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Abstract—In this paper we study three opportunistic sched-
ulers for the problem of optimal multi-class flow-level scheduling
in wireless downlink and uplink systems. For user channels
we employ the Gilbert-Elliot model of good and bad channel
condition with flow-level interpretation, and assume an automatic
repeat query (ARQ) feedback, so that channel state information is
available at the end of the slot only if the user was scheduled. The
problem is essentially a Partially-Observable Markov Decision
Process with a sample-path resource constraint. Given its com-
plexity, we study two naı̈ve schedulers: the myopic rule and the
belief-state rule. Further, realizing that the problem fits the multi-
armed restless bandit framework, we consider the relaxation of
the problem which instead of serving a given number of flows
on sample-path allows for serving that number of flows only
in expectation, and derive an optimal Whittle index policy in
closed form. We further discuss the interpretation of the resulting
novel Whittle-index-based heuristic scheduler and evaluate its
performance against the two naı̈ve schedulers in simulations
under the time-average criterion. According to the Whittle-index-
based scheduler, the users whose last channel feedback gave good
condition and those not served yet receive an absolute priority
over those whose last channel feedback gave bad condition, which
extends to this setting the property of channel-aware schedulers
that are known to be maximally stable. In addition, we obtain tie-
breaking index values for setting priorities among users in each
of the two groups. In case of a single user class, the scheduler
becomes independent of the problem parameters and equivalent
to both the myopic and belief-state scheduler, and has a simple
universal structure which can be represented by three first-in-
first-out priority lists.

Keywords: opportunistic scheduling, flow-level scheduling,
ARQ feedback, Partially-Observable Markov Decision Pro-
cess, restless bandits, Whittle index, myopic policy

I. INTRODUCTION

In this paper we design and characterize in closed form
a novel opportunistic scheduler and two naı̈ve schedulers
for the problem of optimal multi-class flow-level scheduling.
The problem is motivated by the necessity of designing an
implementable scheduler for wireless downlink and uplink sys-
tems, in which users arrive randomly and depart upon service
completion. It is believed that good schedulers are those that
are opportunistic, since Knopp and Humblet (1995) showed
that time-varying transmission conditions such as those in
wireless systems can be exploited by opportunistic scheduling
to enhance the system capacity. However, the understanding of
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the right way of opportunism in systems with heterogeneous
users is non-trivial and it is not known at the moment what
an optimal scheduler is, due to the inherent complexity of the
problem that is likely to be PSPACE-hard (Ayesta et al., 2010).

Flow-level scheduling in systems like the CDMA 1xEV-
DO (cf. Bender et al., 2000) has therefore been analyzed
by ad-hoc approaches, simulations, approximate techniques or
under restrictive assumptions (e.g., the time-scale separation
principle or single-class systems) in order to design simple
schedulers (Sadiq and de Veciana, 2010; Aalto et al., 2011;
Ayesta et al., 2010; Jacko, 2011), and in the asymptotic
regimes in order to establish optimality or maximal stability
of such schedulers (Borst, 2005; Bonald et al., 2009; Aalto
and Lassila, 2010; Ayesta et al., 2011; Ouyang et al., 2011a).
However, all these papers addressed systems under the often
unrealistic assumption that the channel condition of each user
in the system is known at the beginning of each slot (so called
channel-aware scheduling).

In this paper we take a step forward towards removing this
assumption and consider a system with an automatic repeat
query (ARQ) feedback, so that channel state information is
available at the end of the slot only if the user was scheduled.
We assume existence of feedback because of the necessity
of reliability on data transmission (see also Ouyang et al.
(2011b)). This feature adds yet another level of complexity
to the problem, and we take a Bayesian approach to handle it.
We focus on a downlink system, but the results hold also for
any centralized uplink system with synchronized users. That
is, at the beginning of each slot, the scheduler decides which
users are allowed to receive data and the base station conse-
quently transmits data via the corresponding channels to the
scheduled users. We address the optimal scheduling problem
with Markovian channel condition evolution. For simplicity
we focus on channels with only two possible conditions, thus
each channel is modeled by a Gilbert-Elliot model (Gilbert,
1960). The channel model assumes good (high transmission
rate) and bad (low transmission rate) channel condition with
flow-level interpretation, i.e., with a different probability to
depart from the system. The scheduler is further allowed to
do rate adaptation, i.e., to decide whether to transmit at the
high or at the low transmission rate. The problem is described
in Section II in more detail.

