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1. Introduction, main results and discussion

Let X = {Xn, n ≥ 0} be a time homogeneous Markov chain taking values
in R+. Denote by ξ(x), x ∈ R+, a random variable corresponding to the
jump of the chain at point x, that is, a random variable with distribution

P{ξ(x) ∈ B} = P{Xn+1 −Xn ∈ B | Xn = x}
= Px{X1 ∈ x+B}, B ∈ B(R);

hereinafter the subscript x denotes the initial position of the Markov chain
X, that is, X0 = x.

Denote the kth moment of the jump at point x by mk(x) := Eξk(x). We
say that a Markov chain has asymptotically zero drift if m1(x) = Eξ(x)→ 0
as x → ∞. The study of processes with asymptotically zero drift was
initiated by Lamperti in a series of papers [15, 16, 17].

Processes with asymptotically zero drift naturally appear in various
stochastic models, here we mention only some of them: branching processes,
Klebaner [10] and Küster [14]; random billiards, Menshikov et al. [20]; ran-
dom polymers, Alexander [1], Alexander and Zygouras [2], De Coninck et
al. [4].

We assume that the Markov chain Xn possesses a stationary (invariant)
distribution and denote this distribution by π. If we consider an irreducible
aperiodic Markov chain on Z+, then existence of probabilistic invariant dis-
tribution is equivalent to finiteness of E0τ0 where τ0 := min{n ≥ 1 : Xn = 0}.
For the state space R+, we assume that Xn is a positive Harris recurrent
and strongly aperiodic chain, see related definitions in [21]. In particular,
there exists a sufficiently large x0 such that

ExτB < ∞ for all x > x0, (1)

where τB := min{n ≥ 1 : Xn ∈ B} and B := [0, x0]. We assume that the
chain makes excertions from any compact set, in the following sense. We
suppose that, for every fixed x1 > x0, there exists an ε = ε(x1) > 0 such
that, for every x > x0,

Px{Xn(x) > x1, τB > n(x)} ≥ ε for some n(x). (2)

We consider the case where π has unbounded support, that is, π(x,∞) > 0
for every x. Our main goal is to describe the asymptotic behaviour of its
tail, π(x,∞), for a class of Markov chains with asymptotically zero drift.
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As it was shown in [13, Theorem 1] any Markov chain with asymptoti-
cally zero drift has heavy-tailed invariant distribution provided

lim inf
x→∞

E{ξ2(x); ξ(x) > 0} > 0;

that is, all positive exponential moments of the invariant distribution are
infinite. The present paper is devoted to the precise asymptotic behaviour
of the invariant tail distribution in the critical case where m(x) behaves like
−c/x for large x. The existence of invariant distribution in critical case
was studied by Lamperti [17]; this study is based on considering the test
function V (x) = x2. Then the drift of V at point x is equal to E{V (Xn+1)−
V (Xn) | Xn = x} = 2xm1(x) + m2(x) and if 2xm1(x) + m2(x) < −ε for
all sufficiently large x, then the chain is positive recurrent and, under mild
technical conditions, it has unique invariant distribution (see [21, Chapter
11]).

There are two types of Markov chains for which the invariant distribution
is explicitly calculable. Both are related to skip-free processes, either on
lattice or on continious state space R+.

The first case where the stationary distribution is explicitly known is
diffusion processes on R+ (slotted in time if we need just a Markov chain).
Let m1(x) and m2(x) be the drift and diffusion coefficients at state x, re-
spectively. In the case of stable diffusion, the invariant density function p(x)
solves the Kolmogorov forward equation

0 = − d

dx
(m1(x)p(x)) +

1

2

d2

dx2
(m2(x)p(x)),

which has the following solution:

p(x) =
2c

m2(x)
e
∫ x
0

2m1(y)
m2(y)

dy
, c > 0. (3)

The second case is the Markov chain on Z+ with ξ(x) taking values
−1, 1 and 0 only, with probabilities p−(x), p+(x) and 1 − p−(x) − p+(x)
respectively, p−(0) = 0. Then the stationary probabilities π(x), x ∈ Z+,
satisfy the equations

π(x) = π(x− 1)p+(x− 1) + π(x)(1− p+(x)− p−(x)) + π(x+ 1)p−(x+ 1),

which have the following solution:

π(x) = π(0)
x∏
k=1

p+(k − 1)

p−(k)
= π(0)e

∑x
k=1(log p+(k−1)−log p−(k)), (4)
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where under some regularity conditions the sum may be approximated by
the integral like in the diffusion case.

To the best of our knowledge there are no other results in the literature
on the exact asymptotic behaviour for the measure π.

Theorem 1. Suppose that, as x→∞,

m1(x) ∼ −µ
x
, m2(x)→ b and 2µ > b. (5)

Suppose also that there exists a differentiable function r(x) > 0 such that
r′(x) ∼ − 2µ

bx2
and

2m1(x)

m2(x)
= −r(x) +O(1/x2+δ) (6)

for some δ > 0. Suppose also that

sup
x

E|ξ(x)|3+δ < ∞, (7)

Eξ3(x)→ m3 ∈ (−∞,∞) as x→∞ (8)

and, for some A <∞,

E{ξ2µ/b+3+δ(x); ξ(x) > Ax} = O(x2µ/b). (9)

Then there exist a constant c > 0 such that

π(x,∞) ∼ cxe−
∫ x
0 r(y)dy = cx−2µ/b+1`(x) as x→∞,

where `(x) := x2µ/b/e
∫ x
0 r(y)dy is a slowly varying function.

In paper [19], Menshikov and Popov investigated behaviour of the invari-
ant distribution {π(x), x ∈ Z+} for countable Markov chains with asymp-
totically zero drift and with bounded jumps (see also Aspandiiarov and
Iasnogorodski [3]). Some rough theorems for the local probabilities π(x)
were proved; if the condition (5) holds then for every ε > 0 there exist
constants c− = c−(ε) > 0 and c+ = c+(ε) <∞ such that

c−x
−2µ/b−ε ≤ π(x) ≤ c+x−2µ/b+ε.

