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 Abstract

 We consider a family of irreducible, ergodic and aperiodic Markov chains X() =
 {X(e), n 0}, depending on a parameter E > 0, so that the local drifts have a critical
 behaviour (in terms of Pakes' lemma). The purpose is to analyse the steady-state
 distributions of these chains (in the sense of weak convergence), when E40. Under
 assumptions involving at most the existence of moments of order 2 + y for the jumps,
 we show that, whenever X(0) is not ergodic, it is possible to characterize accurately
 these limit distributions. Connections with the gamma and uniform distributions are
 revealed. An application to the well-known ALOHA network is given.
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 AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60J27

 1. Introduction

 Let X(') = {X), n _0} be a sequence (with respect to E) of irreducible aperiodic
 and ergodic Markov chains for E >0, with state space {0, 1, 2,. }. We shall
 suppose that the transition probabilities of these chains have a property of
 convergence -p ) p as E -- 0, where IIp IIj is the matrix of transition probabilities
 of an irreducible aperiodic Markov chain X(0). Let a7r') be stationary probabilities
 for the matrix IIp)II. Then

 Z.7r() (- ?
 j=o

 Let ?(') denote a random variable with the distribution P[ () = j] = a(E). In Sections
 2 and 3, we consider the asymptotic behaviour of the distribution of ( ") as E 0
 under some assumptions for pJ ), which will be explained later. When X(0) is
 ergodic, the problem mentioned above concerns the stability (sometimes referred to
 as transient phenomena) of the ergodic distributions X(") with respect to the
 parameter E, when E10. However, the conditions discussed below are related,
 generally speaking, to another situation, the 'critical' one, when X(0) can be
 non-ergodic. It is worth remarking that the proposed approach is general and could
 also be used for non-Markov processes. En passant, we are able to distinguish
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 Transient phenomena for Markov chains 323

 between transience and null recurrence. Section 3 proposes an application of these
 results to a Markov chain arising from the analysis of the well-known basic ALOHA
 algorithm, which is employed to solve the contention in some distributed random
 access communication systems.

 2. Transient phenomena theorems for Markov chains

 This long section contains the main body of the paper. Although it may appear
 dense, its organization is simple. First, the four main theorems are stated. Then, the
 outlines of the proofs are given. The proofs consist mainly of lemmas. We use the
 following notation:

 mj") = E[X(") -i I X()= i], b=") = E [(X(")- i)2 X()= i].

 To provide a reasonable classification of the transient phenomena for the Markov
 chain X(t), we suppose that the asymptotic behaviour of m(') and b('), as i --~c, E10
 is quite regular. In particular, we assume the existence of the following limits:

 lim m(0) = 0,
 i--- 0o

 lim im0) = - s, - _00x54 00 i---,

 lim bo)= b, O < b < o.
 i---o

 It turns out that the parameters M, b are essential for the ergodicity of X(0), and
 later on for the asymptotic behaviour of ?(") also. In particular, it was proved in

 [12], assuming mainly the boundedness of moments of order 2 + ac for the
 increments, that X(0) is recurrent (not necessarily ergodic) if -2y < b and transient

 if -2yt > b (note the minus sign). It is possible to improve this classification for the
 class of chains considered below. In particular, we show that, under mild conditions

 given in Theorem 4, X(0) is ergodic if 2M > b, null recurrent if b _ 2/2 >0 and
 transient if -2p > b. Since our principal goal is to analyse the stability of the family

 of Markov chains X("), _0, we shall consider the convergence of IIp)llI to IIPijll
 ensuring that the drifts m(") have a negative bias - E with respect to m?o), so that

 limi_. m') = - E. Thus X(-) is ergodic, for any E >0 (see [14], [16]). To be more exact, we shall enforce the following general conditions:

 lim m0")= 0,
 i-3-o0, 410

 (2) lim i(m") + e) = --t, -?-- o ! - , i---ei, e40

 (3) lim bj")=b, O<b<c<, and sup bj)< . i---o, eO iRO, e-O
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 324 A. A. BOROVKOV, G. FAYOLLE AND D A. KORSHUNOV

 A specific example of such Markov chains is the sequence X,, defined by the
 equalities X,,, = (X, + ~)+, where the , are i.i.d. random variables with
 fEf[] = - E. Transient phenomena for this type of random walk (in this case ~ = 0)
 and for some more general ones have been considered in [2], [3], [10], [15].

 Theorem 1 (ergodicity and stability). If (2), (3) hold, 2M > b and

 (4) sup [E X) - il2+y I X) = i] < C < 0,
 i-O, eO

 where y is an arbitrary but strictly positive number, then the chain X(O) is ergodic

 and becomes stable as e40: ~(~) D (o) as E10, where, as usual, D indicates
 convergence in distribution. The case M =oo is covered by the statement of the
 theorem.

 Theorem 2 (convergence to a F-distribution). If (2) and (3) hold and -oo < 2/P <
 b, then X(O) is non-ergodic. If, moreover, the series representing

 (5) bj()= pj)uYu2

 converges uniformly with respect to i and e, then

 2E (E)=Fl/b,1-2,A/b as 4e0,

 where = means convergence of distributions. It is worth mentioning that condition
 (5) will be satisfied if we assume merely the more stringent condition (4).

 Remark 1

 (i) In fact, Theorems 1 and 2 will be proved under slightly more general
 assumptions. Indeed, in Theorem 1, (2) can be replaced by the inequalities

 m(e) , m0), for i - io, where io is some positive integer. In Theorem 2, (2) can be
 replaced by the representation

 m) c = --E 0- E+O( as i--oo, E10.
 (ii) In the case M = -00, the limit distribution of ?("), after suitable normalization,

 will be normal. This result will be published later.