Mathematically, we formulate the problem of optimal user
scheduling in a system with fixed server capacity and with



time-varying service rate. Such an optimization problem be-
comes analytically tractable if the fixed-capacity constraint is
relaxed so that the server capacity allocation must be satisfied
only on average (see, e.g., Whittle, 1988; Knopp and Humblet,
1995; Jacko, 2010b). This approach has become popular for
scheduling problems in wireless networks (Zhao et al., 2008;
Niño-Mora, 2008; Ahmad et al., 2009; Ayesta et al., 2010;
Jacko, 2011; Ouyang et al., 2011b), mainly because it allows to
design well-performing schedulers by formulating such prob-
lems within the multi-armed restless bandit problem frame-
work, and performing a problem decomposition into single-
user subproblems (Whittle, 1988). Moreover, in the single-
class case it allows to develop simple optimal schedulers in
some cases (Zhao et al., 2008; Ahmad et al., 2009; Liu et al.,
2011; Wang et al., 2012).

Most of this literature, however, considers a packet-level
system, in which a fixed number of users (that never depart)
with their packet queues must be served, or in which a
secondary user tries to transmit data over a fixed number of
channels. Such models are fundamentally different from our
flow-level model, in which user flows randomly arrive and
depart once their transmission is completed, addressed within
the restless bandit framework in Ayesta et al. (2010); Jacko
(2011).

A. Main Results

We develop in Section III a novel model with the following
characteristics:
• flow level (finite flow sizes);
• partial channel observability via ARQ feedback;
• non-zero transmission rate in bad state;
• rate adaptation.

The formulation is done within the framework of Partially
Observable Markov Decision Processes (POMDP), relying on
the Bayesian updates from slot to slot, taking into account
ARQ feedback whenever available. The objective is to min-
imize the total expected time-average holding costs, which
covers also minimization of the average expected waiting time
as a special case. After employing the Lagrangian relaxation
approach proposed by Whittle (1988) for the multi-armed rest-
less bandit problem, the problem is decomposed into single-
user parametric problems (where one must pay for service).
Under the assumption of indexability, which is often tedious
to check analytically (but which we conjecture to hold in this
case), we derive in Section IV closed-form expressions of the
Whittle index, which is shown to imply optimality of threshold
policies.

Section V is dedicated to the design of a novel scheduler
based on the derived Whittle index. We also define two
naı̈ve schedulers: the myopic rule and the belief-state rule.
In the case of single-class system (i.e., flows having the
same all the parameters and differing only by the available
historical information), all these schedulers become equivalent,
independent of the problem parameters, and have a simple
universal structure which can be represented by three first-in-
first-out priority lists of uncompleted flows:

(i) in the high priority list there are all the users served in
the previous slot whose feedback gave good condition;

(ii) in the medium priority list there are all the users with
no known feedback;

(iii) in the low priority list there are all the users whose last
feedback gave bad condition.

Note that this scheduler has the stay-on-a-winner property,
in the sense that every time a flow is scheduled and observes
condition G, then it is served also in the next slot. This is
an interesting and desirable property of our scheduler, which
essentially means to be opportunistic. As a consequence, it can
never happen that a flow whose last observed state was G has
been starving at all. Further, newly arrived users (belonging
to the medium priority list) are served as early as there are
not enough high-priority users, which is desirable for quick
refreshing of their channel condition information. On the other
hand, due to the first-in-first-out order within each list, the
newly arrived flows and the flows whose last observed state
was B are served according to the longest-starved-first rule,
which is desirable for fairness considerations.

We finally evaluate and discuss the performance of the
proposed schedulers in Section VI under simple scenarios
corresponding to the formulation described in Section III.
Proofs are omitted due to space restrictions, and will also
appear in the full version of this paper.

