fairness covers throughput
maximization, proportionally fair assignment, delay minimization, and approximates max–min fairness arbitrarily closely.
We let the router calculate the α-fair price of the entire flow based on the input rate and the current congestion information
and compare it to a transmission cost given as a parameter. Such a price is defined by the Whittle index [5] in this paper.

In contrast to the anticipative congestion control proposed here, the mechanisms implemented so far are either reactive
or preventive. Reactive congestion control such as the buffer tail dropping policy showed to be prone to creating various
serious problems in the networks (cf. [6]) and to have a significant negative impact on the efficiency of scarce resources
(bandwidth and buffer space) allocation in networks. Alternative proposals focused on preventive congestion control
developing active queue management mechanisms, such as RED [7], BLUE [8], and a palette of their variants, which try to
detect local congestion in its early stage andwarn the traffic sources expecting that they decrease their input rates. Recently,
ECNhas become increasingly deployed in the Internet. Explicitlymarked packets should be understood by users as awarning
about possible dropping of packets in a very near future. However, such a preventive schemes are heavily sensitive to several
parameters and flow types, and there are no general rules for their proper tuning even after two decades of research.

Our approach differs from the preventive congestion control mainly by trying to exploit available information about
congestion at other network nodes, not only about the congestion at the node where this control is implemented. Gathering
of such information inside the network may be costly, however, increasing ECN deployment improves the possibilities
for routers to have fresh news from other network nodes. Similar assumptions about information at network nodes were
considered for congestion control problems in [9–11]. They showed that communication across network nodes, especially
the neighboring ones, is beneficial and the latter two discussed also practical implementation of such information gathering.

1.1. General Markov decision process model

We model the anticipative congestion control problem in the framework of Markov decision processes (MDPs). In
particular, we present a binary-action MDP (i.e., a restless bandit) model for the router-based control of the flow. Consider
the time slotted into discrete time epochs t ∈ T := {0, 1, 2, . . .}. The period between two epochs is fixed and approximates
the flow’s round-trip time (RTT), so it can be defined by the propagation RTT, while the congestion delays (i.e., the time
spent in the router buffers) are ignored. We assume that all packets are of the same size, which we further define to be one
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bandwidth/buffer capacity unit (this restriction could be dropped with the cost of a more complicated notation, since one
would need to have the system parameters both in packet units and in bits). We define the following parameters of the
system:

• the state space N := {0, 1, . . . ,N − 1}, N ≥ 1, is a set of possible levels of the input stream;
• the workloadW sent

n (in number of packets) sent by the sender of the flow at state n;
• the action space A := {0, 1}; A := 2 is the number of available actions by the router for the flow;
• the one-period transition probability matrix Pa for the flow states if action a is applied at the router;
• the one-period expected workloadW a

n , or bandwidth used, of the flow at state n if action a is applied at the router;
• the one-period expected reward Ra

n, or fairness, obtained of the flow at state n if action a is applied at the router.

Suppose that the flow starts in an initial state i ∈ N and that the end-users’ impatience follows a geometric distribution
with mean 1/(1 − β). This may well be due to an impatience of the sender, of the receiver, or due to external factors such
as broken connections (see, e.g., [12]). Thus, the sender has packets available for transmission during a random number of
periods, given by the probability 0 < 1 − β < 1 that the flow is terminated before the next time epoch. Except for the
end-users’ impatience, the flow is considered persistent.

Denote by X(·) the state process of the flow and by a(·) the action process by the router at epochs t ∈ T . The system
dynamics is as follows (see Fig. 1). At epoch t , the sender finds herself at its state X(t) ∈ N and sends the workload of
W sent

X(t) packets to the router. The router observes the flow state X(t), decides the flow action a(t) ∈ A, and instantaneously

transmits 0 ≤ W a(t)
X(t) ≤ W sent

X(t) packets. The transmitted packets with possible losses (at subsequent routers further

downstream) arrive to the receiver, who obtains the reward Ra(t)
X(t). If the router transmitted the packets of the flow without

any congestion warning and if there was no congestion downstream, then the receiver sends complete acknowledgments
back to the sender; otherwise only partial acknowledgments are sent. Next, with probability 1 − β the flow terminates so
that there are no more packets sent by the sender in the future time epochs and no more rewards earned by the receiver. If
not terminated, then the sender’s next-epoch stateX(t+1) is set according toPa(t) and the process is repeated. The transition
probability matrix Pa(t) must thus capture whether the workload was received without congestion, which is given by the
complete acknowledgments of the receiver sent back to the sender. We emphasize that the sender makes no decisions and
the input stream dynamics is Markovian. The decision upon a(t) is taken by the router.

Let ν be the per-packet transmission cost considered as a parameter of the router in which the control is to be
implemented. Let Π be the set of all history-dependent randomized policies for the flow. Then our objective is to find a
policy π∗

∈ Π resolving the following ν-parameter problem:

max
π∈Π

Eπ
i


∞
t=0

β t

Ra(t)
X(t) − νW a(t)

X(t)


, (1)

where Eπ
i denotes the expectation over the state process X(·) and over the action process a(·), conditioned on the initial

state X(0) = i and on policy π .

1.2. Related models

Well-studied in the queueing theory literature is the admission control problem, in which a decision maker can choose
between two static input rates, typically corresponding to admission and rejection of the flow. This can be seen as a bi-criteria
optimization problem resolving the trade-off between earning a reward from accepting the flow or paying a rejection cost,
pioneered by Naor [13] for Poisson arrivals. For the same arrival (input) process, Niño-Mora [14] identified an optimal index
policy, using theWhittle index. However, the TCP-like behavior described in the previous section does not result in a Poisson
process for the number of arriving packets, so these models are inadequate for studying flows in the Internet that typically
dynamically change their input stream. Piunovskiy [15] introduced a parametric model with controlled input stream that
can be chosen from a fixed interval of rates and proved optimality of a bang–bang control depending on the congestion
(queue length) at the router. Again, such a policy is in a big contrast with the Internet flows behaving according to TCP.