The paper [13] is devoted to the existence and non-existence of moments
of invariant distribution. In particular, there was proven that if (5) holds
and the families of random variables {(ξ+(x))2+γ , x ≥ 0} for some γ > 0
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and {(ξ−(x))2, x ≥ 0} are uniformly integrable then the moment of order γ
of the invariant distribution π is finite if γ < 2µ/b− 1, and infinite if π has
unbounded support and γ > 2µ/b − 1. This result implies that for every
ε > 0 there exists c(ε) such that

π(x,∞) ≤ c(ε)x−2µ/b+1+ε. (10)

It is clear that the convergence of third moments in Theorem 1 is a tech-
nical condition because the asymptotic behaviour of the stationary measure
depends on m1(x) and m2(x) only and does not depend on m3. Also as
follows from the moments existence results [13], it is likely that the state-
ment of Theorem 1 should follow under less restrictive condition than (9),
with 2µ/b + 1 + δ moments instead. Unfortunately, we cannot just remove
restriction (8) from the theorem, but we can weaken it by introducing some
structural restrictions, the main of which is the left-continuity of Xn.

Theorem 2. Suppose that all conditions of Theorem 1 hold except probably
the condition (8). If, in addition, Xn lives on Z+ and ξ(x) ≥ −1, then the
statement of Theorem 1 remains valid.

To prove Theorems 1 and 2 we change the probability measure in such a
way that the resulting object will be a transient Markov chain with asymp-
totically zero drift. We apply the following change of measure:

P̂ (x, dy) :=
V (y)Px{X1 ∈ dy, τB > 1}

V (x)
,

where V is a harmonic function for the substochastic kernel Px{X1 ∈ dy, τB >
1}. In this way we need to produce a suitable harmonic function V . Since
the harmonic function for the corresponding Bessel-type process conditioned
to stay positive is known, we adapt the method proposed in [6] where ran-
dom walks conditioned to stay in a cone were considered. (This method
allows one to construct harmonic functions for random walks from harmonic
functions for corresponding limiting diffusions.) Again, the only processes,
where harmonic functions were known, are diffusions and Markov chains
with jumps ±1. The latter case has been considered by Alexander [1].

Investigation of large deviation probabilities for one-dimensional Markov
chains with ultimately negative drift heavily depends on whether this chain
is similar to the process of summation with more or less homogeneous drift
(and in this case we may speak about the process with continuous statis-
tics) or this Markov chain is close to a random walk on R+ with delay at
the origin where the mean drift change its sign near the origin (in this case
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we have the chain with discontinuous statistics). The only Markov chain
which can be somehow reduced to the sums is the chain Wn = (Wn−1+ξn)+

with independent identically distributed ξ’s which equals in distribution to
maxk≤n

∑k
j=1 ξj . For these two classes of Markov chains (with continuous

and discontinuous statistics) the methods for investigation of large devia-
tions are essentially different. Say, in Cramér case where some exponential
moment of jumps is bounded, an appropriate exponential change of mea-
sure preserves the measures to be probabilistic. If we apply exponential
change of measures to a chain with discontinuous statistics it may lead to
non-stochastic kernel. Such approach was utilised in [12] and there appears
a necessity for proving limit theorems for non-stochastic transition kernels.

In the setting of the present paper one could think of applying of a change
of measure method with power-like weight function. Then the probability
measure changes in such a way that the resulting object will be similar to
a transient Markov chain with asymptotically zero drift. One may look at
the following two approaches:

(a) Q(1)(x,B) :=
E{Xρ

11{X1 ∈ B}|X0 = x}
xρ

, ρ = 2µ/b+ 1;

(b) Q(2)(x,B) :=
E{V (X1)1{X1 ∈ B}|X0 = x}

V (x)
.

In the first case we would have measures which are not necessarily proba-
bilistic, i.e., Q(1)(x,R+) can be smaller or greater than 1; this case is similar
to that considered in [12] for the case of the exponential change of measure.

With ρ = 2µ/b+ 1 one can show that the Markov evolution of masses is
asymptotically equivalent to a transient Markov chain with asymptotically
zero drift. And our hope is that one can adopt results, which will be proved
in the present project, to Markov evolutions of masses. If this is the case,
then we can translate the results for Markov evolutions of masses into re-
sults for positive recurrent Markov chains by applying the inverse change of
measure.

As it was mentioned above, in this paper we develop the second possi-
bility for the change of measure, where we get stochastic transition kernel
corresponding to a transient Markov chain. Then the main difficulties are
related to the fact that the harmonic function V is given implicitely. In
particular, we even need to check that V is regular varying function with
index ρ.

Having this observation in mind we face to necessity of obtaining limit-
ing results for transient Markov chains. In Section 2 we give rather general
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close to necessary conditions for transience while in Section 3 we make some
quantitative analysis of how fast a transient chain escapes to the infinity.
Section 4 is devoted to convergence to the Γ-distribution under optimal as-
sumptions: null-recurrence or transience of the process and minimal integra-
bility restrictions. Section 5 contains integral renewal theorem for transient
Markov chain with drift c/x, c > 0. In Section 6 a general results on har-
monic functions are discussed. In order to obtain results for the original
positive recurrent Markov chain one needs to apply the inverse change of
measure. This is done in Section 7.

2. Conditions for transience revised

In general, if, for some x0 and ε > 0,

2xm1(x)

m2(x)
≥ 1 + ε for all x ≥ x0, (11)

then the drift to the right dominates the diffusion and the corresponding
Markov chain Xn is typically transient. As an example concluding this sec-
tion shows, for transience, the Markov chain should satisfy some additional
conditions on jumps. In the literature, the transience in Lamperti problem
was studied by Lamperti [15], Kersting [8] and Menshikov et al. [18] under
different conditions, say for the case of bounded jumps or of moments of
order 2 + δ bounded. Our goal here is to clarify what condition in addition
to (11) is responsible for transience. Surprisingly, such a condition is rather
weak and is presented in (13).

Theorem 3. Assume the condition (11) holds. In addition, let

P
{

lim sup
n→∞

Xn =∞
}

= 1 (12)

and, for some γ, 0 < γ < 1− 1/
√

1 + ε,

P{ξ(x) ≤ −γx} = o
(m2(x)

x
p(x)

)
as x→∞, (13)

where a non-increasing function p(x) is integrable. Then Xn →∞ as n→∞
with probability 1, so that Xn is transient.

The condition (12) (which was first proposed in this framework by Lam-
perti [15]) may be equivalently restated as follows: for any N the exit time
from the set [0, N ] is finite with probability 1. In this way it is clear that,
for a countable Markov chain, the irreducibility implies (12). For a Markov
chain on general state space, the related topic is ψ-irreducibility, see [21,
Secs 4 and 8].
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Proof of Theorem 3. is based on the standard approach of construction of
a nonnegative bounded test function V∗(x) ↓ 0 such that V∗(Xn) is a su-
permartingale with further application of Doob’s convergence theorem for
supermartingales.