 It remains to consider the critical case 2Ms = b.

 Theorem 3 (convergence to the uniform distribution). If (2), (3), (4) hold, 2M = b,
 and

 (6) 2i(m! + E) + b =o)= +o

 then X(O) is null recurrent and log (C("))/log (1/E) ~ U[O, 1], as E4O, where U[O, 1]
 denotes the uniform distribution on [0, 1].
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 Transient phenomena for Markov chains 325

 Remark 2

 (i) The statement of Theorem 3 says that, roughly speaking, ?(") is distributed as
 E-", where r is a random variable having the distribution U[0, 1].

 (ii) If we take a different rate of convergence to 0 in (6), then the asymptotic
 behaviour of the distribution of log (h(")) can be different too.

 The next theorem gives a detailed account of the behaviour of X(o).

 Theorem 4 (distinction between null recurrence and transience of X(0)). Assuming
 E = 0 and that (2), (3) and (4) hold, we have the following classification:

 (i) If 2Ms > b, then X(0) is ergodic (assumption (4) is not necessary here);

 (ii) If -b _ 252 < b, then X(0) is null recurrent; this is also the case if b = 2Y and
 (6) holds;

 (iii) If b > -2y, then X(0) is recurrent;
 (iv) If 0 < b < -2ys, then X(0) is transient.

 Proof of Theorem 1. The investigation of stability in this theorem relies essentially

 on the weak compactness of the family of distributions {(J.r), i _0}, for e _0. In
 this connection, we prove two lemmas which yield the desired conclusions.

 Lemma 1. If o() does not tend to 0 as EJ0, then the system (1) has a probabilistic
 solution.

 Proof. On account of the underlying assumption, there exists a subsequence

 EkV0, such that k') --- ro> 0. It follows from Helly's theorem, see [13], that there

 also exists a subsequence Ek, with Ek' _ Ek, such that, for any i _ 0,
 lim r(Ek) = r, > O0, . Jri ' 1.
 ek 10 iO

 We now have to show that the sequence {ro), i- 0} also satisfies system (1) when E = 0. Setting e = Ek in system (1), we obtain

 4- I i ,p. = jPj -i-) - . - ( .ij p, -j.rk)p(Ek)) jI -o IjI--o

 1.7r, -[.7r -v +> IYrp7r,(-nk)p(k)I ++((+ k)p((k). < Ir, - :*) . + r Inrjpj, - --, , + Z (rjPji + -7jP j:SN j>N

 The first and second terms on the right-hand side tend to 0 because r4(k)- 0 i and
 p;k)p--i, as Ek40. Then, using the inequality rK < 1 and Chebyshev's inequality, it follows that

 , (ir p1i + 7rk)pifk)) > (Pi +P f) = 2 upbY~- 0,
 j>N j>N j>N(j)

 as N- oo. Therefore xi = J_-o 3r;pj, and the proof of Lemma 1 is concluded.
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 As mentioned previously, the main idea in studying stability in Theorem 1 is to show

 that, for E ?0, the family {r), i _-0} is weakly compact. This emerges at once from the next result.

 Lemma 2. Suppose that 2Mi > b. Choose y (defined in the statement of Theorem
 1) arbitrarily small and positive, satisfying

 2(7

 (7) 0<y< - -1. b

 Then, under the assumptions of Theorem 1, the moment of order y of the stationary

 distributions {r('), i > 0} is uniformly bounded with respect to E ?-0:
 sup E[ -(E)] = sup E >r)i7 <0oo.
 e-_O eO i?O

 Proof. We shall prove that the series

 (8) x()n[X (E)+2 _iy+2IX = i] (8) .t+n - I X) i]. i=O

 converges to a non-negative value. Define W() = X,'I--X(). We apply the
 well-known Taylor formula to the function (1 + y)y+2. Then

 y2

 (1 + y)y+2 = 1 + y(y + 2) + - (y + 1)(y + 2)(1 + yO(y))Y, 2

 where 0(y) is a continuous function of y satisfying

 (9) 0< 0(y)<1, (0(-1) =1-( <2 1  y+2
 Hence,

 (E)y+2 iy+2 I X (e) = i] iy+2 + n - X()= (10) -+l - =i + + X )i-1+X(1+ ] (10)

 (y +2)iE iWW) W,)2 1 + Xn ) = i , 2 n -
 where O,i is a function of W(') satisfying 0 < ,i < 1. Upon applying the elementary
 inequality I1+a 1 + la, 0 y 1, we obtain, since the random variable
 1 + (6, iW)/Ii) is always positive,

 (11) [ W,)2 1 + X =) i/ bid+i- E[|W |y+2 X =
 On account of the assumption (4) in Theorem 1, the expectation on the right-hand
 side of (11) is uniformly bounded with respect to i and E. Thus, combining (10) and
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 (11), we obtain

 (12) E[X (E)+2 iy+2X = i] 5 (y + 2)i' im () + + 1) b) + Ci-
 where C is the constant introduced in (4). Now using (7), together with the

 condition m () - m'o) -,-/i, for i -io, it follows that, for some sufficiently large
 i,-5 i and small E,, (12) can be rewritten as

 (13) E[XY+2- i+2 I X() = i] 5 Hi' < 0, for i = i,, E E,
 where H is a strictly negative constant.