II. PROBLEM DESCRIPTION

We consider the problem of designing a flow scheduling
policy for a time-slotted system such as the CDMA 1xEV-
DO (Bender et al., 2000), in which the available transmis-
sion rate of each user is time-varying. Slots are denoted by
t ∈ T := {0, 1, 2, . . . } and slot duration is denoted by ε (in
seconds, typically of order 10−3). Flows k = 1, 2, . . . appear
randomly from users that are within the transmission distance
from a base station, which can serve M users at every slot in
parallel. Let ck > 0 be the holding cost per slot incurred
for user waiting while the transmission of flow k is not
completed. The channel for transmission of flow k (or shortly
channel k) can take two conditions from a set N ′k := {B,G}.
The transmission channel condition of each channel evolves
randomly and independently of the other channels and of the
decisions of the base station. The channel conditions evolution
for flow k is Markovian with one-slot transition probabilities
qk,n,m to move from condition n to condition m, satisfying
qk,n,B + qk,n,G = 1 for all n ∈ N ′k. The channel-k condition
transitions will be denoted by

Qk =

( B G

B qk,B,B qk,B,G

G qk,G,B qk,G,G

)
If channel k is in condition n, then flow k can be served with

transmission/service rate sk,n (in bits per second), which is
assumed to be a multiple of 1/ε, or any lower. However, higher
transmission rate than sk,n results in undecodable data leading
to an outage. Without loss of generality we assume that the



channel condition labels are ordered so that 0 ≤ sk,B ≤ sk,G.
So, “B” can be interpreted as bad channel condition, while
“G” can be interpreted as good channel condition.

If the base station is allocated to a user whose flow has
already been completed, then no transmission occurs. The base
station is assumed to be preemptive (i.e., the service of a flow
can be interrupted at the beginning of any slot even if not
completed). Thus, the base station decides at the beginning of
every period to which users it should be allocated during that
slot.

The goal is to minimize the expected aggregate holding cost
over an infinite horizon under the time-average criterion. The
problem with ck = 1 for all k corresponds to minimization of
the mean waiting time and minimization of the mean number
of uncompleted flows in the system.

Let the flow size of user k be a geometrically distributed
random variable denoted by Bk (in bits), and let E[Bk] denote
its expectation. Ayesta et al. (2010); Jacko (2011) showed how
the probability of departure of users with geometric sized flows
can be computed respectively in an exact and in an approxi-
mate way when the expected flow size (in bits) of a user is
much larger than the amount of bits that can be served in one
slot. The departure probability of a flow k in channel condition
n is µk,n = min {1, 1− (1− 1/E[Bk])εsk,n} , which can be
approximated if εsk,n/E[Bk] ≈ 0 by µk,n ≈

εsk,n
E[Bk]

.

A. Observability of Channel Conditions

This problem under full observability of channel conditions
was studied in Jacko (2011). We assume in this paper that
not all of the user channel conditions are known at every slot.
Nevertheless, it is assumed that the scheduler knows for each
user k whether she is in the system (in either good or bad
condition) or not (the service has already been completed). If
in the system and scheduled, then the scheduler must decide
whether to transmit the data at rate sk,G or sk,B .

There are several implementation variants of the feedback
after the scheduled data are transmitted. In this paper we
consider an automatic repeat query (ARQ) feedback, which
is, in general, based on acknowledgements and timeouts. In
particular, we assume that all scheduled users send back at
the end of the slot their true condition (B, G) during the slot
or whether they have received the last bit of the flow (*).
However, no information is obtained from users that were not
scheduled in the slot.

The decision of what rate to use for transmitting can also be
made in several ways. However, incorporating rate adaptation
into the problem creates an additional dimension and analysis
very quickly becomes intractable. We therefore assume that
this decision is taken so that the one-slot probability of com-
pleting the flow is maximized, given the current probability of
being in the good condition.

III. POMDP FORMULATION

In this section we present a POMDP formulation of the
discrete-time flow sequencing problem (without arrivals), in
which we allow for time-varying departure probability as

described in the previous section. Ignoring arrivals makes
the problem analytically tractable and allows for fitting the
problem in the multi-armed restless bandit framework. This
trick thus leads to designing a well-founded scheduling rule,
which we then propose to be used in systems with arrivals.
The restless bandits approach to POMDP problems appeared
also in Jacko and Niño-Mora (2008); Niño-Mora and Villar
(2011).

Consider K flows labeled by k ∈ K waiting for service at a
base station that can serve M flows at a time by transmitting
a data flow through a dedicated channel to the corresponding
user. The setting fits the multi-armed restless bandit problem
Whittle (1988); Niño-Mora (2001), which can be adapted to
flow scheduling as described in Jacko (2010b).

Recall that we consider the time slotted into epochs t ∈ T
at which decisions can be made.