Multi-flow congestion control at a router can be decomposed into a collection of per-flow admission control problems.
Such observations weremade in [16,10], who studied stability of the problem using a fluid-flowmodel. They illustrated that
properly designed admission control can be shown to be sufficient for both an efficient congestion control and an efficient
routing. Building on an analogywith themulti-armed restless bandit problem introduced in [5], a Lagrangian decomposition
into parametric admission control subproblems was designed in [17] for a buffer sharing problem with Poisson arrivals of
new packets. Jacko [18, Chapter 6] developed within the same framework an analogous decomposition for flows considered
in this paper. Thus, it is enough to focus here on control problem of an individual flow in isolation, captured in (1).

Closely related to our paper is a wide stream of literature on network economics and pricing (see, e.g., [19]) aiming at
improving network resource allocation. The book [20] and the surveys [21–24] provide summaries of the most important
mathematical models and results on congestion control for whole networks. The typical objective is to optimize the sum
of user’s utility functions, and is approached by showing that such a problem can be decomposed into per-user problems
of setting input rates in an adaptive (reactive to network congestion signals) manner. The typical result is that a particular
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type of fairness is achieved if all the users have utility functions of same type. The flows are assumed to be persistent and
they are studied in the fluid limit regime.

1.3. Goals and contributions

By anticipative congestion control problemwemean to implement particular control methods using the actual network
congestion information to reduce overall congestion for the route. In this paper we show how several types of fairness could
be achieved by introducing the transmission index to evaluate the efficiency of flow data transmission as a function of its
current input rate and current network congestion state.

There is an interesting consequence of taking the network congestion information into account on fairness. Our results
imply that two flows arriving at the same rate should not be treated equally if we know that one of them is routed to a
congested link and the other one to a congestion-free link. In other words, flows are treated fairly according to what the
network can transmit, and not according to what the flowswant to transmit as it is usually assumed in the existing concepts
of fairness.

In Section 2 we present an MDP (restless bandit) model of anticipative congestion control of an individual flow. The flow
dynamics and the parameters are defined in more detail there. We show that the decisions upon dropping and marking of
flow packets can be transformed into a flow admission control problem.

In Section 3 we employ the restless bandits methodology surveyed in [25] to obtain an optimal solution for the
anticipative congestion control of an individual flow via the Whittle (marginal productivity) index. This index captures the
value of network services to users, so it can be interpreted as a transmission index in our context. It can be seen as a list
of certain internal prices, and can be implemented in congestion notification mechanisms in order to resolve the fairness
problem between different flows.

As an example of applicability of our general results, Section 4 deals with admission control in a tail dropping router
of a single-bottleneck network under different fairness criteria known as generalized α-fairness. The extension to a multi-
bottleneck network is illustrated by a numerical example in Section 5.

2. Anticipative congestion control problem

In this section we consider an individual flow requiring router resources (buffer space and bandwidth capacity). We
present an MDPmodel for flows that behave under the any-increase/restart dynamics, henceforth called the restarting flow.
This approximately resembles the dynamics of several TCP variants, including TAHOE, CUBIC and COMPOUND. A similar
model could be developed for other flow dynamics, but this has been left out of the scope of this paper.

We assume that the router has two available actions to choose from. One of these actions is transmitting the packets of the
flow without warning. The other action is sending a congestion warning, which, depending on the router variant, may mean:
(i) blocking the flow for a tail dropping router, (ii) dropping some packets of the flow for a router with an active queue
management mechanism (e.g., RED), or (iii) marking the flow for an ECN router.

In order to define the problem of anticipative congestion control of an individual flow, we will use information about the
router variant (to know what to decide upon), the current flow input stream (to know the flow’s bandwidth requirements),
and the probability of losses downstream the flow’s route (to be anticipative). In the following subsections we present a
formal model of the restarting flow. An optimal anticipative congestion control is derived in Section 3.

2.1. Markov decision process model of restarting flow

The restarting flow in every period increases its sending rate defined by the actualWindow variable by a discrete
increment up to a certain maximumWindow constant unless the flow sender is warned about congestion, when it restarts
by setting the sending rate to a certain minimumWindow constant. We assume that the constants 0 < minimumWindow ≤

maximumWindow are given in advance, as they are typically set by the users’ operating systems.
The states n ∈ N denote possible levels of the sending rate, i.e., of the actualWindow variable. The 0-th state

represents actualWindow = minimumWindow, and the (N − 1)-th state represents actualWindow = maximumWindow.
The actualWindow variable in state n assumes the value W sent

n (in packets/RTT), which can therefore be interpreted as the
bandwidth capacity the flow requires for complete data transmission at the current period. Hence, in the following we
assume that 0 < W sent

0 := minimumWindow < W sent
1 < · · · < W sent

N−2 < W sent
N−1 := maximumWindow. The schematic

behavior of the restarting flow as a Markov chain is shown in Fig. 2, where ‘‘OK’’ represents a congestion-free reception
of the flow data by the receiver (complete acknowledgments) and ‘‘NO’’ represents a congestion-experienced transmission
(incomplete acknowledgments).

Since no decisions are taken by the sender, congestion control decisions must be taken by the routers. At a particular
router on the connection route wewant to decide whether the incoming packets of the flow in state n should be transmitted
without any congestion warning (achieved by action a(t) = 1 of transmitting W 1

n := W sent
n packets), or warned by

employing a congestion control function (action a(t) = 0 of transmitting 0 ≤ W 0
n ≤ W sent

n packets) depending on the router
variant. Thus, the parameterW 0

n gives us the flexibility to consider router variants with different congestion warning.
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Fig. 2. Amodel of the restarting flow as a Markov chain. The arrows represent one-period transitions among the states 0, 1, . . . ,N − 1 after a congestion-
free (OK) and a congestion-experienced (NO) transmission.

If the flow is warned at the router, then the flow restarts to state 0. If the packets of the flow are transmitted without
warning, then with probability 0 < pn ≤ 1 of congestion-free transmission it increases the input rate from W sent

n to W sent
n+1

(or remains at themaximumWindow rate if being in state N −1). On the other hand, the flow being in state n restarts to state
0 with probability 1−pn, reflecting the probability of experiencing congestion in the remainder of its route. The assumption
pn ≠ 1 is what makes our model suitable for the anticipative congestion control problem, whereas the single-bottleneck
problem is recovered if pn = 1 for all n ∈ N . Note that such a restarting behavior is similar to the well-known models with
total catastrophes (see e.g., [26]).