 The inequality (13) does play a basic role in our proof. It entails, in particular,

 that the partial sums Si of series (8) are decreasing for i > i,, E _ E,. Hence, the
 limit of these partial sums does exist and is either finite or equal to -0o. In fact, we
 shall prove the following stronger statement: the sum of the series (8) is
 non-negative. Indeed, suppose that this sum is negative. Then, there exists a

 number i1 _ i,, such that Si, < O0. Consider the chain XI(), with X() = 0. Under the
 assumptions of Theorem 1, we have IE[X(f)y+2] < 00, for any n ?0. Upon now setting

 r') = P[X(E) = i], it follows from the ergodicity that lim,,1i)= -ir"), for any
 i O. This, in turn, implies

 1 rE[X(e)Y+2 _ iy+2 I X =() = i]--- Si, <0, as n -- .0
 i~it

 Therefore, we have, for n sufficiently large,

 Er)[Xey+2 - X()y+2; X() il] = -6 < 0.

 It follows directly from (13) that

  )E[X('n+2 _ iy+2 XX -) i] - +2- X)+--=(e)y+2 _ X$V+2; Xf) > i1] < 0, for any n 0. i>il

 Hence, we obtain

 E V[X+2] E[X,)y+2] _- 6, for n no large enough.

 Since a = [E[X()y+2] < oo, we finally get

 0 < [Xe, 2o+(a/)+ e)v+2 -5 + 1)=-b<0,
 which is a contradiction. Therefore the sum of series (8) is non-negative. Hence,

 Jei )E[X n+2 y+2 X (e) = i] > - > ()r-()+2 - y+2 2 X(I) i] A(i,). i~i* jcZj
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 Using (13), it follows that, for e - e.,

 S(i,)oo H

 The proof of Lemma 2 is concluded.

 Remark 3. It is indeed easy to verify that, if 2p > b, the Markov chain X(0) is
 ergodic. Indeed, upon introducing the process Y = [X(0)]2, which is again an
 irreducible Markov chain on the positive integers, we obtain

 [E[Y+ - Yy = i2] = 2imi0o) + bo0)< -e,

 for i - I0 sufficiently large and the conclusion follows from Pakes' lemma [14].

 We are now in a position to prove Theorem 1. According to Lemma 2, {r("), i t 0}
 is a weakly compact family of distributions and the weak convergence now becomes

 straightforward. Let {ri,, i -0} be a limit point such that (as EJ0) .r = lim .7rk),
 Ek--* 0. The proof of Lemma 1 entails that {7r_, i - 0} satisfies system (1),

 corresponding to E = 0, and, from weak compactness, that ji- .i = 1. Moreover, it is known that system (1) has a unique solution (see [9]) with the property

  rio i = 1. Thus 7ri = ;rco). This completes the proof.

 Proof of Theorem 2. First, we give a brief description of the main ideas used
 below. Lemma 3 is simply an intermediate and very intuitive result, which tells us
 that ergodicity does not depend on a finite number of transition probabilities. In
 Lemma 4, it will be proved that 2E;(E) is a weakly compact family of random
 variables. Next, from system (1), we obtain an equation for the generating function
 of the limit distribution of 2E4(E). Then, we shall overcome the main difficulty: the

 convergence of r0') to 0 aS EJ0 will be shown, allowing us to neglect some terms in the equation for the generating function. Finally, a change of variables yields the
 convergence of the Laplace transform of the random variable 2E;(E) to the Laplace
 transform of a F-distribution.

 Lemma 3. If the irreducible aperiodic transition matrices lip/ II and IIp || differ
 only by a finite number of transition probabilities, then the existence of an invariant

 probability measure for II p/ | follows from the existence of an invariant measure for
 IIpijill.

 Proof. We consider the situation where pii :Z p,, only if i = io and j - J, where io
 and J are fixed. It is known (see [9]) that an irreducible aperiodic Markov chain X is

 ergodic iff there exists an invariant probabilistic measure for the matrix IlpjIll. On
 the other hand, X is ergodic iff it is positive recurrent. Let r.i = min {n > 0:X, =

 j x = i} be the length of the path from the state i to the state j. Positive recurrence

 means that lE[ri]<oo. Besides (see [9]) we have ; = lim P{X, =i} = 1/hE[r,].
 Consider the chains {X,}, with X0 = i0 and {X*}, with XJ = i0. It is easy to see that
 the value of E[ri/o], for j $ i0, does not depend on the values of po. Moreover, it is
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 well known that, since E[rioj < o, E([riio < oo, for any finite j. Hence, the formula

 4E[rioi]= P o io PI(1 + EI[rjio) + Pioi(1 + 4E[rjio) <coo j--J,j' io j>J,j*io

 holds with and without the asterisks, thus showing that E[rio~,] and E[rio0]* are finite simultaneously. This completes the proof of the lemma.

 According to (2) and (3), let us define

 (14) m)= + A(i, +

 where A(i, E)-- 0 as i--oo, 10. The ergodicity of X ) follows at once from the

 inequality m()'< -_E/2, for i large enough (see [14]).
 Lemma 4. The family of random variables 2ET(E) is a weakly compact family and

 supo<e:Eo 2[EE[ (E)] < oo, for sufficiently small E0.