A. Flows, Channels, and Users

Every user k can be allocated either zero capacity of the
base station or be one of the M users served. We denote by
A := {0, 1} the action space, i.e., the set of allowable levels
of capacity allocation. Here, action 0 means allocating zero
capacity (i.e., “not serving”), and action 1 means allocating
one capacity (i.e., “serving”). This action space is the same
for every user k. Further, if transmitted at rate sk,n, then the
probability that the service of flow k is completed within one
period if being served is µk,n. Note that we have 0 ≤ µk,B ≤
µk,G ≤ 1.

Letting θk := µk,B/µk,G, the base station decides to
transmit at rate sk,G if a scheduled user k is in belief state
(probability of being in good condition) x > θk, and at rate
sk,B if a scheduled user k is in belief state x ≤ θk. In addition,
if user k is scheduled when being in belief state x, then at the
end of the same period the base station receives feedback

ok,x :=



G, with probability (1− µk,B)x, if x ≤ θk;
B, with probability (1− µk,B)(1− x), if x ≤ θk;
∗, with probability µk,B , if x ≤ θk;
G, with probability (1− µk,G)x, if x > θk;
B, with probability (1− x), if x > θk;
∗, with probability x · µk,G, if x > θk;

These expressions should be obvious to the reader, just note
in the case x > θk (transmitting at rate sk,G) that if the channel
condition is B, then the data is not decoded by the user, and
therefore the user cannot depart, so the probability to receive
B as feedback is simply the probability of being in state B,
which is (1− x).

Each flow-channel-user triple k is defined indepen-
dently of other flow-channel-user triples as the tuple(
Nk, (W a

k)a∈A , (R
a
k)a∈A , (P

a
k)a∈A

)
, where

• Nk := {∗} ∪ Xk is the state space, where state ∗ repre-
sents a flow already completed, and Xk := [0, 1] is the
set of belief states (posterior probabilities) that channel
k is in condition G provided the flow is uncompleted;



• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected)

one-period capacity consumption, or work required by
user k at state n if action a is decided at the beginning
of a period; in particular, for any n ∈ Nk, W 1

k,n :=
1,W 0

k,n := 0;

• Ra
k :=

(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-
period reward earned by user k at state n if action a is
decided at the beginning of a period; in particular, for
any x ∈ Xk,

Rak,∗ := 0, R0
k,x := −ck,

R1
k,x := −ck · (1− P[ok,x = ∗]);

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the user-k stationary one-

period state-transition probability matrix (note that given
an initial belief state, the number of accessible belief
states is countable, as seen below) if action a is decided at
the beginning of a period, i.e., pak,n,m is the probability
of moving to state m from state n under action a; in
particular, for any x ∈ Xk,

pak,∗,∗ := 1, p0
k,x,y := 1, if y = xqk,G,G + (1− x)qk,B,G,

and

p1
k,x,y :=


P[ok,x = G], if y = qk,G,G;
P[ok,x = B], if y = qk,B,G;
P[ok,x = ∗], if y = ∗;

The dynamics of user k is thus captured by the state process
Nk(·) and the action process ak(·), which correspond to state
Nk(t) ∈ Nk and action ak(t) ∈ A at all time epochs t ∈ T .
As a result of deciding action ak(t) in state Nk(t) at time
epoch t, the user k consumes the allocated capacity, earns
the reward, and evolves its state for the time epoch t + 1. If
Nk(t) ∈ Xk (i.e., the flow k is uncompleted by time t), then
the belief state evolution can be summarized as follows

Nk(t+ 1) =



Nk(t) qk,G,G + (1−Nk(t))qk,B,G,
w.p. 1, if ak(t) = 0;

qk,G,G, w.p. P[ok,x = G], if ak(t) = 1;
qk,B,G, w.p. P[ok,x = B], if ak(t) = 1;
∗, w.p. P[ok,x = ∗], if ak(t) = 1;

B. Optimization Problem

Now we can define the optimization problem. Let ΠX,a
be the space of randomized and non-anticipative policies
depending on the joint state-process X(·) := (Xk(·))k∈K
and deciding the joint action-process a(·) := (ak(·))k∈K,
i.e., ΠX,a is the joint policy space. Let Eπτ denote the
expectation over the state process X(·) and over the ac-
tion process a(·), conditioned on the state-process history
X(0),X(1), . . . ,X(τ) and on policy π.