Since p(x) is non-increasing and integrable, by [5], there exists a contin-
uous non-increasing integrable regularly varying at infinity with index −1
function V1(x) such that p(x) ≤ V1(x). Take

V (x) :=

∫ ∞
x

V2(y)dy, where V2(x) :=

∫ ∞
x

V1(y)

y
dy.

By Theorem 1(a) from [7, Ch VIII, Sec 9] we know that V2 is regularly
varying with index −1 and V2(x) ∼ V1(x) as x→∞. Since V1 is integrable,
the nonnegative non-increasing function V (x) is bounded, V (0) < ∞, and,
by the same reference, V (x) is slowly varying.

Let us prove that the mean drift of V (x) is negative for all sufficiently
large x. We have

EV (x+ ξ(x))− V (x)

≤ V (0)P{ξ(x) ≤ −γx}+ E{V (x+ ξ(x))− V (x); ξ(x) > −γx}
= V (0)P{ξ(x) ≤ −γx}+ V ′(x)E{ξ(x); ξ(x) > −γx}

+
1

2
E{ξ2(x)V ′′(x+ θξ(x)); ξ(x) > −γx},

where 0 ≤ θ = θ(x, ξ(x)) ≤ 1, by Taylor’s formula with the remainder in the
Lagrange form. By the construction, V ′(x) = −V2(x) < 0, E{ξ(x); ξ(x) >
−γx} ≥ m1(x) > 0 for x ≥ x0, and V ′′(x) = V1(x)/x is non-increasing
because V1(x) is so. Hence,

EV (x+ ξ(x))− V (x)

≤ V (0)P{ξ(x) ≤ −γx} − V2(x)m1(x) +
V ′′((1− γ)x)

2
m2(x)

= o
(m2(x)V1(x)

x

)
− m2(x)V1(x)

2x

(2xm1(x)

m2(x)

V2(x)

V1(x)
− x

V1(x)

V1((1−γ)x)

(1−γ)x

)
,

by the condition (13) and the inequality p(x) ≤ V1(x). Applying now the
condition (11) together with the equivalences V2(x) ∼ V1(x) and V1((1 −
γ)x) ∼ V1(x)/(1−γ) we deduce that there exists a sufficiently large x∗ such
that, for all x ≥ x∗,

EV (x+ ξ(x))− V (x) ≤ −m2(x)V1(x)

2x
ε∗,
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where ε∗ := (1+ε− (1−γ)−2)/2 > 0. Now take V∗(x) := min(V (x), V (x∗)).
Then

EV∗(x+ ξ(x))− V∗(x) ≤ EV (x+ ξ(x))− V (x) < 0

for every x ≥ x∗ and

EV∗(x+ ξ(x))− V∗(x) = E{V (x+ ξ(x))− V (x∗);x+ ξ(x) ≥ x∗} ≤ 0

for every x < x∗. Therefore, V∗(Xn) constitutes a nonnegative bounded
supermartingale and, by Doob’s convergence theorem, V∗(Xn) has an a.s.
limit as n→∞. Due to the condition (12), this limit equals V∗(∞) = 0 and
the proof is complete.

Roughly speaking, the condition (13) guarantees that large negative
jumps don’t make any valuable contribution to the evolution of the chain
compared to the contribution of the first and second moments of jumps. Let
us demonstrate by example that the condition (13) is very essential and in
a sense almost necessary.

Consider a Markov chain Xn on R+ satisfying the following conditions:
for some function f(x) ≥ 0, m1(x) ≤ f(x) and

P{ξ(x) = −x} = f(x)p(x) (14)

for all sufficiently large x, where p(x) is a non-increasing function satisfying
p(x) = O(1/x) and

V (x) :=

∫ x

0
p(y)dy →∞ as x→∞.

In this example the high probability of the large negative jump −x leads
to recurrence of the chain (note that if f(x) = m2(x)/x then the condition
(13) fails to hold).

Indeed, decompose the mean drift of the increasing concave test function
V at state x separating the jump to the origin:

EV (x+ ξ(x))− V (x) = −V (x)P{ξ(x) = −x}
+E{V (x+ ξ(x))− V (x); ξ(x) > −x}. (15)

Since V (x) is concave and V ′(x) = p(x), by Jensen’s inequality,

E{V (x+ ξ(x))− V (x); ξ(x) > −x} ≤ p(x)E{ξ(x); ξ(x) > −x}
= p(x)(m1(x) + xP{ξ(x) = −x})
= O(p(x)f(x)) as x→∞,
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because xp(x) is bounded. Substituting this together with (14) into (15),
we obtain the following upper bound for the drift:

EV (x+ ξ(x))− V (x) ≤ p(x)f(x)(−V (x) +O(1)).

Since V (x)→∞ as x→∞, the drift becomes asymptotically negative and
the chain Xn is recurrent, see e.g. [21, Theorem 8.4.3].

3. Quantitative analysis of escaping to infinity for transient chain

First we give an upper bound for the return probability for transient
Markov chain.

Lemma 1. Assume the condition (11) holds and, for some δ, γ > 0 satis-
fying (1 + δ)/(1− γ)2+δ < 1 + ε,

P{ξ(x) ≤ −γx} = o
(m2(x)

x2+δ

)
as x→∞. (16)

Then there exists x0 such that

P{Xn ≤ x for some n ≥ 1 | X0 = y} ≤ (x/y)δ for all y > x > x0.

Proof. Fix y > 0. Consider the test function V (x) := min(x−δ, 1). The
mean drift of V (x) is negative for all sufficiently large x. Indeed,

EV (x+ ξ(x))− V (x)

≤ P{ξ(x) ≤ −γx}+ E{V (x+ ξ(x))− V (x); ξ(x) > −γx}

= P{ξ(x) ≤ −γx} − δ

x1+δ
E{ξ(x); ξ(x) > −γx}

+
δ(1 + δ)

2
E
{ ξ2(x)

(x+ θξ(x))2+δ
; ξ(x) > −γx

}
,

where 0 ≤ θ = θ(x, ξ(x)) ≤ 1, by Taylor’s formula. Therefore,

EV (x+ ξ(x))− V (x)

≤ P{ξ(x) ≤ −γx} − δ

x1+δ
m1(x) +

δ(1 + δ)

2((1− γ)x)2+δ
m2(x)

= o
(m2(x)

x2+δ

)
− δm2(x)

2x2+δ

(2xm1(x)

m2(x)
− 1 + δ

(1− γ)2+δ

)
,

by the condition (16). Then the condition (11) implies that there exists
sufficiently large x∗ such that, for all x ≥ x∗,

EV (x+ ξ(x))− V (x) ≤ −δm2(x)

2x2+δ
ε∗,
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where ε∗ := (1 + ε − (1 + δ)/(1 − γ)2+δ)/2 > 0. Now take V∗(x) :=
min(V (x), V (x∗)) so that V∗(Xn) is nonnegative bounded supermartingale.
Hence we may apply Doob’s inequality for nonnegative supermartingale and
deduce that, for every y > x ≥ x∗ (so that V∗(y) < V∗(x)),

P{sup
n≥1

V∗(Xn) ≥ V∗(x) | V∗(X0) = V∗(y)} ≤ EV∗(X0)

V∗(x)
=
(x
y

)δ
,

which is equivalent to the lemma conclusion.