 Proof. Consider the series

 (15) rr(E)E[X(E)2 _ i2 X(e)= i
 (15)1 n I i].

 ieO

 The mathematical expectation in (15) is

 (eX](E)2 _ i2IXI) [Xe - i2 I = i] = -E[2iWe) + We)2 Xe)= i]
 E

 = 2imie) + b(E ,) i < 0,

 for i sufficiently large. Following the argument of Lemma 2, we can assert that series

 (15) is summable and its sum is non-negative. Hence,

 > je)[-2iE(1 - A(i, E)) - 2M + 2A(i, E) + bW)] - 0, i_-O

 or, equivalently,

 2EX .7r()i(1 - A(i, E))_ 5 > re)(-2y + 2A(i, E) + b~e)) i-O i=O

 - sup 1-2p + 2A(i, E) + b"E)I = A < oo. i, E

 There exist io and eo such that 1 - A(i, E) > 1/2, for i > io, E ! Eo0. Therefore

 E> izJe) - A* + 2EEX er()i 11 - A(i, E)I - A** < o, for E - Eo. i=io i<io

 The proof of Lemma 4 is concluded.

 Denoting by ui4)(z) the generating function of the distribution {pf2)k k-i, we have

 u$6)(z) = ~k-i,)+kZk, Izi < 1. Turning back to the proof of Theorem 2, we now
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 derive from system (1) an equation for the generating function of the limit

 distribution associated to (').

 (16) r(e)(z) = ;re)z'iUe(Z).
 i-O

 Unless otherwise stated, from now on, z will always denote a real number with

 Lemma 5. If (2) and (3) hold, together with 2M < b, we have zr) - p) = 0]- 0,
 as eF0.

 Proof. Lemma 1 implies that it suffices to check the non-existence of a
 probabilistic solution of system (1) corresponding to e = 0. Suppose in fact that
 system (1), corresponding to e = 0, has a probabilistic solution. For the sake of
 brevity, we omit the superscript 0. Substituting e = 0 in (16) and differentiating with
 respect to z, we obtain

 (17) > ,rizi-lf'(z) = 0, i-O

 where f(z) = i(1 - ui(z)) - zu'(z). By Taylor's formula, we can write

 (18) f1(z) = -u,(1) + (1 - z)[(1 + i)u (O) + Oiu'(Oi)],
 with z < Oi < 1, Vi - 0. Using (18) in (17) yields

 (19) E rzi-lu'(1) = (1 - z)> rizi-l[(i + 1)u'(0i) + 0iu'(0i)]. i2O_ i=O

 On the other hand, using Taylor's formula again in (16), we get 7r(z)=
 i?O T7riz[1 + (z - 1)ul(pi)], which in turn implies

 (20) E iiz'ui (pi) = 0, 0 < z < 1, i?O

 where z < p < 1, Vi - 0. Since

 U(Vi) = u'(1) + (/3, - 1)u;'(y7), ,i < iy < 1,
 we have

 (21) 0 = E riZi'u(1) + E zriz (pi - 1)y~iu (yi). i=o i:O 2 Yi

 The function u"'(z) has a power series expansion with positive coefficients and, from
 the basic assumptions made in Theorem 2, zi+2u'(z) < u'(1) < oo, Vi 0. Hence, the
 second term on the right-hand side of (21) is a uniformly convergent series of

 continuous functions for 0? z - 1, which tend to 0 as z - 1. Consequently

 (22) x iu (1) = 0. i?O

 Note that (22) is in general not valid for Markov chains without further assumptions.
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 Now, using (22), we rewrite (19) in the form

 e i ( l (1) = > [(i + 1)u (O0) + Oiu'(Oi)]riz'-1, i2__ 1- i_ 0

 or, equivalently,

 C [(1z u(1) + (i + 1)ui(1)zi-1 + Oiu;'(Oi)zi1] (23) i
 = > r1i(i + 1)zi-l[u:(1) - u (Oi)].

 i?O

 We want to prove that the right-hand side of (23) tends to 0 as z -*1. Observe first
 that

 (1 - zi)(u,(1))

 1-z i lu(1)| I || as i- oo, 0 _ z 1. 1-z

 As already remarked, z'u!'(z) are positive continuous functions, which, by (3) and

 (5), are uniformly bounded, for all i- 0, O S z 1. Thus, the three series in the
 left-hand side of (23) are uniformly convergent and, consequently, their sums are
 continuous functions of z on ]0, 1]. Now, by using Taylor's formula, the right-hand
 side of (23) can be rewritten as

 g(z) - > i(i + 1)zi-l(1 - Oi)u'(yi), 0O< z < 0i < y* 5 1, Vi i-0. i-O

 Hence, g(z) represents the sum of a convergent series of continuous positive terms.
 From what has just been said, g(z) is continuous and we are in a position to apply
 Dini's theorem, which asserts that the series with sum g(z) is uniformly convergent,
 whence, since Oi->- 1 as z->- 1, g(1) = 0. Using (22) and letting z->- 1 in (23), we
 obtain the basic equality

 (24) C ai~zi = 0,
 ieO

 where a; = bi + 2imi. Hence, aii= b - 2M > 0, for i - io, io being chosen large
 enough. The positivity of the numbers {ai, i < io} depends only on a finite number of
 transition probabilities {pip, O 5i S io}. It then follows by Lemma 3 that we can

 always assume ai > 0 for every i _0. But this contradicts (24). The proof of Lemma
 5 (and at the same time of the first part of Theorem 2) is concluded.