The problem is to find a joint policy π maximizing the
objective given by the time-average aggregate reward starting

from the initial time epoch 0 subject to the family of sample
path allocation constraints, i.e.,

max
π∈ΠX,a

lim
T→∞

1
T

T−1∑
t=0

Eπ0

[∑
k∈K

R
ak(t)
k,Xk(t)

]
(P)

subject to Eπt

[∑
k∈K

ak(t)

]
= M, for all t ∈ T

Note that the constraint could equivalently be expressed by
restricting ΠX,a to policies satisfying

∑
k∈K

ak(t) = M for any

possible joint state-process history X(0),X(1), . . . ,X(t), for
all t ∈ T .

IV. SOLUTION

Problem (P) can be relaxed by requiring to serve M flows
per slot only on time-average as proposed in Whittle (1988),
which is further approached by incorporating a Lagrangian
multiplier ν and can be decomposed into a parameterized
optimization problem below. Notice that any joint policy
π ∈ ΠX,a defines a set of single-user policies π̃k for all
k ∈ K, where π̃k is a randomized and non-anticipative policy
depending on the joint state-process X(·) and deciding the
user-k action-process ak(·). We will write π̃k ∈ ΠX,ak

. We
will therefore study the user-k subproblem

maxeπk∈ΠX,ak

lim
T→∞

1
T

T−1∑
t=0

Eeπk
0

[
R
ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

]
(1)

The main idea of our approach is to identify a set of optimal
policies π̃∗k for (1) for each k ∈ K, and using them to construct
a joint heuristic policy π, feasible though not necessarily
optimal for problem (P).

A. Optimal Solution to Single-User Subproblem

In certain cases, problem (1) can be optimally solved by
assigning a set of index values νk,n to each state n ∈ Nk
(Niño-Mora, 2007; Jacko, 2010a). If this is the case, the
problem is called indexable. In the following we conjecture
that (1) is indexable and characterize the index values.

Given the real-world system by which the current model is
motivated, it is natural to assume that qk,G,G−qk,B,G > 0 for
all k. A channel with this property is often called the positively
autocorrelated channel, or channel with (positive) memory.
Note that in the iid (or uncorrelated) case (qk,B,G = qk,G,G),
the belief state never changes (the channel has “no memory”).
We will therefore present here an approach under this assump-
tion, i.e., ρk := qk,G,G−qk,B,G > 0. Other cases can be treated
analogously, and are omitted due to space restrictions.

Note that the interval [qk,B,G; qk,G,G] can be conveniently
written as [qk,B,G; qk,B,G + ρk]. It is straightforward to prove
that interval [qk,B,G; qk,B,G + ρk] is an absorbing subset of
states as long as the flow is uncompleted.

Proposition 1: Under the assumption of positive autocorre-
lation, if the user belief state Xk(t) ∈ [qk,B,G; qk,B,G + ρk],
then the user belief state Xk(t+ 1) representing the posterior



probability that the channel is in good condition, also belongs
in the interval [qk,B,G; qk,B,G + ρk].

This result is helpful, because if the initial state of any flow
belongs to this interval, then its belief state never leaves it
unless it is completed. We therefore define a reduced state
space Ñk := {∗}∪X̃k, where state ∗ represents a flow already
completed, and X̃k := [qk,B,G; qk,B,G + ρk]. Therefore, in the
case in which the initial state vector is unknown, it is enough
to obtain index values for belief states in X̃k, given that a
reasonable estimate for it is its steady state value, which lies
within this interval. We believe the following statement be
true.

Conjecture 1 (Indexability): Under the assumption of pos-
itive autocorrelation, problem (1) of user k is indexable, i.e.,
there exist unique values −∞ ≤ νk,n ≤ ∞ for all n ∈ Ñk
such that the following holds for every state n ∈ Ñk:

(i) if νk,n ≥ ν, then it is optimal to serve flow k in state
n, and

(ii) if νk,n ≤ ν, then it is optimal not to serve flow k in
state n.

The function n 7→ νk,n is called the (Whittle) index,
and νk,n’s are called the (Whittle) index values. An intuitive
notion of indexability was introduced in Whittle (1988), who
realized that not always such an index-based solution exists.
The definition given here is more general and follows Jacko
(2010b).