In the next lemma we estimate from above the mean value EyT (x) of
the first up-crossing time

T (x) := min{n ≥ 1 : Xn > x}.

Lemma 2. Assume that, for some x0 ≥ 0, ε0 ≥ 0, and ε > 0,

2xm1(x) +m2(x) ≥
{

ε, if x > x0,
−ε0, if x ≤ x0.

(17)

Then, for every x > y,

EyT (x) ≤ x2 − y2 + c(x) + (ε+ ε0)Hy(x0)

ε
,

where

c(x) := sup
z≤x

(2zm1(z) +m2(z)) (18)

and

Hy(x0) :=
∞∑
n=0

Py{Xn ≤ x0}.

Proof. Consider the following random sequence:

Yn := X2
n + (ε0 + ε)

n−1∑
k=0

I{Xk ≤ x0}.

First, Yn is a submartingale with respect to the filtration Fn := σ(Xk, k ≤
n). Indeed,

Yn+1 − Yn = X2
n+1 −X2

n + (ε0 + ε)I{Xn ≤ x0},
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so that

E{Yn+1 − Yn | Fn} = 2Xnm1(Xn) +m2(Xn) + (ε0 + ε)I{Xn ≤ x0}
≥ ε > 0, (19)

by the condition (17). Thus, for any x > y,

EyYT (x) ≥ y2 + εEyT (x), (20)

due to the adapted version of the proof of Dynkin’s formula (see, e.g. [21,
Theorem 11.3.1]):

EyYT (x) = EyY0 + Ey
∞∑
n=1

I{n ≤ T (x)}(Yn − Yn−1)

= y2 + Ey
∞∑
n=1

E{I{n ≤ T (x)}(Yn − Yn−1) | Fn−1}

= y2 + Ey
∞∑
n=1

I{T (x) ≥ n}E{Yn − Yn−1 | Fn−1},

because I{n ≤ T (x)} ∈ Fn−1. Hence, it follows from (19) that

EyYT (x) ≥ y2 + εEy
∞∑
n=1

I{T (x) ≥ n}

= y2 + ε
∞∑
n=1

Py{T (x) ≥ n},

and the inequality (20) follows.
On the other hand,

EyYT (x) = EyX2
T (x) + (ε0 + ε)Ey

T (x)−1∑
k=0

I{Xk ≤ x0}. (21)

Further,

E{X2
T (x) | XT (x)−1}

= E{(XT (x)−1 + ξ(XT (x)−1))
2 | XT (x)−1}

= X2
T (x)−1 + E{2XT (x)−1m1(XT (x)−1) +m2(XT (x)−1) | XT (x)−1}

≤ x2 + c(x),
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by the definition (18) of c(x). Substituting this into (21) we deduce

EyYT (x) ≤ x2 + c(x) + (ε0 + ε)Hy(x0),

which together with (20) yields the lemma conclusion. The proof is complete.

Lemma 3. Let the conditions of Lemma 2 hold and c(x) = O(x2) in the
condition (18) and

sup
y≤x0

Hy(x0) = sup
y≤x0

∞∑
n=0

Py{Xn ≤ x0} <∞. (22)

Then there exist c > 0 and t0 such that, for any t > 0 and y < x,

Py{T (x) > tx2} ≤ e−c(t−t0).

Proof. Considering the first visit to the interval [0, x0] we deduce from the
condition (22) that

sup
y≥0

∞∑
n=0

Py{Xn ≤ x0} <∞.

Thus, by Lemma 2, there exists c1 <∞ such that, for all x,

sup
y

EyT (x) ≤ c1(x
2 + 1). (23)

Next, by the Markov property, for every t and s > 0,

Py{T (x) > t+ s} =

∫ x

0
Py{T (x) > t,Xt ∈ dz}Pz{T (x) > s}

≤ Py{T (x) > t} sup
z≤x

Pz{T (x) > s}.

Therefore, the monotone function q(t) := supy≤x Py{T (x) > tx2} satis-
fies the relation q(t + s) ≤ q(t)q(s). Then the increasing function r(t) :=
log(1/q(t)) is convex and r(0) = 0. By the bound (23) and Chebyshev’s
inequality, there exists t0 such that q(t0) < 1 so that q(t0) = e−c with c > 0,
and r(t0) = c > 0. Then, by r(0) = 0 and convexity of r, r(t) ≥ c(t − t0)
which implies q(t) ≤ e−c(t−t0). The proof is complete.
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4. Convergence to Γ-distribution for transient and null-recurrent
chains

In this section we are interested in the asymptotic growth rate of a
Markov chain Xn that goes to infinity in distribution as n→∞. It happens
if this chain is either transient or null recurrent. First time a limit theorem
for Markov chain with asymptotically zero drift was produced by Lamperti in
[16] where the convergence to Γ-distribution was proven for the case of jumps
with all moments finite. The proof is based on the method of moments. The
results from [16] have been generalised by Klebaner [11] and later by Kersting
[9]. The author of the latter paper works under the assumption that the
moments of order 2 + δ are bounded. But the convergence is proven on the
event {Xn → ∞} only which restricts generality; for example, Lamperti’s
result allows Xn to be null-recurrent, and for null-recurrent processes we
have P{Xn →∞} = 0.

Theorem 4. Assume that, for some b > 0 and µ > −b/2,

Eξ(x) ∼ µ/x and Eξ2(x)→ b as x→∞ (24)

and that the family {ξ2(x), x ≥ 0} possesses an integrable majorant Ξ, that
is, EΞ <∞ and

ξ2(x) ≤st Ξ for all x. (25)

If Xn → ∞ in probability as n → ∞, then X2
n/n converges weakly to the

Γ-distribution with mean 2µ+ b and variance (2µ+ b)2b.

Proof. For any n ∈ N, consider a new Markov chain Yk(n), k = 0, 1, 2, . . . ,
with transition probabilities depending on the parameter n, whose jumps
η(n, x) are just truncations of the original jumps ξ(x) at level x ∨

√
n de-

pending on both point x and time n, that is,

η(n, x) = min{ξ(x), x ∨
√
n}.