Given the actions interpretation above, R1
n is the expected one-period reward (fairness) from a transmitted packets of

the flow and R0
n is the expected one-period reward (fairness) from a warned flow. We will find it convenient to further

decompose R1
n into the congestion-free reward R1+

n and the congestion-experienced reward R1−
n , so that R1

n := pnR1+
n + (1−

pn)R1−
n . Thus, R0

n and R1
n can capture the system’s sensitivity to dropped or marked packets, and should also depend on W 0

n
and W 1

n , respectively. The difference of receiver rewards and workload transmission costs (i.e., R0
n − νW 0

n and R1
n − νW 1

n )
will be henceforth called the net reward under transmission cost ν.

In summary, our MDP model for the router-based control of the restarting flow is defined as follows:

• State space is N := {0, 1, . . . ,N − 1}.
• Actions: active action (transmitting) and passive action (warning) are available in each state.
• Dynamics if active: If the flow is in state n and the flow packets are transmitted at a given period, then during that period

– with probability pn > 0: it generates net reward R1+
n − νW 1

n and the flow moves to state n + 1 for the next period (or
remains in N − 1, if n = N − 1)

– with probability 1 − pn: it generates net reward R1−
n − νW 1

n and the flow moves to state 0 for the next period.
• Dynamics if passive: If the flow is in state n and the flow is warned at a given period, then during that period it generates

net reward R0
n − νW 0

n and the flow moves to state 0 for the next period.

3. Optimal solution

In this section we solve problem (1) using the restless bandit methodology surveyed in [25], whose central concept is
that of problem’s indexability. Recall that ν denotes the transmission cost (or, the cost of providing bandwidth capacity)
paid for each unit of router’s bandwidth required by the flow, and let us consider it as a parameter for the moment.

Definition 1 (Indexability). We say that problem (1) is indexable, if there exist real numbers {νn, n ∈ N } such that the
following holds for every state n ∈ N :

1. if νn ≥ ν, then it is optimal to transmit in state n, and
2. if νn ≤ ν, then it is optimal to warn in state n.

The function n → νn is called the index, and νn’s are called the index values.

Whittle [5] realized that restless bandit’s indexability cannot be taken for granted and provided a non-indexable problem
instance. The index is therefore often called theWhittle index. The ultimate goal of this section is thus to establish indexability
of problem (1) and characterize the index values. We will rely on a sufficient indexability condition introduced and
developed in [27,14].

Equivalently, indexability means that the set of states in which it is optimal to transmit increases monotonically from
an empty set to N as the transmission cost ν decreases from +∞ to −∞. In particular, this implies economically sound
properties that if the transmission cost ν is high enough, then it cannot be optimal to transmit the data of the flow in any
state, and if the transmission cost ν is low enough, then itmust be optimal to transmit the data of the flow in any state.While
there are several ways how the set of states in which it is optimal to transmit may monotonically increase, we identify in
this paper conditions that imply optimality of threshold policies; other possible policy structures are ignored. We therefore
propose to call the index in such a case the transmission index, as it identifies until which threshold state transmitting is
optimal.

The following three subsections prepare the ground and reduce the notational and analytical complexity of the proof of
the main results of this paper, which are presented in Section 3.5.
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3.1. Performance region

Consider now the flow control problem (1). Thus, we look for a policy maximizing the expected total net rewards under
theβ-discounted criterion. To evaluate a policyπ under theβ-discounted criterion,we consider the following twomeasures.
LetWπ

i := Eπ
i


∞

t=0 β tW a(t)
X(t)


be the expected total β-discounted bandwidth utilization if starting from state i under policyπ .

For convenience, we will also call Wπ
i the expected total β-discounted work, since the bandwidth utilization can be seen as

the work performed by the router in order to transmit the flow data. Analogously, we denote by Rπ
i := Eπ

i


∞

t=0 β tRa(t)
X(t)


the expected total β-discounted reward if starting from state i under policy π .

The objective (1)1 is for each transmission cost ν,

max
π∈Π

Rπ
i − νWπ

i . (2)

3.2. Normalized optimization problem

Any restless bandit can be normalized so that the rewards are non-zero only under the active action and the two
optimization problems’ objective functions are equivalent (see, e.g., [14], p. 383). In a parameterized model this can be
accomplished by defining the active-action reward and work via

R := R1
− (I − βP1)(I − βP0)−1R0, W := W 1

− (I − βP1)(I − βP0)−1W 0.

This can be simplified for our model (see Appendix B) to

Rn := (R1
n − R0

n) + βpn(R0
n+1 − R0

0), Wn := (W 1
n − W 0

n ) + βpn(W 0
n+1 − W 0

0 ), (3)

where we have defined R0
N := R0

N−1 andW 0
N := W 0

N−1.
Thus, the above-defined dynamics of the system is modified in the following way:

• Dynamics if active: If the flow is in state n and the flow is warned at a given period, then during that period it generates
net reward Rn − νWn and
– with probability pn > 0: the flow moves to state n + 1 for the next period (or remains in N − 1, if it is already there).
– with probability 1 − pn: the flow moves to state 0 for the next period.

• Dynamics if passive: If the flow is in state n and the flow is warned at a given period, then during that period it generates
no net reward and the flow moves to state 0 for the next period.

3.3. Reduction to stationary policies

Since for MDPs with finite state space and finite action space there exists an optimal policy which is deterministic,
stationary, and independent of the initial state, we focus only on such policies and represent them via active sets S ⊆ N . In
other words, a policy S prescribes to be active (to transmit) in states in S and passive (to warn) in states in N \ S.

In the remainder of this section we consider the normalized optimization problem under the set of all active sets. The
above-defined total bandwidth utilization (total work) Wπ

i and total reward Rπ
i can readily be denoted by WS

i and RS
i ,

respectively. Moreover, they satisfy the following balance equations, to be used later in the analysis.

Proposition 1. For any state n and any active set S we have:
If state n ∈ S and n ≠ N − 1, then

RS
n = Rn + β


pnRS

n+1 + (1 − pn)RS
0


, WS

n = Wn + β

pnWS

n+1 + (1 − pn)WS
0


.

If state N − 1 ∈ S, then

RS
N−1 =

RN−1 + β(1 − pN−1)RS
0

1 − βpN−1
, WS

N−1 =
WN−1 + β(1 − pN−1)WS

0

1 − βpN−1
.