 To get the weak convergence result stated in Theorem 2, we proceed to the
 derivation of a functional differential equation, which a suitable Laplace transform
 does satisfy. To this end, substitute z =exp(-2et), t ER?, and introduce the
 notation

 r(E)(z)= 1E[exp (-2Et1(e))] p2e(e)((t)e-fl()(t) and ('(t) ()(t)
 dt
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 The function f(e')(t) is the Laplace transform of the random variable 2e,(e).
 Moreover,

 d dfl(E)(t) -2EZ 7(e)(z) =)
 dz dt

 Now differentiating (16) with respect to z, as in (17), leads to

 (25) 1 ezEYi-li(1 -- Ue)(Z)) = - J (e)Uie)'(Z)z. i=O iO

 Upon repeatedly using Taylor's formula, we obtain

 (26) 1 - u$)(z)z)= (1 - z)[mE ) + u6)(Oi), u),(z) = me) + (z - 1)u( "(,
 where z < yi, , < 1. Hence, from (16), we get

 (z -+(1)2 -(e)(z) = e)zji 1 + (z - 1)mfe +(- 1)2 U 4e)( io 2

 or

 (27) > 1(E)Z'im(e)__1 - z J "( i-o 2 i>-o
 Replacing (26) and (27) in (25), and dividing by (1 - z), we easily obtain the main
 equality

 (28) > m6+E)(zi-li m(E) + - 1)-() = ()- u>e)z
 i?o 2 Uil(o] - YO1 L 2u)(0i) - ui(Yi)

 In Equation (28), Oi and yi are in fact (continuous) functions of z. By using (14) and
 z = 1 - 2Et + O(Et), we rewrite (28) in a form which explicitly reveals the functions

 fl(P)(t) and #(E)'(t), as follows:

 3(EY'(t)[1 + bt + o(1)] + Y iJtj)zAi-1 A(i, e) E + + (z (u e)"(O) - b)
 (29) iO-

 = P(E(t)[2p - b + o(1)] +  Je)Z1 -ue)"() - ue)"(i) b . iio 12 2) +
 The next step consists in showing that, in (29), the two sums tend to 0 as e -*0. To

 that end, we first prove that, for any bounded function (p(i, E) satisfying the
 conditions

 Iq(i, E)I < K, Vi, E, sup |q(i, E) -->0, as io->o0, Eo-> 0, i-io, E-6E

 the following equality holds:

 (30) lim > ;rGzi'g(i, E)= O. E---0 i?O
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 This emerges directly from the decomposition

 sup Er!)z'qg(i, E) K E r!) + sup I (i, e)I, E-Eo i5 O Eiio i>ioE, E-E

 and from Lemma 5, by letting io->oo, Eo--*0. In a similar way, upon writing
 1 - z = O(et), and using the decomposition which led to (30), we get, from Lemmas
 4 and 5,

 (31) lim Y (1 - z)i7re)q(i, E) = 0. E--*0 ijO

 Hence, in order to prove that the sums in (29) are o(1), it suffices, according to (30)
 and (31), to show that

 (32) z'[u~e)"() - b]-->0, as i->0oo, E-->0,

 uniformly in e (or equivalent in z), for all z < 0i - 1. Since u,()(1) = b!e) - m$), it follows from condition (3) that

 sup ziu(Ye"(y) - sup yiu~)"(y) < 00, i, e,z y 1 i, E,y

 which in turn implies that (32) will hold if we can check

 (33) > p )(u - i)2(zi _u) -- 0, as i--> o, e--> 0. u _O

 For any fixed i, we can write

 (34) p(u - )2(i - ) p)(u - i) _2 + pE)(u - i)2 Izi - zul,
 u-O Iu-il>J lu-ij<J

 where J is an arbitrary positive number, and denote by T the first term on the
 right-hand side of (34). Then, under condition (5), given 6 > 0, it is possible to
 choose J, depending on 6 but on neither e nor i, such that

 (35) T < 6.

 On the other hand, by

 zi - zu = (i - u)zi+O(u-i) log z, 0 < 0 < 1,

 we get the following rough bound, for the second term on the right-hand side of
 (34):

 (36) C p,)(u - i)2 zi _zU <J 3zi-J log z.
 lu--il<J

 Now, fix J (function of 6) to satisfy (34) and (35) and then choose z = 1- O(J-3) to
 render the right-hand side of (36) smaller than any given positive 61: we have thus
 shown that, uniformly with respect to e and i and whenever we take z = 1 - O(J-3),
 the left-hand side of (33) becomes smaller than 6 + 61, which was the assertion,

 since 6 and 61 are arbitrary.
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 Hence, (32) holds and the sum on the right-hand side of (29) is o(1), when e-* 0.
 Quite similar arguments show that the sum on the left-hand side of (29) is also o(1).
 Finally, from the preceding estimates, the equation we are seeking for the Laplace
 transform becomes

 p()'(t)(1 + bt + o(1)) = f(e)(t)(2t - b + o(1)) + o(1), as eF0.

 It emerges from Lemma 4 that, for any t > 0, we have inf,_0 1#(')(t) > 0. Therefore the following equation holds, uniformly with respect to t taken from an arbitrary
 compact set on the positive real line,

 () (t) 2 + - b (),
 13()(t) 1 + bt

 or, equivalently,

 d 2/t -b - In 3(e)(t) - + o(1),
 dt 1 +bt

 whence lim.lo1(e)(t)=(1 +bt)2A/b-1. Thus, we get the stated convergence
 fz2e~,((t)-* (t) as E0, where Pf(t) is the Laplace transform of the distribution
 r(1/b),1-(2,/b). This completes the proof of Theorem 2.