Given Y0(n) = X0, the probability of discrepancy between the trajectories
of Yk(n) and Xk until time n is at most

P{Yk(n) 6= Xk for some k ≤ n} ≤
n−1∑
k=0

P{Xk+1 −Xk ≥
√
n}

≤ nP{Ξ ≥ n}
≤ E{Ξ; Ξ ≥ n} → 0 as n→∞. (26)
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Since Xn →∞ in probability, (26) implies that, for every c,

inf
n>n0,k∈[n0,n]

P{Yk(n) > c} → 1 as n0 →∞. (27)

By the choice of the truncation level,

ξ(x) ≥ η(n, x) ≥ ξ(x)− ξ(x)I{ξ(x) > x}.

Therefore, by the condition (25),

Eη(n, x) = Eξ(x) + o(1/x) as x→∞ uniformly in n (28)

and

Eη2(n, x) = Eξ2(x) + o(1) as x→∞ uniformly in n, (29)

hereinafter we write f1(x, n) = o(f2(x, n)) as x → ∞ uniformly in n if
supn |f1(x, n)/f2(x, n)| → 0 as x→∞. In addition, the inequality η(n, x) ≤
x ∨
√
n and the condition (25) imply that, for every j ≥ 3,

Eηj(n, x) = o(xj−2 + n(j−2)/2) as x→∞ uniformly in n. (30)

Let us compute the mean of the increment of Y j
k (n). For j = 2 we have

E{Y 2
k+1(n)− Y 2

k (n)|Yk(n) = x} = E(2xη(n, x) + η2(n, x))

= 2µ+ b+ o(1)

as x→∞ uniformly in n, by (28) and (29). Applying now (27) we get

E(Y 2
k+1(n)− Y 2

k (n)) → 2µ+ b as k, n→∞, k ≤ n.

Hence,

EY 2
n (n) ∼ (2µ+ b)n as n→∞. (31)

Let now j = 2i, i ≥ 2. We have

E{Y 2i
k+1(n)− Y 2i

k (n)|Yk(n) = x}

= E

(
2ix2i−1η(n, x) + i(2i− 1)x2i−2η2(n, x) +

2i∑
l=3

x2i−lηl(n, x)

(
2i

l

))

= i[2µ+ (2i− 1)b+ o(1)]x2i−2 +

2i∑
l=3

x2i−lEηl(n, x)

(
2i

l

)
(32)
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as x→∞ uniformly in n, by (28) and (29). Owing to (30),

2i∑
l=3

x2i−lEηl(n, x)

(
2i

l

)
=

2i∑
l=3

x2i−lo(xl−2 + n(l−2)/2)

= o(x2i−2) +
2i∑
l=3

x2i−lo(n(l−2)/2)

as x → ∞ uniformly in n. Substituting this into (32) with x = Yk(n) and
taking into account (27), we deduce that

E{Y 2i
k+1(n)− Y 2i

k (n)} = i[2µ+ (2i− 1)b+ o(1)]EY 2i−2
k (n)

+

2i∑
l=3

EY 2i−l
k (n)o(n(l−2)/2). (33)

In particular, for j = 2i = 4 we get

E{Y 4
k+1(n)− Y 4

k (n)} = 2(2µ+ 3b)EY 2
k (n) + EYk(n)o(

√
n) + o(n)

∼ 2(2µ+ 3b)(2µ+ b)n,

due to (31). It implies that

EY 4
n (n) ∼ (2µ+ 3b)(2µ+ b)n2 as n→∞.

By induction arguments, we deduce from (33) that, as n→∞,

EY 2i
n (n) ∼ ni

i∏
k=1

(2µ+ (2k − 1)b),

which yields that Y 2
n (n)/n weakly converges to Gamma distribution with

mean 2µ+ b and variance 2b(2µ+ b). Together with (26) this completes the
proof.

5. Integral renewal theorem for transient chain

If the Markov chain Xn is transient then it visits any bounded set at
most finitely many times. The next result is devoted to the asymptotic
behaviour of the renewal functions

Hy(x) :=
∞∑
n=0

Py{Xn ≤ x},

H(x) :=
∞∑
n=0

P{Xn ≤ x} =

∫
Hy(x)P{X0 ∈ dy}.
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Lemma 4. Let the conditions (16) and (22) hold. If

sup
x

(2xm1(x) +m2(x)) < ∞, (34)

2xm1(x) +m2(x) ≥ ε > 0 ultimately in x, (35)

then there exists c <∞ such that Hy(x) ≤ c(1 + x2) for all y and x.

Proof. Fix A > 1. After the stopping time T (Ax) = min{n ≥ 1 : Xn > Ax}
the chain falls down below the level x with probability not higher than 1/Aδ,
provided x > x0, see Lemma 1 (where the condition (11) follows from (34)
and (35)). Hence, by the Markov property, for any y we have the following
upper bound

Hy(x) ≤ Ey
T (Ax)−1∑
n=0

I{Xn ≤ x}+
1

Aδ
sup
z≤x

Hz(x). (36)

Therefore,

sup
y≥0

Hy(x) ≤ (1− 1/Aδ)−1 sup
y

EyT (Ax)

≤ (1− 1/Aδ)−1c1(1 + x2)

for some c1 < ∞, by Lemma 2 (where the condition (17) follows from (34)
and (35); also c(x) is bounded in (18)). The conclusion of the lemma is
proven.

Theorem 5. Let the conditions (16), (17), (22), and (25) hold. If m1(x) ∼
µ/x and m2(x) → b > 0 as x → ∞, and 2µ > b, then, for any initial
distribution of the chain X,

H(x) ∼ x2

2µ− b
as x→∞.