If state n ∉ S, then RS
n = βRS

0 , WS
n = βWS

0 . If state 0 ∉ S, then RS
0 = 0, WS

0 = 0.

1 Similarly could be formulated the problem under the time-average criterion. The index under the latter is obtained in the limit β → 1 from the index
under the discounted criterion [14].
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3.4. Marginal reward and marginal work

In this subsection we define measures of marginal reward and marginal work, and present some auxiliary results. Let
⟨a, S⟩ be the policy that implements action a in the initial period and policy S proceeds. For any state n and policy S, we
consider themarginal reward defined as rS

n := R⟨1,S⟩

n −R⟨0,S⟩

n , and themarginal work defined aswS
n := W⟨1,S⟩

n −W⟨0,S⟩

n . Finally,
themarginal rate is denoted by νS

n := rS
n /wS

n . The following results are analogous to the balance equations in Proposition 1.

Lemma 1. For any state n ≠ N − 1 and any active set S we have

R⟨1,S⟩

n = Rn + β

pnRS

n+1 + (1 − pn)RS
0


, R⟨0,S⟩

n = βRS
0 ,

R⟨1,S⟩

N−1 = RN−1 + β

pN−1RS

N−1 + (1 − pN−1)RS
0


, R⟨0,S⟩

N−1 = βRS
0 ,

W⟨1,S⟩

n = Wn + β

pnWS

n+1 + (1 − pn)WS
0


, W⟨0,S⟩

n = βWS
0 ,

W⟨1,S⟩

N−1 = WN−1 + β

pN−1WS

N−1 + (1 − pN−1)WS
0


, W⟨0,S⟩

N−1 = βWS
0 .

Using the above lemma and the definition of the marginal reward and marginal work, respectively, we obtain the
following identities.

Proposition 2. For any state n ≠ N − 1 and any active set S we have

rS
n = Rn + βpn(RS

n+1 − RS
0) wS

n = Wn + βpn(WS
n+1 − WS

0)

rS
N−1 = RN−1 + βpN−1(RS

N−1 − RS
0) wS

N−1 = WN−1 + βpN−1(WS
N−1 − WS

0).

Finally, the next result is obtained by employing Proposition 1 into Proposition 2.

Proposition 3. If state n ∈ S, then rS
n = RS

n − βRS
0 and wS

n = WS
n − βWS

0 .

In order to characterize marginal work and marginal reward under a given active set S, the above propositions allow us
to narrow the focus to quantities RS

n and WS
n for n ∈ S that can be obtained from the recursion in Proposition 1, as we will

see in the following subsection.

3.5. Indexability and optimality of threshold policies

Now we prepare the ground for establishing the structure of the optimal active sets (policies), under the following two
conditions. First, we will use a natural monotonicity assumption upon congestion probabilities, termed deteriorating QoS
(Quality of service). Indeed, one expects the network to increment losses as the required bandwidth per connection is
increased.

Assumption 1 (Deteriorating QoS). The one-period workWn > 0 for all n ∈ N , and Wn−1
pn−1

≤
Wn
pn

for all n ∈ N \ {0}.

Further, we will concentrate on the case, in which the one-period reward Rn possesses a sort of concavity in Wn. The
concavity behavior is a natural one for the fairness utilities in communications networks.

Assumption 2 (Concave Adjusted Reward). There is a real-valued function Rwith R(0) ≥ 0, which is concave on the domain
{0,W0/p0, . . . ,WN−1/pN−1}, such that Rn/pn = R(Wn/pn).

We will prove that, under these two conditions, the optimal policy for any transmission cost ν is a threshold policy
belonging to family

F := {Nk−1 : k ∈ N ∪ {N}}, where Nk−1 := {0, 1, . . . , k − 1}. (4)

That is, for any transmission cost ν there is a threshold state k such that it is optimal to transmit the packets of the flow if
and only if it is in any state smaller than k. We will accomplish this by establishing PCL-indexability, introduced in [27,14],
of our problem with respect to the family of active sets F defined in (4).

Definition 2. Problem (2) is called PCL-indexable with respect to the family of active sets F defined in (4), if the following
two conditions hold:

1. The marginal work w
Nk−1
n > 0 for all n ∈ N and k ∈ N ∪ {N}.

2. The marginal rate ν
Nk−1
k is nonincreasing in k ∈ N .

The importance of PCL-indexability is due to the following main methodological result (see [14]).
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Proposition 4. If a problem is PCL-indexable with respect to the family of active setsF defined in (4), then it is indexable (i.e., the
Whittle index exists) with index values νn := ν

Nn−1
n for all n ∈ N . Moreover, F contains an optimal policy for any value of

parameter ν .

The following proposition establishes the two assumptions given above to be sufficient for PCL-indexability. They are,
however, not necessary, and thus the threshold policies defined in (4) may remain optimal even if our assumptions are
violated. For all n ∈ N , denote by qn :=

n−1
m=0 βpm. The proof consists of several auxiliary results for work and reward

measures, and is deferred to the Appendices A–D.

Proposition 5. Under deteriorating QoS and concave adjusted reward, problem (2) is PCL-indexable with respect to the family
F defined in (4). Moreover,

Rk −
pk

pk−1
Rk−1

Wk −
pk

pk−1
Wk−1

≤ ν
Nk−1
k =

Rk +

k−1
m=0

qm+1


Rk −

pk
pm

Rm


Wk +

k−1
m=0

qm+1


Wk −

pk
pm

Wm

 ≤
Rk

Wk
, (5)

where the lower bound holds as long as Wk −
pk

pk−1
Wk−1 ≠ 0.

Nowwe are ready to give a closed-form characterization of the transmission index. Let us define the transmission index
as

νn :=

Rn +

n−1
m=0

qm+1


Rn −

pn
pm

Rm


Wn +

n−1
m=0

qm+1


Wn −

pn
pm

Wm

 . (6)

The following theorem is the main result of this paper.

Theorem 1. Under deteriorating QoS and concave adjusted reward, problem (2) is

1. [Indexability] indexable with the index values given in (6);
2. [Optimality of Threshold Policies] optimally solved by a policy from the family F defined in (4).

