

Markov extremal model (MEM) Motivation: non-stationary extremes in time • Application of the Markov extremal heatwave model of Winter and Tawn Fit (2016, 2017) to evolution of ocean storms • Split storms into two parts, left and right of the peak • Evolution of significant wave height is strongly influenced by wave direction • For each part, fit 2nd-order Markov extremal model (based on conditional \rightarrow extend heatwave model to include temporal evolution of direction extremes model of Heffernan & Tawn): $[X_{t+1}, X_{t+2}] = [\alpha_1, \alpha_2] X_t + X_t^{[\beta_1, \beta_2]} [\mu_1 + \sigma_1 Z_1, \mu_2 + \sigma_2 Z_2] \text{ for } X_t > \eta$ • Specify and estimate a joint model for wave height Y_t and wave direction Θ_t (for $Y_t > \psi_{\theta}$) • Distributions G_1 , G_2 of Z_1 , Z_2 assumed standard Gaussian for fit only • Residuals used to estimate distributions G_1 , G_2 and $G_{2:1}$ of Z_1 , Z_2 and $Z_{2:1}$ Data • Kernel density estimation used for $G_{2:1}$ in particular Simulation (starting at peak X_0) • Evolution of extreme storm severity (H_S) and associated direction in time • $X_1 = \alpha_1 X_0 + X_0^{\beta_1} (\mu_1 + \sigma_1 Z_1)$ for t = 1• $X_t = \alpha_2 X_{t-2} + X_{t-2}^{\beta_2} (\mu_2 + \sigma_2 Z_{2|1})$ for t = 2, 3, ...Figure 1: Motivating application. (a) Directional plot of storm peak H_S (black), sea-state H_S (grey) for all storms with directional threshold ψ_{θ} . (b) Polar plot of H_S with direction for 15 Figure 2: LH: χ extremal diagnostic for different MEM orders: MEM(2) looks good. RH: Scatter plots of MEM $lpha_2$ on $lpha_1$, eta_2 on eta_1 , μ_2 on μ_1 and σ_2^2 on σ_1^2 for MEM(2) pre-peak model for H_S , using a threshold with non-exceedance probability 0.75. Marginal model Directional model • Estimate marginal non-stationary gamma-GP model for significant wave heights $\{Y_t\}$ with associated wave directions $\{\Theta_t\}$ (using P-splines) • Calculate *change* in wave direction $(d\Theta_t/dt)$ and transform to approximate Gaussian $\Delta_t = f(d\Theta_t/dt)$. • Fit AR(k) model: $\Delta_t = \sum_{j=1}^k \gamma_j \Delta_{t-j} + \epsilon_t, \ \epsilon_t \sim N\left(0, \sigma^2(X_t)\right)$ • $\sigma^2(x) = \lambda_1 \exp(-\lambda_2 x) + \lambda_3$ 1.27 0.4 < ⊲ 0.3 ⊢ 0.2 Parameter estimates ξ , ν , γ and ζ for the directional marginal gamma-GP model for sea state significiant wave height H_S and storm peak significant wave height H_S^{sp} . Thick line is median estimate for H_S . Thin solid line is median estimate for H_S^{sp} . Thin dashed lines are Figure 3: Directional diagnostics. (a) Sample partial autocorrelation function for Δ_t : k=195% uncertainty bands for storm peak analysis. The directional threshold ψ is illustrated in looks good. (b) $\sigma^2(X_t)$ on X_t from sample (black) and model (red) with 95% bootstrap uncertainty bands.

typical storms.

• Transformation to standard Laplace margins: $Y_t \rightarrow X_t$

Figure 1.

Workshop Rare Events, Extremes and Machine Learning

A statistical model for the directional evolution of severe ocean storms Emma Ross¹, David Randell¹, Stan Tendijck², Phil Jonathan¹

¹ Shell Global Solutions International B.V., ² TU Delft

Simulation algorithm

simulate x_t using MEM; if $x_t \ge x_0$ (exceeded storm peak) then reject trajectory and restart; end

if $x_t < \eta$ (no longer extreme) then stop and save trajectory;

end

simulate θ_t using directional model; simulate y_t on physical scale using marginal transformation; end

Key inferences

- Distribution of storm trajectory lengths by direction
- Marginal distribution of H_S by direction

Figure 4: Results using first order directional model and MEM(2), omni-directionally and by directional octant. (a) Logarithm of density of number of sea states in a storm. (b) Tail of distribution of H_S . Black lines give empirical sample estimates. Red lines are estimated by simulation under the model. Dashed lines are 95% bootstrap uncertainty bands.

References

Tendijck, S., Ross, E., Randell, D., Jonathan, P., 2018. A non-stationary statistical model for the evolution of extreme storm events. (In preparation for Environmetrics, draft at www.lancs.ac.uk/ \sim jonathan). Winter, H. C., Tawn, J. A., 2016. Modelling heatwaves in central France: a case-study in extremal dependence. J. Roy. Statist. Soc. C 65, 345–365. Winter, H. C., Tawn, J. A., 2017. kth-order Markov extremal models for assessing heatwave risks. Extremes 20, 393–415.

simulate storm peak x_0 , θ_0 above threshold η for t = 1, 2, ... do