Proof. Fix an arbitrary y. It follows from Lemma 2 that T (x) is finite a.s.
for every x, so that the condition (12) holds and, by Theorem 3, Xn → ∞
a.s. as n→∞. Then we may apply Theorem 4 and state that X2

n/n weakly
converges to the Γ-distribution with mean 2µ + b and variance (2µ + b)2b.
Thus, for every fixed B,

[Bx2]∑
n=0

Py{Xn ≤ x} =

[Bx2]∑
n=0

(Γ(x2/n) + o(1))

=

[Bx2]∑
n=0

Γ(x2/n) + o(x2) as x→∞,
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here Γ(t) denotes the distribution function of the Γ-distribution. Since

[Bx2]∑
n=0

Γ(x2/n) ∼ x2
∫ B

0
Γ(1/z)dz as x→∞

and ∫ B

0
Γ(1/z)dz → 1

2µ− b
as B →∞,

we conclude the lower bound

lim inf
x→∞

Hy(x)

x2
≥ 1

2µ− b
. (37)

Let us now prove the upper bound

lim sup
x→∞

Hy(x)

x2
≤ 1

2µ− b
. (38)

Applying the upper bound of Lemma 4 on the right side of (36) we deduce
that

Hy(x) ≤ Ey
T (Ax)−1∑
n=0

I{Xn ≤ x}+
c

Aδ
(1 + x2). (39)

For any B, the mean of the sum on the right of (39) may be estimated as
follows:

Ey
T (Ax)−1∑
n=0

I{Xn ≤ x} ≤ Ey
{T (Ax)−1∑

n=0

I{Xn ≤ x};T (Ax) ≤ Bx2
}

+Ey{T (Ax);T (Ax) > Bx2}.

To estimate the second term we apply Lemma 3 which yields

Ey{T (Ax);T (Ax) > Bx2} = (Ax)2Ey
{T (Ax)

(Ax)2
;
T (Ax)

(Ax)2
>

B

A2

}
≤ (Ax)2(B/A2 + 1/c)e−c(B/A

2−t0).

Taking B = A3 we can ensure that

Ey{T (Ax);T (Ax) > Bx2} ≤ c1A3e−cAx2.

18



Hence,

Hy(x) ≤ Ey
{T (Ax)−1∑

n=0

I{Xn ≤ x};T (Ax) ≤ Bx2
}

+ x2O(A−δ)

≤
[Bx2]∑
n=0

Py{Xn ≤ x}+ x2O(A−δ).

As already shown,

[Bx2]∑
n=0

Py{Xn ≤ x} = x2
∫ B

0
Γ(1/z)dz + o(x2) as x→∞,

which implies the required upper bound (38). The lower (37) and upper
(38) bounds yield the equivalence, for every fixed y,

Hy(x) ∼ x2

2µ− b
as x→∞.

Together with the uniform in y estimate of Lemma 4 this completes the
proof.

6. Construction of harmonic function

The Markov chain Xn is assumed to be positive recurrent with invariant
measure π. Let B be a Borel set in R+ with π(B) > 0; in our applications
we consider an interval [0, x0]. Denote τB := min{n ≥ 1 : Xn ∈ B}. Since
Xn is positive recurrent and π(B) > 0, ExτB <∞ for every x.

In this section we construct a harmonic function for Xn killed at the
time of the first visit to B, that is, such a function V (x) that, for every x,

V (x) = Ex{V (X1);X1 /∈ B} (= E{V (x+ ξ(x));x+ ξ(x) /∈ B}).

If V is harmonic then

V (x) = Ex{V (Xn); τB > n} for every n. (40)

For any function U(x) : R+ → R, denote its mean drift function by

u(x) := ExU(X1)− U(x) = EU(x+ ξ(x))− U(x).
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Lemma 5. Let U ≥ 0, U be zero on B, and

Ex
τB−1∑
n=0

(u(Xn))+ <∞ for every x. (41)

Then the function

V (x) := U(x) + Ex
τB−1∑
n=0

u(Xn)

is well-defined, nonnegative and harmonic.

Proof. The condition (41) and the finiteness of ExτB ensure that

Ex
τB−1∑
n=0

u(Xn) = lim
N→∞

Ex
(τB−1)∧N∑

n=0

u(Xn). (42)

Let Fn = σ{X0, . . . , Xn}. We have

Ex
(τB−1)∧N∑

n=0

u(Xn) = Ex
N∑
n=0

u(Xn)I{τB > n}

= Ex
N∑
n=0

E{U(Xn+1)− U(Xn) | Fn}I{τB > n}

= Ex
N∑
n=0

E{(U(Xn+1)− U(Xn))I{τB > n} | Fn},

because I{τB > n} ∈ Fn. By the fact that U is zero on B, we deduce that
U(Xn+1)I{τB = n+ 1} = 0 so that

Ex
(τB−1)∧N∑

n=0

u(Xn) = Ex
N∑
n=0

(U(Xn+1)I{τB > n+ 1} − U(Xn)I{τB > n})

= ExU(XN+1)I{τB > N + 1} − U(x),

which together with (42) implies that

U(x) + Ex
τB−1∑
n=0

u(Xn) = lim
N→∞

ExU(XN+1)I{τB > N + 1}. (43)
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The latter limit is nonnegative, since U ≥ 0. Together with the condition
(41) it implies that the mean of the left of (42) is finite and the function
V is well-defined and, as the representation (43) shows, nonnegative. (Also,
nonnegativity follows from Theorem 14.2.2 from [21] but we here produced
self-contained short proof.)

Now let us prove that V is harmonic. Since U is zero on B,

Ex{U(X1);X1 /∈ B} = ExU(X1) = U(x) + u(x).

Therefore,

Ex{V (X1);X1 /∈ B}

= Ex{U(X1);X1 /∈ B}+ Ex
{
E
{τB−1∑
n=1

u(Xn)
∣∣∣X1

}
;X1 /∈ B

}
= U(x) + u(x) + Ex

{
E
{τB−1∑
n=1

u(Xn)I{X1 /∈ B}
∣∣∣X1

}}
= U(x) + u(x) + Ex

τB−1∑
n=1

u(Xn)I{X1 /∈ B}

= U(x) + u(x) + Ex
τB−1∑
n=1

u(Xn) = V (x),

so that V is harmonic which completes the proof.

Lemma 6. Suppose the functions U1 and U2 are both locally bounded, equal
to zero on B, positive on the complement of B and U1(x) ∼ U2(x) as x→∞.
If both satisfy the condition (41), then V1(x) = V2(x) for all x.

Proof. As stated in the previous proof, the condition (41) and the finiteness
of ExτB ensure that

Vk(x) = lim
N→∞

Ex{Uk(XN+1); τB > N + 1}, k = 1, 2. (44)

It suffices to prove that the limit in (44) is the same for k = 1, 2. Indeed,
for every A,

Ex{Uk(XN+1); τB > N + 1} = Ex{Uk(XN+1); τB > N + 1, XN+1 ≤ A}
+Ex{Uk(XN+1); τB > N + 1, XN+1 > A}.
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The first expectation on the right is not greater than

sup
x≤A

Uk(x)Px{τB > N + 1} → 0 as N →∞,

because Uk is locally bounded. As far as we consider the second expectation,
for every ε > 0 the exists sufficiently large A such that

(1− ε)U1(x) ≤ U2(x) ≤ (1 + ε)U1(x)

and then

(1− ε)Ex{U1(XN+1); τB > N + 1, XN+1 > A}
≤ Ex{U2(XN+1); τB > N + 1, XN+1 > A}

≤ (1 + ε)Ex{U1(XN+1); τB > N + 1, XN+1 > A}.