Proof. By Propositions 5 and 4. �

3.6. Properties of transmission index

Notice that for moderate values of the abandonment rate β , the expression of transmission index of state n depends
mostly on Wn and Wm’s for small values of m. The remaining parameters are less relevant since they appear multiplied
by βm+1 (via qm+1). That stresses the importance of the initial values of the input stream, which was also identified by
introducing slow start in the most TCP variants. The transmission index can be bounded by quantities independent of β;
thus, these bounds are valid for flows with any abandonment rate.

Proposition 6. Under deteriorating QoS and concave adjusted reward, for any β ,

Rn −
pn

pn−1
Rn−1

Wn −
pn

pn−1
Wn−1

≤ νn ≤
Rn

Wn
, (7)

where the lower bound holds as long as Wn −
pn

pn−1
Wn−1 ≠ 0.

Proof. By Propositions 5 and 4, and (6). �

Note that if Wn −
pn

pn−1
Wn−1 = 0, then we can obtain a lower bound by replacing the terms of state n − 1 by the terms

of the largest state m ≤ n − 2 for which Wn −
pn
pm

Wm ≠ 0. We further show that the transmission index is higher for flows
with higher abandonment rate.

Proposition 7. The transmission index νn is nonincreasing in β . Further, νn →
Rn
Wn

as β → 0.
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Proof. Notice first in the transmission index expression (6) that qm+1 depends multiplicatively on β . Further, as long as the
two denominators below are nonzero, we have

Rn −
pn
pm

Rm

Wn −
pn
pm

Wm
≥

Rn −
pn

pm+1
Rm+1

Wn −
pn

pm+1
Wm+1

for all 0 ≤ m ≤ n − 2 (8)

by Lemma 9(iii). Therefore, Lemma 11 implies that the expression for the transmission index in Theorem 1 nondecreases
when β is decreased. The convergence as β → 0 is obtained directly since qm+1 depends multiplicatively on β . �

4. Optimal solution for single-bottleneck network

Our model with pn = 1 for all n ∈ N recovers the traditional control problem in a single-bottleneck network, i.e., when
there are no more routers downstream. The objective is to maximize a particular type of fairness, such as the generalized
α-fairness [4]. For any α ≥ 0, this is given by the function

R(W ) :=

 (1 + W )1−α
− 1

1 − α
, if α ≠ 1,

ln(1 + W ), if α = 1.
(9)

Notice that such a function is non-negative, increasing, and concave on the domain of non-negative real numbers and
R(0) = 0. At α = 1 the general expression is substituted by its limit, which makes the function continuous in α.

Suppose that the bottleneck router employs buffer tail dropping policy, and so the warning action is approximately
performed by blocking the flow, i.e., W 0

n = 0 for all n ∈ N . Suppose further that the flow continuously increases the input
stream whenever not warned, 0 < W sent

0 < W sent
1 < · · · < W sent

N−1. Since W 1
n = W sent

n is the number of packets sent if the
flow is in state n (i.e., the actual input rate at the router), the congestion-free reward simplifies to R1

n = R1+
n = R(W 1

n ). On
the other hand, R0

n = R1−
n = R(W 0

n ) = 0.
Using (3), we haveWn = W 1

n and Rn = R1
n. In addition, we denote byW−1 := 0. We can then readily apply the results of

the previous section to obtain the following characterization of the transmission index:

νn =



n
m=0

βm

(1 + Wn)

1−α
− (1 + Wm−1)

1−α


(1 − α)


n

m=0
βm [Wn − Wm−1]

 , if α ≠ 1,

n
m=0

βm [ln(1 + Wn) − ln(1 + Wm−1)]

n
m=0

βm [Wn − Wm−1]
, if α = 1.

(10)

5. Numerical example

In this section we illustrate the optimal index policy numerically. Consider a double-bottleneck network as in Fig. 1. As
above, suppose that Router1 employs buffer tail dropping policy, and so the warning action is approximately performed by
blocking the flow, i.e., W 0

n = 0 for all n ∈ N . Suppose that Router2 has implemented a random packet dropping/marking
policy (e.g., RED) with probability p of dropping/marking a packet. That is, the flow data in state n transmitted without
warning at Router1 is transmitted without warning also at Router2 with probability pn = (1 − p)W

1
n . We assume β = 1.

Consider a flow with N = 6 states and with sending rate W sent
:= (1, 2, 4, 8, 9, 10). Thus, the first three states

follow an exponential growth (known as TCP’s slow-start phase), while the remaining three states follow a linear growth
(known as congestion avoidance phase). Suppose that the transmission cost is ν = 0.18 at Router1, where the policy is to be
implemented in order to achieve proportional fairness (α = 1).

If there is no congestion at Router2, i.e., p = 0, then the index values are

(0.6931, 0.5014, 0.3374, 0.2155, 0.1972, 0.1802).

The flow data are transmittedwithout warning in all the states, because the index values are all larger than the transmission
cost.

If there is certain congestion at Router2 represented by p = 0.02, then the index values become

(0.6793, 0.4790, 0.3078, 0.1804, 0.1617, 0.1450).

All the index values are now lower than in the no-congestion case. In particular, the flow data are transmitted without
warning in the first four states, but it is warned in the last two states.
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If the flow were more aggressive and growing exponentially in all the states with W sent
:= (1, 2, 4, 8, 16, 32), while

keeping p = 0, then the index values only change in the last two states and become 0.1318 and 0.0779, respectively. The
flow would be warned in the last two states, since those index values are below the transmission cost.

Note that it can be numerically checked that the above parameters satisfy the two assumptions required in our analysis.

6. Conclusion and further research directions

In this paper we have focused on particular type of TCP flows with any-increase/restarting dynamics, which roughly
resembles the behavior of currently common TCP variants such as CUBIC and COMPOUND. Other flow types are likely
to be tractable in our framework with moderate modifications. Our analytical approach is very flexible. By means of the
transmission indexwe have obtained optimal solution that can be interpreted as the network price of the flow and proposes
itself to be implemented in congestion notification mechanisms to improve their resource allocation decisions.