In the following we shall use the notation to represent the
passive (i.e., if not serving) dynamics

φk(x) := qk,B,G + ρkx. (2)

As a consequence the fixed point of the passive dynamics
(i.e., the belief state of a flow that is never served) is also
in the interval [qk,B,G; qk,G,G]. In fact, such a fixed point is
nothing but the steady-state probability of being in the good
condition under matrix Qk,

qSS
k,G =

qk,B,G
1 + qk,B,G − qk,G,G

=
qk,B,G
1− ρk

, (3)

assuming qk,B,G > 0 so that the steady-state distribution exists
and is positive for condition G.

We present the solution for problem (1) under the time-
average criterion, which is in fact obtained in the limit from
the solution under the discounted criterion, which however
requires more complicated formulae and is less relevant in
practice (omitted here due to space restrictions). Moreover, we
restrict our attention only to the case qk,B,G > θ due to space
restrictions (otherwise there are more cases to deal with). This
covers the self-interesting case of ON-OFF channels (θk = 0)
and the cases when µk,B is small enough with respect to µk,G,
in particular, if µk,B < qk,B,Gµk,G.

We will need some more notation. In case qk,B,G ≤ x <
qSS
k,G, let Tk (as a function of x) be an integer such that
φTk

k (qk,B,G) > x and φTk−1
k (qk,B,G) ≤ x, where φtk(y) is the

t-th functional power of φk(y). Such a Tk exists, is unique and
positive, because (2) implies that φtk(qk,B,G) = qk,B,G

1−ρt+1
k

1−ρk
,

which is an increasing function of t with limit qSS
k,G > x. We

remark that Tk can be interpreted as the starvation age (i.e., the
number of periods without serving) of the flow in the system
since the last B feedback (due to which the belief state was
set to qk,B,G).

Let further φ∗k,G be a weighted harmonic mean of the one-
slot probability of moving to the good condition of a flow with
starvation age Tk and the steady-state probability of being in
good condition under such dynamics

φ∗k,G :=
1

µk,G

φTk

k (qk,B,G)
+

1− µk,G
φSS
k,G

, (4)

where φSS
k,G is the steady-state probability for condition G of

matrix Qk with φTk

k (qk,B,G) instead of qk,B,G, and can be
easily shown to be

φSS
k,G =

φTk

k (qk,B,G)
1 + φTk

k (qk,B,G)− qk,G,G
. (5)

We are now ready to characterize the index values in closed
form, which is the main theoretical result of this paper.

Theorem 4.1: Under Conjecture 1 (in case µB <
qk,B,GµG), the index values under the time-average criterion
are as follows. For a belief state x ∈ X̃k,

νk,x =



+∞, if qSS
k,G ≤ x ≤ qk,G,G

ck

{
φ∗k,G

1− (1− µk,G)qk,G,G
(1− ρk)(qSS

k,G − x)[1− (1− µk,G)φ∗k,G]

+(Tk(x) + 1)

[
(1− µk,G)qk,G,G

1− (1− µk,G)φ∗k,G
− 1

]}
,

if qk,B,G ≤ x < qSS
k,G

and νk,∗ = 0.
The index values possess the following properties.
Proposition 2: The index value νk,qk,B,G

is non-negative.
Proposition 3: The index values νk,x are increasing in x,

and νk,x → +∞ as x→ qSS
k,G.

Because of this monotonicity of the index values we more-
over obtain that policies of threshold type are optimal.

Proposition 4 (Optimality of Threshold Policies): Under
Conjecture 1 (in case µB < qk,B,GµG), for every real-valued
ν there exists z ∈ Xk such that threshold policy serving in
states Sz := {x ∈ X̃k : x > z} and not serving otherwise is
optimal for problem (1).

B. Optimal Solution to Lagrangian Relaxation

The vector of policies π∗ := (π̃∗k)k∈K identified in Con-
jecture 1 and Theorem 4.1 is formed by mutually independent
single-user optimal policies, therefore this vector is an optimal
policy to the Lagrangian relaxation of the original problem.

Note that for a given value of ν, this policy essentially
means to serve everyone whose last feedback was G (with
infinite index value), and moreover those whose last feedback
was B and have been starving long enough (with respect to
their parameters). Everyone will eventually be served because
the index value during starvation increases to infinity.