These observations prove that the limits in (44) are equal for k = 1, 2 and
the proof is complete.

7. Proof of Theorem 1

Fix x0 as in (1). Consider the following function U : U = 0 on [0, x0] and

U(x) :=

∫ x

x0

eR(y)dy for x ≥ x0, where R(y) =

∫ y

0
r(z)dz. (45)

Note that the function U solves the equation U ′′−rU ′ = 0. In other words, U
is harmonic function for a diffusion with drift −r(x) and diffusion coefficient
1 killed at leaving (x0,∞). According to our assumptions,

r(z) =
2µ

b

1

z
+
ε(z)

z
,

where ε(z) → 0 as z → ∞. In view of the representation theorem, there
exists a slowly varying at infinity function `(x) such that eR(x) = xρ−1`(x)
and U(x) ∼ xeR(x)/ρ ∼ xρ`(x)/ρ where ρ = 2µ/b+ 1 > 2.

For every C ∈ R, define UC(x) = 0 on [0, x0] and

UC(x) = U(x) + CeR(x) for x > x0.

Lemma 7. Assume the conditions of Theorem 1 hold. Then

EUC(x+ ξ(x))−UC(x) =
(
(ρ−1)b(C0−C)/2 + o(1)

)
eR(x)/x2 as x→∞,

where C0 := m3(ρ− 2)/3b.
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Proof. We start with the following decomposition:

EU(x+ ξ(x))− U(x) = E{U(x+ ξ(x))− U(x); |ξ(x)| ≤ εx}
+E{U(x+ ξ(x))− U(x); εx ≤ ξ(x) ≤ Ax}

+E{U(x+ ξ(x))− U(x); ξ(x) > Ax}
+E{U(x+ ξ(x))− U(x); ξ(x) < −εx}

=: E1 + E2 + E3 + E4. (46)

The second and forth terms on the right may be bounded as follows:

E2 + E4 ≤ U((1 +A)x)P{|ξ(x)| > εx}
≤ c1U(x)P{|ξ(x)| > εx}
= o(U(x)/x3) as x→∞, (47)

by the regular variation of U and by the condition (7). For the third term
we have

E3 ≤ E{U((1/A+ 1)ξ(x)); ξ(x) > Ax}
≤ c1E{ξ2µ/b+1+δ/2(x); ξ(x) > Ax}
≤ c1(Ax)−2−δ/2E{ξ2µ/b+3+δ(x); ξ(x) > Ax}
= o(U(x)/x3) as x→∞, (48)

due to the regular variation of U and (9). To estimate the first term on the
right side of (46), we apply Taylor’s formula:

E1 = U ′(x)E{ξ(x); |ξ(x)| ≤ εx}+
U ′′(x)

2
E{ξ2(x); |ξ(x)| ≤ εx}

+
1

6
E{U ′′′(x+ θξ(x))ξ3(x); |ξ(x)| ≤ εx}. (49)

where 0 ≤ θ = θ(x, ξ(x)) ≤ 1. By the construction of U and the condition
(6),

U ′(x)m1(x) +
U ′′(x)

2
m2(x) =

m2(x)eR(x)

2

(2m1(x)

m2(x)
+ r(x)

)
= O(eR(x)/x2+δ). (50)

Notice that

|m1(x)− E{ξ(x); |ξ(x)| ≤ εx}| ≤ c2E|ξ(x)|3+δ/x2+δ,
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and
0 ≤ m2(x)− E{ξ2(x); |ξ(x)| ≤ εx} ≤ c2E|ξ(x)|3+δ/x1+δ.

Applying now the condition (7), the relations (50), U ′(x) = eR(x) and
U ′′(x) = O(eR(x)/x), we obtain

U ′(x)E{ξ(x); |ξ(x)| ≤ εx}+
U ′′(x)

2
E{ξ2(x); |ξ(x)| ≤ εx} = o(eR(x)/x2).

(51)

We next note that (8), our assumptions on r(x) and the convergence∣∣E{ξ3(x); |ξ(x)| ≤ εx} − Eξ3(x)
∣∣→ 0 as x→∞,

imply that

U ′′′(x)E{ξ3(x); |ξ(x)| ≤ εx} = (r2(x) + r′(x))eR(x)(Eξ3(x) + o(1))

= ((ρ− 1)(ρ− 2)m3 + o(1))eR(x)/x2,(52)

and

|E{(U ′′′(x+ θξ(x))− U ′′′(x))ξ3(x); |ξ(x)| ≤ εx}| ≤ c3εe
R(x)/x2. (53)

Substituting (51), (52) and (53) into (49) we get, for sufficiently large x,∣∣∣E1 −
(ρ− 1)(ρ− 2)

6
m3e

R(x)/x2
∣∣∣ ≤ (c3 + 1)εeR(x)/x2. (54)

It its turn, (48) and (54) being implemented in (46) lead to

EU(x+ ξ(x))− U(x) =
(ρ− 1)(ρ− 2)m3

6
eR(x)/x2 + o(eR(x)/x2), (55)

since ε > 0 may be chosen as small as we please.
Applying similar arguments to the function eR(x), we get

EeR(x+ξ(x)) − eR(x) = −(ρ− 1)b

2
eR(x)/x2 + o(eR(x)/x2). (56)

Combining (55) and (56) we arrive at

EUC(x+ξ(x))−UC(x) =
ρ− 1

2
((ρ−2)m3/3−bC+o(1))eR(x)/x2 as x→∞,

which completes the proof of the lemma.
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Lemma 8. Under the conditions of Theorem 1, the harmonic function V
generated by U possesses the following decomposition:

V (x) = U(x) + C0e
R(x) + o(eR(x)) as x→∞.

In particular, V (x) > 0 ultimately in x.

Proof. Fix ε > 0 and take C := C0 + ε. According to Lemma 7,

uC(x) := EUC(x+ ξ(x))− UC(x) = (−(ρ− 1)bε/2 + o(1))eR(x)/x2.

Therefore, there exist c1 <∞ and x1 > x0 such that

uC(x) ≤
{
c1 if x ≤ x1,
0 if x > x1.

Hence,

Ex
τB−1∑
n=0

uC(Xn) ≤ c1Ex
τB−1∑
n=0

I{Xn ≤ x1}

≤ c1 sup
x≤x1

ExτB =: c2 <∞.