From the modeling perspective, several challenges remain open. For instance, our model assumes that the congestion
information is instantaneously received by network nodes. A more realistic model would take into account information
delays and censoring due to unobserved dropped packets. Existence of finite buffers and non-cooperative flows further
raises the necessity of consideration of three actions at the router: transmitting, warning, and dropping. However, index
policies have only been obtained in the literature for optimization problems with two actions, such as transmitting and
warning as we have considered here. A possible approach for multi-action problems was outlined in [28].

From the practical point of view, however, we believe that the outcome of our model is roughly preserved also in more
complicated mechanisms. The reason being that the transmission index depends on the actual input stream and the slow
start valuesmuchmore strongly than on other aspects of the dynamics of themechanism. Besides the congestion notification
mechanisms on which we have focused in this paper, the transmission index could be also implemented in scheduling
algorithms. The use of transmission index values as weights in weighted fair queueing would imply that each flow data are
transmitted accordingly to their actual network price.

We could also take advantage of our approach turning it upside-down. Instead of improving congestion notification
mechanisms for a given protocol, we could set out to develop a protocol that is economically sound given a congestion
notification mechanism. The task would then be to formulate a protocol for which the transmission index would have
desirable properties. Some numerical results in this direction were presented by Handley et al. [29].

Appendix A. Notation

We stick to the following norms throughout the paper. Sets are typeset in calligraphic font (e.g., N ), their cardinality
is denoted by the corresponding uppercase letter (N), and their generic element is written in lowercase (n). Vectors are in
boldface in row/column form as convenient, and matrices are in uppercase boldface. For problem parameters and variables,
superscript is reserved to an action or policy, and subscript to a state.

Sets:

N := {0, 1, . . . ,N − 1}—state space of the MDP model
Nk := {n ∈ N : n ≤ k}
S ⊆ N—control policy (active set, i.e., set of states in which flow data are transmitted)
F ⊆ 2N —family of control policies (active sets).

Problem parameters:

Rn—reward earned if flow data in state n are transmitted
Wn > 0—required bandwidth utilization (or work) if flow data in state n are transmitted
ν—transmission cost per bandwidth unit
0 < β < 1—discount factor.

Elements in work-reward analysis:

RS
n—expected total β-discounted reward under policy S if starting from state n

WS
n—expected total β-discounted work under policy S if starting from state n

rS
n —marginal reward under policy S if starting from state n

wS
n—marginal work under policy S if starting from state n

νS
n := rS

n /wS
n—marginal rate under policy S if starting from state n

νn—transmission index of state n.
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Appendix B. Normalization of the optimization problem

Next we develop the matrices needed for normalization of the model. We have

P0
=



0 1 2 ··· N−1

0 1 0 0 0 0
1 1 0 0 0 0
2 1 0 0 0 0
... 1 0 0

. . . 0
N−1 1 0 0 0 0

,

and therefore

I − βP0
=



0 1 2 ··· N−1

0 1 − β 0 0 0 0
1 −β 1 0 0 0
2 −β 0 1 0 0
... −β 0 0

. . . 0
N−1 −β 0 0 0 1

.

It is easy to see that I − βP0 is invertible if and only if β ≠ 1, and the inverse is

(I − βP0)−1
=



0 1 2 ··· N−1

0 1
1−β

0 0 0 0
1

β

1−β
1 0 0 0

2
β

1−β
0 1 0 0

...
β

1−β
0 0

. . . 0
N−1

β

1−β
0 0 0 1

.

Further,

P1
=



0 1 2 ··· N−2 N−1

0 1 − p0 p0 0 0 0 0
1 1 − p1 0 p1 0 0 0
2 1 − p2 0 0 p2 0 0
...

... 0 0 0
. . . 0

N−2 1 − pN−2 0 0 0 0 pN−2
N−1 1 − pN−1 0 0 0 0 pN−1

,

and therefore

I − βP1
=



0 1 2 ··· N−2 N−1

0 1 − β(1 − p0) −βp0 0 0 0 0
1 −β(1 − p1) 1 −βp1 0 0 0

2 −β(1 − p2) 0 1
. . . 0 0

...
... 0 0

. . .
. . . 0

N−2 −β(1 − pN−2) 0 0 0 1 −βpN−2

N−1 −β(1 − pN−1) 0 0 0 0 1 − βpN−1


.

Finally,

(I − βP1)(I − βP0)−1
=



0 1 2 ··· N−2 N−1

0 1 + βp0 −βp0 0 0 0 0
1 βp1 1 −βp1 0 0 0

2 βp2 0 1
. . . 0 0

...
... 0 0

. . .
. . . 0

N−2 βpN−2 0 0 0 1 −βpN−2

N−1 βpN−1 0 0 0 0 1 − βpN−1


.



12 P. Jacko, B. Sansò / Performance Evaluation ( ) –

Thus, for the normalized formulation we set, for all n ∈ N ,

Rn := (R1
n − R0

n) + βpn(R0
n+1 − R0

0), Wn := (W 1
n − W 0

n ) + βpn(W 0
n+1 − W 0

0 )

where we have defined R0
N := R0

N−1 andW 0
N := W 0

N−1.

Appendix C. Work-reward analysis and proof of Proposition 5

To achieve the goal, we first characterize the marginal reward and marginal work. For all n ∈ N , let Qn :=
n

m=0

qm,Q (R)
n :=

n
m=0 qmRm, and Q (W )

n :=
n

m=0 qmWm.

Lemma 2. For k, n ∈ N with n ≥ k − 1, the marginal reward and work, respectively, are

rNk−1
n = Rn − βpn

Q (R)
k−1

Qk
, w

Nk−1
n = Wn − βpn

Q (W )
k−1

Qk
. (C.1)

Proof. For k = 0 consider N−1 = ∅. Then for any state n ∈ N we have RN−1
n = WN−1

n = 0, and hence rN−1
n = Rn and

w
N−1
n = Wn by Proposition 2.
Now for k ∈ N \ {0} consider Nk−1. Using Proposition 1, for n ≤ k − 1 we have

RNk−1
n = Rn + β


pnR

Nk−1
n+1 + (1 − pn)R

Nk−1
0


, WNk−1

n = Wn + β

pnW

Nk−1
n+1 + (1 − pn)W

Nk−1
0


,

and for n ≥ k we have RNk−1
n = βRNk−1

0 and WNk−1
n = βWNk−1

0 .
The solution of the two above linear-equation systems gives

(1 − β)RNk−1
0 =

Q (R)
k−1

Qk
, (1 − β)WNk−1

0 =
Q (W )
k−1

Qk
. (C.2)

Therefore, we have RNk−1
n − RNk−1

0 = −(1 − β)RNk−1
0 and WNk−1

n − WNk−1
0 = −(1 − β)WNk−1

0 for n ≥ k. Then Proposition 2
yields (C.1) for k, n ∈ N with n ≥ k − 1. �

In the following lemmawe establish positivity of the marginal works as required in condition (i) of PCL(F )-indexability.