V. NEW OPPORTUNISTIC SCHEDULERS

A. Whittle-Index-Based Scheduler

Since the original scheduling problem requires to allocate
the base station to exactly M flows at every slot t, Whittle
(1988) proposed to employ at every slot action 1 for the M
flows with highest actual index values νk,Nk(t), and conjec-
tured that such a heuristic be asymptotically optimal as both
the number of served flows M and the overall number of flows
K grow to infinity in a fixed proportion. This was shown true
under certain technical conditions in Weber and Weiss (1990).
In this section we extend these ideas to design a scheduler for
the problem with arrivals.

First, note that for all the flows available at time slot t = 0,
and for all the flows arriving later, there is a natural initial state:
the steady-state qSS

k,G. This is because of the assumption that
information is only received after the flow has been scheduled,
and the initial belief state should be the one of not having
been scheduled for an infinitely long time, which is indeed
qSS
k,G. The index value of any newly arrived flow remains +∞

until it is scheduled for the first time.
Further, since there may be too many flows with index

value +∞, we will need a tie-breaking rule to set priorities
among such flows. Following Ayesta et al. (2010), we choose
among such flows the one with highest second-order term of
the Laurent expansion of the discounted index value, which,
for qSS

G ≤ x ≤ qG,G, is

ν
(2)
k,x =

ckµk,Gx

1− (1− µk,G)(qk,G,G − x)
,

It is easy to prove that such a quantity is increasing.
Proposition 5: The tie-breaking index value ν(2)

k,x is increas-
ing in x.

Finally, based on the above arguments and results under
the time-average criterion presented in the previous section,
we propose a new scheduler which serves users as follows: at
every slot t,

(i) serve up to M flows whose last observed condition was
G or have never been served, giving higher priority to
those with higher value ν(2)

k,x;
(ii) if there are less than M flows whose last observed

condition was G or have never been served, then in
addition to those, serve also flows whose last observed
condition was B, giving higher priority to those with
higher value νk,x;

In addition, break ties arbitrarily.
The proposed opportunistic scheduler gives absolute priority

to flows whose last observed channel condition was G. Flows
whose last observed channel condition was B are served only
if there are not enough absolute priority flows. This may be
perhaps surprising, but it is in the same vein as the results
in Jacko (2011) for a fully observable system (where channel
conditions are known for all the users at the beginning of
every slot), where Whittle index opportunistic scheduler gives
absolute priority to users in G over those in B, and schedulers

with such a property were proved maximally stable in Ayesta
et al. (2011).

In addition to maximal stability in the fully-observable
system, the use of ckµk,G for tie-breaking was shown to lead
to fluid-optimality in Ayesta et al. (2011). In our partially-
observable model the expression is a bit more involved, but
with an interesting interpretation of the expected departure
probability ckµk,Gx divided by the unit complement of the
potential improvement of the belief state, since qk,G,G − x
is the belief improvement due to feedback, multiplied by the
probability of not departing from the system 1−µk,G. In fact,
the tie-breaking value of a flow that was served in the previous
slot and obtained feedback G is ckµk,Gx = ckµk,Gqk,G,G,
which is nothing but the expected reduction in the holding
costs.

B. Scheduler for Single-Class System

In case of flows belonging all to the same class (i.e., having
the same all the parameters and differing only by the current
state), the scheduler simplifies significantly. Suppose that we
start from initial conditions as described earlier in this section.

Recall that the tie-breaking in (i) implies that the users
whose last observed state was G are served according to
shortest-starved-first, due to Proposition 5. Then the proposed
scheduler will have the stay-on-a-winner property, in the sense
that every time a flow is scheduled and observes condition G,
then it is served also in the next slot, because there cannot
ever be more than M flows in such a situation. This is an
interesting and desirable property of our scheduler, which
essentially means to be opportunistic. As a consequence, it
can never happen that a flow whose last observed state was G
has been starving at all. Moreover, due to Proposition 3 the
flows whose last observed state was B are served according
to longest-starved-first.

The scheduler for single-class systems can be written algo-
rithmically as follows: at every slot t,

(i) serve all the flows that were scheduled in the previous
slot and whose observed condition was G;

(ii) if there are less than M flows whose observed condition
in the previous slot was G, then in addition to those,
serve also (in total up to M ) flows that have never been
served;

(iii) if there are less than M flows whose observed condition
in the previous slot was G or have never been served,
then in addition to those, serve also (in total up to
M ) flows whose last observed condition was B, giving
higher priority to those that have been starving longer;

In addition, break ties arbitrarily.