 Proof of Theorem 3. First we give a brief description of the main ideas used in the

 proof. It is proved in Lemma 8 that 7r~e)--> 0, which, together with Theorem 4, shows the stated null recurrence. Then, with the help of the Dirichlet series
 E[(1 + (E))" and of its derivatives with respect to a, we obtain functional
 differential equations, which now cannot be solved in explicit form, but allow us to

 derive relations for the moments of the random variable log (1 + )(e))/log (1/e).
 More precisely, the following convergence will be proved:

 E=log[(1/]?lE)= m], e,0, m=o0,1,2, -- log (1/e) m + 1

 where ? denotes a random variable with a uniform distribution on [0, 1].

 Lemma 6. Assume that, for e > 0 and any positive measurable function f on the

 positive integers {0, , 1, - - - }, E[f(())] exists. Then the following relation holds:
 (37) O = (E)[E[f (X)) - f (i) I X)= -i]

 i>O

 Proof. Immediate by considering the ergodic Markov chain X,), with X(e) _ ((). Then X(e) _ X(E). This completes the proof of Lemma 6.
 Lemma 7.

 (i) For e > 0 arbitrarily small, E[(e)l +Y] < 0.

 (ii) sup __o E[l( e( ))l+ ] --- M < oo .
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 Proof. It follows directly from the arguments presented in Lemmas 3 and 4. Let a!

 be a real number with 0 - a ~ y. Using (4) and (6), the inequality (12) now takes
 the form

 E[X)+2-ia+2 X() = i] -(a+ 2) E+1 ( ab +o(E + 1/i))+ ].
 Thus

 S.iEE[Xe)+2 - ia+2 I XE) = i] 0,
 i?O

 which yields

 ab

 (38) E[E-(e)1l+a] : (eW)t(1 + o(1))] + C.
 On the other hand, by H61der's inequality, we have

 E[[(E?(e))1+aj 1? E1+(1/1a)[(E?(e)) a]

 Hence, setting G = E[ (')a] and combining the last two inequalities, we get
 G1+(/"'x) DG + C, where C is the constant introduced in (4) and D is a constant
 independent of E. Thus G < oo and the two assertions of the lemma are obtained by

 multiplying (38) by Eal 0- a S y. This completes the proof of Lemma 7.

 Lemma 8. If (2), (3), (6) hold, then to) - UI1(e = 0}- 0, as E 0.

 Proof. Lemma 1 implies that it suffices again to check the non-existence of a
 probabilistic solution of system (1) corresponding to E = 0. Suppose this is not the
 case. Then, it has been shown in Lemma 5, after using (22) and (23), that (with the

 notation of Lemma 5) i?-o ;ci[2imi + u'(1)] = 0. But it follows from (6) that

 2imi + ul'(1) = b + o - 0, i > io, 2i \i/

 where io is taken large enough; the arguments of Lemma 5 can be repeated. This
 completes the proof of Lemma 8.

 Lemma 9. For any k = 1, 2, -

 (39) 2EE[(1 + ?(e)) logk (1 + e(E))l = > :rE)k[b + o(1)] logk- (1 + i),
 i>O

 where, as usual, o(1) denotes a quantity tending to 0 when E~0 and i-> oo. In

 particular, setting k = 1 in (39) yields

 (40) lim 2ErE[(1 + 5(e)) log (1 + ((e))] = b.
 E--O
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 Proof. The assumptions of Lemma 6 are satisfied by choosing

 f(x) = (1 + x)" logk (1 + x), Re (a) < 1 + y, k - 0.

 Using Taylor's expansion and Lemma 7, we get

 (01M(> b(E) W(E)2 (41) 0 =  ) me)f(i) + f"(i) + E (f"(i + OWe)) - f"(i)) X) -i
 w 2 2

 where 0 < Oi < 1 and

 W(E) = X(E) - X(O

 f'(i) = (1 + i)y-1 logk-1 (1 + i)[a log (1 + i) + k],

 f"(i) = (1 + i)U-2[a(a - 1) logk (1 + i)

 + k(2a - 1) logk-1 (1 + i) + k(k - 1) logk-2 (1 + i).

 But all the functions on the right-hand side of (41) are analytic with respect to a.
 Thus, by using Lemma 7 and the principle of analytic continuation, (41) is indeed
 valid for Re (a) < 2 + y. For our purpose, it suffices to take a = 2. With this choice
 of a, we now have

 f'(i) = (1 + i) logk-1(l + i)[2 log (1 + i) + k],

 f"(i) = 2 logk (1 + i) + 3k logk-1 (1 + i) + k(k - 1) logk-2 (1 + i).

 It is easy to check that the first two terms on the right-hand side of (41) produce
 (39). It remains to estimate the last term in (41). To this end, we note first that, for
 any real y 0 0,

 y2P(IWo) > yl) < C 1y-, O - c - y.
 Then, taking lyl = i(1-P)/3, 3 0 arbitrarily small, we can write

 ly2[logk (1+ i + k (1+ i) ky3 logk-1 (1+ i) [1 + o(i-(2+)/3)] 1+i

 - ki- Ilogk-l(1 + i)[1 + O(i-(2+)/3)]

 The last two inequalities immediately yield

 E[2 (f"(i + iw)) f"(i)) = - -o(i-6), for some 6 > 0.

 The proof of Lemma 9 is concluded.