Lemma 3. Under deteriorating QoS, the marginal work w
Nk−1
n is positive for all n ∈ N and k ∈ N ∪ {N}, i.e., condition (i) of

PCL(F )-indexability holds.

Proof. If k ≠ N , then the marginal work w
Nk−1
n is positive for n ≥ k − 1, because from (C.1) it can be rewritten as

w
Nk−1
n =

1
Qk


Wn +

k−1
m=0

qm+1


Wn −

pn
pm

Wm


, (C.3)

which is positive due to deteriorating QoS.
For n ≤ k − 1 ≤ N − 1 we proceed as follows. Proposition 1 after rearranging gives, for n ≥ 1,

WNk−1
n =


WNk−1

n−1 − β(1 − pn−1)W
Nk−1
0 − Wn−1


/βpn−1, (C.4)

whose recursive implementation yields

WNk−1
n =

Qn − βQn−1

qn
WNk−1

0 −
Q (W )
n−1

qn
. (C.5)

Due to Proposition 3, we want to prove WNk−1
n > βWNk−1

0 , i.e.,

(1 − β)WNk−1
0 >

Q (W )
n−1

Qn
. (C.6)

For k = N , (C.5) evaluated for n = N − 1 together with Proposition 1 gives

(1 − β)WNN−1
0 =

Q (W )
N−2 + WN−1

qN−1
1−βpN−1

QN−1 + βpN−1
qN−1

1−βpN−1

. (C.7)

For k ≠ N , we use (C.2). In both cases, deteriorating QoS and Lemma 7 imply (C.6). �
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Next we characterize and bound the marginal rates ν
Nk−1
k , which will be crucial for the characterization of the transmis-

sion index in the next subsection.

Lemma 4. Under concave adjusted reward and deteriorating QoS, for k ∈ N , we have

Rk −
pk

pk−1
Rk−1

Wk −
pk

pk−1
Wk−1

≤ ν
Nk−1
k =

Rk +

k−1
m=0

qm+1


Rk −

pk
pm

Rm


Wk +

k−1
m=0

qm+1


Wk −

pk
pm

Wm

 ≤
Rk

Wk
, (C.8)

where the lower bound holds as long as Wk −
pk

pk−1
Wk−1 ≠ 0.

Proof. The expression for ν
Nk−1
k is a simple reformulation of (C.1), as in (C.3). Having Rm/Wm ≥ Rk/Wk for all m < k from

Lemma 10(ii), we can rewrite it as

Rk −
pk
pm

Rm

Wk −
pk
pm

Wm
≤

Rk

Wk
, (C.9)

as long as Wk −
pk
pm

Wm ≠ 0 (otherwise, the m-th term in the sum is zero both in the numerator and denominator). Then,

Lemma 8 yields the upper bound for ν
Nk−1
k .

We prove the lower bound next. Lemma 8 together with the upper bound implies

min


Rk −

pk
pm

Rm

Wk −
pk
pm

Wm
for all 0 ≤ m ≤ k − 1 such thatWk −

pk
pm

Wm ≠ 0


≤ ν

Nk−1
k . (C.10)

Further, ifWk −
pk

pk−1
Wk−1 ≠ 0, then we have

Rk −
pk
pm

Rm

Wk −
pk
pm

Wm
≥

Rk −
pk

pk−1
Rk−1

Wk −
pk

pk−1
Wk−1

for all 0 ≤ m ≤ k − 1 (C.11)

as long asWk −
pk
pm

Wm ≠ 0 by Lemma 9(iii), which gives the lower bound. �

Further, we will need the following monotonicity result for marginal rates.

Lemma 5. Under concave adjusted reward and deteriorating QoS, νNk−1
k ≥ ν

Nk−1
n for all k, n ∈ N with n ≥ k + 1.

Proof. Denote by

ak :=
βQ (R)

k−1

Qk
, bk :=

βQ (W )
k−1

Qk
.

Using the identities in (C.1), we are to show that

ν
Nk−1
k =

Rk
pk

− ak
Wk
pk

− bk
≥


Rk
pk

− ak


+


Rn
pn

−
Rk
pk




Wk
pk

− bk


+


Wn
pn

−
Wk
pk

 =

Rn
pn

− ak
Wn
pn

− bk
= ν

Nk−1
n for all N − 1 ≥ n ≥ k + 1. (C.12)

If Wn
pn

=
Wk
pk

, then it holds as equality. Otherwise, having

Rk
pk

− ak
Wk
pk

− bk
≥

Rn
pn

−
Rk
pk

Wn
pn

−
Wk
pk

for all N − 1 ≥ n ≥ k + 1

is equivalent to

Rk
pk

− ak
Wk
pk

− bk
≥

Rk+1
pk+1

−
Rk
pk

Wk+1
pk+1

−
Wk
pk

(C.13)

since the right-hand side is nonincreasing in n, due to concave adjusted reward with Lemma 9(ii). The last inequality holds
due to the lower bound in Lemma 4 and, again, concave adjusted rewardwith Lemma 9(iv). Therefore, by Lemma 7(ii), (C.12)
holds. �
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Next we establish condition (ii) of PCL(F )-indexability.

Lemma 6. Under concave adjusted reward and deteriorating QoS, marginal rates ν
Nn−1
n are nonincreasing in n ∈ N , i.e.,

condition (ii) of PCL(F )-indexability holds.

Proof. Niño-Mora [14, Proposition 6.4(c)] showed that under positive marginal works, ν
Nn−1
n ≥ ν

Nn
n+1 is equivalent to

ν
Nn−1
n ≥ ν

Nn−1
n+1 , which is satisfied due to Lemma 5. �

To summarize, in this section we have proved Proposition 5.

Appendix D. Auxiliary results

Some of the following lemmas are well-known, see for instance [31].