C. Naı̈ve Schedulers

It is further natural and interesting from the implementation
point of view to study much simpler schedulers, such as those
we define next.



a) Myopic Scheduler: The myopic scheduler serves at
every slot M flows with highest immediate cost reduction
(breaking ties arbitrarily), defined by

νmyopic
k,x := ckµk,Gx.

The myopic scheduler is also of theoretical importance,
since it becomes optimal in the multi-class setting if feedback
brings no relevant information (i.e., when ρk = 0 and so
x = qSS

k,G always). Notice that in that case, the departure
probability of a class-k flow is µk,GqSS

k,G and so it recovers the
classical job scheduling setting, in which the cµ-rule is optimal
(where µ is the departure probability) (Buyukkoc et al., 1985).

Proposition 6: The myopic scheduler is optimal under ar-
bitrary arrivals if ρk = 0 for all flow classes k.

We suspect that the suboptimality decreases as ρk (for a
fixed k) approaches zero, because this value is close to the
myopic index if ρk ≈ 0. Therefore, we will be interested in
studying its performance especially when ρk is relatively large.

We will also be interested in the following scheduler, which
is independent of all the problem parameters except for Qk.

b) Belief-State Scheduler: The belief-state scheduler
serves at every slot M flows with highest immediate prob-
ability of being in G (breaking ties arbitrarily), defined by

νbelief
k,x := x,

Note finally that both the myopic scheduler and the belief-
state scheduler become equivalent to the Whittle-index-based
scheduler in the single-class case. This is an interesting feature
observed also in packet-level models.

VI. EXPERIMENTAL STUDY

In order to compare the performance of the three schedulers,
we have performed simulations in a variety of scenarios with
heterogeneous flows. We would like to emphasize that in a
vast majority of scenarios we have tested, the three schedulers
performed equivalently (the obtained objective values did not
differ significantly at 95% level of confidence). In the two
scenarios reported below the belief-state scheduler is not
significantly different from the Whittle-index-based scheduler,
therefore the belief-state scheduler is omitted in the figures.
For comparison we however include a scheduler that at every
slot randomly chooses which uncompleted flow to serve.

See Figure 1(a) for illustration of such an effect in scenario
1 with the following parameters: K = 2,M = 1, ck =
1, q1,G,G = 0.9, q1,B,G = 0.1, q2,G,G = 0.8, q2,B,G =
0.2, µ2,G = 0.08, and varying µ1,G. Thus, decreasing the
expected size of one flow significantly decreases the total
expected holding cost (since the other flow is much smaller),
improving over the random scheduler around 10%.

It is well known in channel-aware systems that myopic
schedulers are suboptimal if the class parameters are such
that one class persistently gets absolute priority over some
other class. In such a situation, the users of the latter may be
delayed service and accumulate, which may lead to unstability.
Such a situation is reported in Scenario 2 Figure 1(b) with
the following parameters: K = 2,M = 1, ck = 1, q2,G,G =

0.7, q2,B,G = 0.2, µ1,G = 0.02, µ2,G = 0.08, and varying
q1,G,G and q1,B,G so that the steady-state probability remains
the same, qSS

1,G = 0.4. Indeed, we can observe a statistically
significant superiority of the Whittle-index-based scheduler
over the myopic scheduler, of 2 − 6% in the mean relative
performance, and a notable improvement over the random
scheduler of around 15%.

Note that these differences are relatively big, taking into
account the simple scenarios of only two flows presented here.
We expect to see even larger differences in simulations with
arrivals (which will be reported in the full paper version).

VII. CONCLUSION

The results of this paper provide us with several novel
conclusions. It is interesting that there are many states with
infinite-valued index; to the best of our knowledge, this is
first such result. Another striking finding is the exceptional
performance of the belief-state scheduler, which is moreover
independent of the job size parameters. Such a policy was
proposed also in Niño-Mora and Villar (2011), but usually
has been ignored by the researchers.

On the other hand, it is desirable to study optimality of
the proposed schedulers. We may be able to prove optimality
in the single-class setting, following the similar ideas as in
Liu et al. (2011). However, general optimality of the Whittle-
index-based scheduler in the multi-class setting is unlikely.
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