 Lemma 10. For any k = 1, 2, . ,

 2[(1 + -()) logk+l (1 + (e)) lim 2EE[ logk (Ie = b.
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 Proof. We proceed in two steps.
 (i) The following estimate holds

 eE[(1+ I(e))Iogk+1l(l+ (e)); 1+ (e) -(x+1) < (1 + (e)) E 1) EE[( + )]S:EEJg()_; + --E-
 for some 13, where 0 < < a< < y and x is a fixed strictly positive real number.
 Hence, it follows from Lemma 7 that

 eE[(1 + ?(,)) logk+i(1 + (e)); 1 +  -(x+l)]  ME6,
 where we can choose f such that

 ax
 6= ax-f(1+x)>O, i.e. P< 1+x

 On the other hand, we have

 2EE (1 + (e)) logk+l(1 + (e))] =+ (e)) logk+(1 + () 5(e) E-(x+1) logk(1/E) = 2EE ogk (/E) ; 1+ ()_- E
 + 2E (1+(e)) logk+1 +/ (e) . (e)> E-(x+1) logk (1IE) ; 1+ >

 _ 2eE[(1 + (e)) log (1 + (e))](1 + x)k + 2ME log-k (l/E).
 Thus, by (40) in Lemma 9 and since x is arbitrary, we infer that

 (42) lim sup 2EIE (1 + E()) logk+(l () b. (42) lim sup 2EE + kb. E L logk (1/ E)

 (ii) We have

 EE [(1 + '(e)) logk+(1 (+ E)(+ ))
 Elog-(e E[E[(1 + (e)) log (1 + (E))+

 +eE[(1+ (e)) log (1+ ())(l(1 + ())  1 ;+ () e-1]. Define, for a moment, the random variable

 H(e) E(1 + (e)) log (1 + ())(1 - gk(11

 For any ai 0, the modulus of the second term in the right-hand side of the above
 inequality can be rewritten as

 E[H(e); 1 + (E) < E-1+] + [E[H(e); E-1~' 1 + (e) - E-1]
 b bka

 - E  log (1/E) + - [1 - (1 - tr)k] = E" log (1/E) + - (1 + o(1)), 2 2
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 which, from the arguments used in Lemma 9 and since ac is arbitrary, tends to 0
 when e-* 0. Hence,

 [(1 + (e))logk+ (1 + ( b. (43) lim inf 2E (1+ logk (1+ b.
 E -+0 lOgk (1/E)

 The proof of (40) and thus of Lemma 10 is completed by combining (42) and (43).
 Now, dividing (39) by k in Lemma 9 and using Lemma 10 yields

 E[(log(1+ (e))k - = E[k], E0, k =0, 1,2, ... (log (1/e ) k + 1
 This completes the proof of Theorem 3.

 Proof of Theorem 4. Since we shall be dealing with X(?), we shall simply write

 X = {X,, n _ 0}, omitting the superscript. The basic idea is to construct positive
 supermartingales, via Lyapounov functions of the form X , ar being a real number
 (positive or negative), and then to apply the well-known Foster's criteria (see for

 instance [9]). Define Z, = X, + 1 and W, = Xn+1 - X,. We have, by using Taylor's
 expansion,

 Z,+I- Z,= o W,,Z-l + ao(ao- 1)n (Z, + OW,)2-
 (44)

 (zW-22 W1 n +(,_,) n-2 -
 Z)n-2{ZnWn + (c - 1) + (c - 1) )1+ -1]}

 where a < 2 and 0 is a random variable satisfying 0 < 0 < 1. Taking conditional
 expectation in (44), we get

 [ a- 1 i Ai ]? (45) E[Z1bJ - Z2 I Z, = i] = aia-2 imi + + A n n 2 2

 with i > 0 and

 A E[W2[(1+ 0W) ] ]-2 Z,

 The first step is to show that Ai = o(1), i.e Ai-- 0, as i-- oo. To this end, we write

 Ai = U, + Vi, where

 U = E[ W2[(1+ ZW)2 -1 Z, = i; iW, i ,

 E=E W2 1+Z =--2-1 Z,,=i; IWl>it,

 and f is chosen so that 0<3f< 1. From (4), we immediately get E[W I Z,=

 i; IWI - i-] I Ci- , where C and y are the constants introduced in (4). Remarking
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 that Z, is always strictly positive and a - 2, we have (1 + (OW,n/Z))o-2 = 0(1).
 Hence, Vi = O(i-OY). To estimate U., we note that, on (Zn = i, IWI : i },

 1 + W -2 - 1= O(i-1)

 which yields Ui = O(i3'-1). Since 0 < 3# < 1, we obtain the estimate Ai = O(i-P), p
 being a strictly positive constant.

 Proof of transience. Assume b < -2y. Choose 1 + (21/b) < a < 0: then, for i
 sufficiently large, the right-hand side of (45) becomes negative. This can be
 rephrased by saying that, outside some compact set, Z" is a positive bounded
 supermartingale (a being negative, i" tends to 0 when i - oo) and Foster's criterion
 for transience does apply directly.

 The proof of recurrence, when -2M < b, is quite similar. Fixing now 1 + (2y/b) >
 a> 0 and still using Equation (45), we see that Z" is a positive unbounded
 supermartingale (since a is positive in this case) outside some compact set. This
 implies, by Foster's criterion, that X is recurrent. The distinction between positive
 and null recurrence follows directly from Remark 3 at the end of Lemma 2 and
 from Lemmas 5 and 8. This completes the proof of Theorem 4.

 3. Application to the ALOHA network

 We illustrate the preceding sections with the Markov chain arising from the model
 of the original ALOHA packet switching network, originally proposed by Abram-
 son [1], and which was indeed the motivation of our study. Let us first briefly recall
 the salient features of the system.