Lemma 7. Let b0, b1, α1 > 0. Then the following statements are equivalent:

1. a0
b0

≥
a1
b1
;

2. a0
b0

≥
a0+α1a1
b0+α1b1

;
3. a0+α1a1

b0+α1b1
≥

a1
b1
.

Further, the above equivalence holds also if all inequalities are strict.

Proof. A simple algebraic exercise. �

Lemma 8. Let for a positive integer K be a0
b0

≥
a1
b1

≥ · · · ≥
aK
bK

such that b0, b1, . . . , bK > 0 and α1, . . . , αK ≥ 0. Then

a0
b0

≥
a0 + α1a1 + · · · + αKaK
b0 + α1b1 + · · · + αKbK

≥
aK
bK

. (D.1)

Proof. For K = 1 see Lemma 7. To proceed by induction, suppose that the claim holds for all k = 1, 2, . . . , K − 1. If α1 = 0,
then we are in the case k = K − 1, so suppose α1 > 0. Then, by the induction assumption for k = K − 1, we have

a1
b1

≥

a1 +
α2
α1

a2 + · · · +
αK
α1

aK
b1 +

α2
α1

b2 + · · · +
αK
α1

bK
. (D.2)

Since a0
b0

≥
a1
b1
, we have a0

b0
larger than or equal to the right-hand side of (D.2). Applying Lemma 7 gives

a0
b0

≥
a0 + α1a1 + · · · + αKaK
b0 + α1b1 + · · · + αKbK

≥

a1 +
α2
α1

a2 + · · · +
αK
α1

aK
b1 +

α2
α1

b2 + · · · +
αK
α1

bK
, (D.3)

where the right-hand side expression is, again by the induction assumption for k = K − 1, larger than or equal to aK
bK

. This
completes the proof for k = K . �

Lemma 9 (Equivalent Definitions of Concavity). Consider a real-valued function a(·), a positive integer K , and a set B :=

{0, b0, b1, . . . , bK } such that 0 < b0 < b1 < · · · < bK . Denote by ak := a(bk) for any k = 0, 1, . . . , K. Then the following
statements are equivalent:

1. the function a(·) is concave on B;
2.

ak1−ak0
bk1−bk0

≥
ak2−ak0
bk2−bk0

for any bk0 , bk1 , bk2 ∈ B with bk0 < bk1 < bk2 ;

3.
ak2−ak0
bk2−bk0

≥
ak2−ak1
bk2−bk1

for any bk0 , bk1 , bk2 ∈ B with bk0 < bk1 < bk2 ;

4.
ak1−ak0
bk1−bk0

≥
ak2−ak1
bk2−bk1

for any bk0 , bk1 , bk2 ∈ B with bk0 < bk1 < bk2 .

Lemma 10. Let a be a concave real-valued function with a(0) ≥ 0. Consider a positive integer K and a set B := {0, b0,
b1, . . . , bK } such that 0 < b0 < b1 < · · · < bK . Denote by ak := a(bk) for any k = 0, 1, . . . , K . Then

1.
ak2
bk2

≥
ak2−ak1
bk2−bk1

for any bk1 , bk2 ∈ B with 0 < bk1 < bk2 ;

2. a0
b0

≥
a1
b1

≥ · · · ≥
aK
bK

;

3.
ak1
bk1

≥
ak2−ak1
bk2−bk1

for any bk1 , bk2 ∈ B with 0 < bk1 < bk2 .
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Proof. 1. We start by setting bk0 = 0 in Lemma 9(iii). Hence, for any k1 ∈ {0, 1, . . . , K − 1},

ak2
bk2

≥
ak2 − a(0)

bk2
≥

ak2 − ak1
bk2 − bk1

,

where the first inequality is due to a(0) ≥ 0.
2. By rearranging the terms in (i) we obtain ak1/bk1 ≥ ak2/bk2 for any k1 ∈ {0, 1, . . . , K − 1} and k2 > k1.
3. Since (i) holds and by (ii), ak1/bk1 ≥ ak2/bk2 , the result is immediate. �

Lemma 11. Let for a positive integer K be a0
b0

≥
a1
b1

≥ · · · ≥
aK
bK

such that b0, b1, . . . , bK > 0. Let α1, . . . , αK ≥ 0 and
1 ≥ γ1 > γ2 > · · · > γK ≥ 0. Then

a0 + α1a1 + · · · + αKaK
b0 + α1b1 + · · · + αKbK

≤
a0 + γ1α1a1 + · · · + γKαKaK
b0 + γ1α1b1 + · · · + γKαKbK

. (D.4)

Proof. Consider k = 1 and γ1 < 1 (for γ1 = 1 it trivially holds). Hence, we can multiply a0
b0

≥
a1
b1

by the positive expression
α1(1−γ1)b0b1, and add a0b0 +γ1α

2
1a1b1, which after rearranging gives the desired result. To proceed by induction, suppose

that the claim holds for all k = 1, 2, . . . , K − 1, and suppose α1 > 0 (otherwise it is true by the induction assumption).
Denote

da := a1 +
γ2

γ1

α2

α1
a2 + · · · +

γK

γ1

αK

α1
aK , db := b1 +

γ2

γ1

α2

α1
b2 + · · · +

γK

γ1

αK

α1
bK ,

and further denote by ca and cb the expressions obtained from da and db by omitting γ ’s. Note that we want to show

a0 + α1ca
b0 + α1cb

≤
a0 + γ1α1da
b0 + γ1α1db

. (D.5)

Using Lemma 8 and multiplying both numerator and denominator by α1(1 − γ1) we obtain

a1
b1

≥
α1(1 − γ1)a1 + α2(1 − γ2)a2 + · · · + αK (1 − γK )aK
α1(1 − γ1)b1 + α2(1 − γ2)b2 + · · · + αK (1 − γK )bK

,

and therefore we can write
a0
b0

≥
α1ca − γ1α1da
α1cb − γ1α1db

,

which is the same as a0(α1cb − γ1α1db + b0) ≥ b0(α1ca − γ1α1da + a0).
On the other hand, the induction assumption implies ca

cb
≤

da
db
, hence 0 ≥ α2

1γ1(cadb − dacb). Adding up the last two
inequalities and rearranging yields (D.5). �
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