 (a) A single error-free channel is shared among an infinite population of users (or
 stations), which retransmit messages of constant length (packets). Time is slotted
 and may be considered discrete. Users are synchronized with respect to the slots, so
 that packets are transmitted at the beginning of slots only. Each slot is equal to the
 time required to transmit a packet.

 (b) Each transmission is within reception range of every user. When more than
 one user transmits simultaneously, packets collide (interfere) and none is received
 correctly. These collisions are treated as transmission errors and each user must
 strive to retransmit its colliding packet until it is correctly received. The users all
 employ the same algorithm for this purpose and have to resolve the contention
 without the benefit of any other source of information on other user's activity save
 the common channel.

 (c) Each user with a colliding packet will repeatedly transmit each time with a
 certain probability, until it hits a free slot and thus succeeds.

 The main drawback of the ALOHA protocol described above is that, left to their
 own devices, the nodes congest the channel which, in the absence of additional control,
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 is non-ergodic. The approach suggested in [11] was to let retransmission probabil-
 ities be a function of the number of blocked stations at time t. Such a retransmission

 control policy (RCP) can stabilize the channel. This has been proved in [5], [6],
 under 'Markov' assumptions, but remains true when the external input process is
 only stationary [4], [7]. We shall deal here with the Markov situation.

 Let Ak be the number of new packets generated by the stations during the kth

 slot. We shall assume the (Ak, k - 0} form a sequence of i.i.d. random variables,

 with P(Ak = i)= ci, i- -0, and E(Ak)= A, k _ 0. Let Xk, k - 0, be the number of
 blocked stations at time k (i.e observed at the beginning of the kth slot) and f(Xk)
 the probability that a blocked station retransmits during this kth slot. Given
 {Xk= n }, the random number of messages in the kth slot has a binomial

 distribution. Hence, X = {Xk, k = 0} form a Markov chain. Define the quantity

 (46) d, = conf(n)(1 - f (n))n-1 + cl(1 - f (n))".
 Thus dn represents, in the wide sense, the mean downward drift of X in the kth slot,
 given the event {Xk = n }. We recall, without proof, the main result (see [4], [5], [6],
 [7]).

 Theorem 5

 (i) If A < lim infi0,, di, X is ergodic;

 (ii) If A > lim supii. di, X is transient.

 Our goal is to analyse the stability and ergodicity of a class of RCPs, in the limit
 'zero drift' case. These RCPs are chosen (see [5], [6]) such that there exists

 (47) r = lim if(i).
 i--.oo

 Then, (46) gives

 (48) d = lim di = e-r(rco + cl).
 i--.oo

 For the problem to be meaningful, we have to choose co > c1. Otherwise d, given by
 (48), would be a decreasing function of r; then A > cl > d and the system could
 never be ergodic. In fact, we do not restrict the generality by taking f(i) = r/i, i > 0.
 Now, with the notation of Section 1, combining (46), (47), (48), we get by a direct
 computation

 (49) i

 b = E[(Xk+1 - Xk)2 X Xk- i] = q + cogif(i)(1 - _f(i))- - c1(1 -f(i)),
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 where

 r2e-r

 S= [co(2 - r) - c1], 9 = E[AJ].

 Thus b = limi,. bi = q9 + (cor - c)e-'.
 The rest of this section is devoted to the limiting case A = d.

 Theorem 6. If A = d, the Markov chain X of the ALOHA protocol is non-ergodic
 and the two following main situations can take place:

 (i) If y ? 0, which is equivalent to 0 < r 5 2 - cl/co, then X is null recurrent;
 (ii) If b < -2y, then X is transient.

 Proof. Putting s = b - 2y, we first show that s is strictly positive. One can easily

 write ers = erq' + (r - 1)[c1(1 + r) + cor(r - 1)]. Thus, for r = 1, the result is obvious.
 When 0 5 r 5 1, it follows, since q9 > A = d = e-'r(rco + cl), that

 e'q rco + C1
 er 9-[cl(1 + r) + cor(r - 1)] > - [c(1 + r) + cor(r - 1)], 1-r 1-r

 which finally yields

 rco[1 + (1 - r)2] + Clr2  > 0.
 1-r

 Hence, s > 0. Now it is not difficult to see that the proof of Theorem 4 remains valid
 for the ALOHA process without assuming (4), since the random variables (Ak,

 k = 0} are i.i.d (more precisely, the quantity denoted by Vi in this later theorem is
 still o(1), as i--> o). This completes the proof of Theorem 6.
 Remark 4. An interesting situation is the optimal policy [5], [6], which aims at

 maximizing d, (the throughput of the system), with respect to the retransmission

 probability f, for any 0 < i < oo. In this case,

 f (i) = Co - Cl iCo - Cl

 and, from (45) and (46),

 Co - Cl
 (50) r= , d=coer.

 Moreover, when A = d, one can check that the expansion in (49) is still valid,
 provided that r is replaced by its value specified in (50). In this case, Theorem 6

 shows that X is null recurrent since, now, # = cor2e-r/2 > 0.
 Coming back to the general RCPs introduced in this section, let us suppose the

 input sequence {A?), k = 0} is perturbed and depends on some parameter E, so that
 A(E) = E[A)] = d - E, E 0. Assume also that the basic conditions (2) and (3) hold,
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 together with

 m =i= -e -- +0 ( +),
 which, from a practical point of view, does not seem to be a drastic restriction. On

 account of Theorem 6, the Markov chain X(?) is non-ergodic and the sequence X(e)
 is amenable to Theorem 2, depending on the parameter values coming in Theorem
 6.
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