Since UC(x) ∼ U(x) as x→∞, by Lemma 6

V (x) = UC(x) + Ex
τB−1∑
n=0

uC(Xn)

≤ UC(x) + c2

= U(x) + (C0 + ε)eR(x) + c2.

The arbitrary choice of ε > 0 yields

V (x) ≤ U(x) + (C0 + o(1))eR(x) as x→∞.

Since V ≥ 0 implies

Ex
τB−1∑
n=0

uC(Xn) ≥ −UC(x) > −∞

for every x, we have

Ex
τB−1∑
n=0

eR(Xn)/X2
n <∞. (57)
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Now take C := C0 − ε. Again by Lemma 7,

uC(x) := EUC(x+ ξ(x))− UC(x) = ((ρ− 1)bε/2 + o(1))eR(x)/x2,

and the condition (41) holds due to (57). Then symmetric arguments lead
to the lower bound

V (x) ≥ U(x) + (C0 + o(1))eR(x) as x→∞.

Combining altogether we get the stated decomposition for V (x).

Having the harmonic function V generated by U we can define a new
Markov chain X̂n on R+ with the following transition kernel

Pz{X̂1 ∈ dy} =
V (y)

V (z)
Pz{X1 ∈ dy; τB > 1}

if V (z) > 0 and Pz{X̂1 ∈ dy} being arbitrary defined if V (z) = 0. Since V
is harmonic, then we also have

Pz{X̂n ∈ dy} =
V (y)

V (z)
Pz{Xn ∈ dy; τB > n} for all n. (58)

As well-known (see, e.g. [21, Theorem 10.4.9]) the invariant measure π
possesses the equality

π(dy) =

∫
B
π(dz)

∞∑
n=0

Pz{Xn ∈ dy; τB > n}. (59)

Combining (58) and (59), we get

π(dy) =
1

V (y)

∫
B
π(dz)V (z)

∞∑
n=0

Pz{X̂n ∈ dy}

=
Ĥ(dy)

V (y)

∫
B
π(dz)V (z),

where Ĥ is the renewal measure generated by the chain X̂n with initial
distribution

P{X̂0 ∈ dz} = ĉπ(dz)V (z), z ∈ B and ĉ :=
(∫

B
π(dz)V (z)

)−1
.
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Therefore,

π(x,∞) = ĉ

∫ ∞
x

1

V (y)
dĤ(y)

∼ ĉ

∫ ∞
x

1

U(y)
dĤ(y) as x→∞,

since V (x) ∼ U(x) owing to Lemma 7. After integration by parts we deduce

π(x,∞) ∼ ĉ
(
−Ĥ(x)

U(x)
+

∫ ∞
x

Ĥ(y)U ′(y)

U2(y)
dy
)

∼ ĉ
(
−Ĥ(x)

U(x)
+ ρ

∫ ∞
x

Ĥ(y)

yU(y)
dy
)

as x→∞. (60)

In order to apply Theorem 5 to the chain X̂n, we have to show that its
jumps ξ̂(x) satisfy the corresponding conditions. By the construction, the
absolute moments of order 2 + δ/2 of ξ̂(x) are uniformly bounded, because

E|ξ̂(x)|2+δ/2 =
1

V (x)
E|ξ(x)|2+δ/2V (x+ ξ(x))

=
1

V (x)
(E{|ξ(x)|2+δ/2V (x+ ξ(x)); ξ(x) ≤ Ax}

+E{|ξ(x)|2+δ/2V (x+ ξ(x)); ξ(x) > Ax})

≤ V ((1 +A)x)

V (x)
E|ξ(x)|2+δ/2

+
1

V (x)
E{|ξ(x)|2+δ/2V ((1 + 1/A)ξ(x)); ξ(x) > Ax},

where A is from the condition (9). Here the first term on the right side is
bounded due to the condition (7) and regular variation of V with index ρ
and the second one is bounded by (9), because

E{|ξ(x)|2+δ/2V ((1+1/A)ξ(x)); ξ(x) > Ax} ≤ c4

xδ/4
E{|ξ(x)|2+δ+ρ; ξ(x) > Ax}

≤ c5x
ρ−1−δ/4 = o(V (x)/x).

Then, in particular, the condition (25) of existence of integrable majorant
for the squares of jumps ξ̂(x) and the condition (16) follow. Also it implies
that

lim
x→∞

Eξ̂2(x) = lim
x→∞

Eξ2(x) = b. (61)
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Further, the boundedness of the moments of order 2 + δ/2 of ξ̂(x) yields
that, for every ε > 0,

Eξ̂(x) = E{ξ̂(x); |ξ̂(x)| ≤ εx}+ o(1/x)

=
1

V (x)
E{ξ(x)V (x+ ξ(x)); |ξ(x)| ≤ εx}+ o(1/x). (62)

Fix ε1 > 0. Recalling that, by Lemma 8, the function V (x)−U(x) ∼ C0e
R(x)

is regularly varying with index ρ− 1, we may choose ε > 0 so small that

|V (x+ y)− U(x+ y)− (V (x)− U(x))| ≤ ε1e
R(x) for all |y| ≤ εx.

(63)

Then
E{ξ(x)(V (x+ ξ(x))− V (x)); |ξ(x)| ≤ εx}

differs from
E{ξ(x)(U(x+ ξ(x))− U(x)); |ξ(x)| ≤ εx}

by the quantity not greater than ε1e
R(x)E|ξ(x)|. Using Taylor’s formula and

the relation

sup
|y|≤x/2

U ′′(x+ y) = sup
|y|≤x/2

r(x+ y)eR(x+y) = O(eR(x)/x),

we get

E
{
ξ(x)(U(x+ ξ(x))− U(x)); |ξ(x)| ≤ εx

}
= U ′(x)E{ξ2(x); |ξ(x)| ≤ εx}+O(eR(x)/x).

It follows now from the condition (7) that the asymptotics of truncated
expectations of the first and the second order coincide with that of full
expectations. Combining altogether and relations V (x) ∼ U(x) and U ′(x) =
eR(x) ∼ ρU(x)/x, we deduce that

lim sup
x→∞

∣∣∣ x

V (x)
E{ξ(x)V (x+ξ(x)); |ξ(x)| ≤ εx}− (−µ+ρb)

∣∣∣ ≤ ε1ρ sup
x

E|ξ(x)|.

Plugging this into (62) and recalling that ρ = 1 + 2µ/b, we conclude that

lim sup
x→∞

|xEξ̂(x)− (µ+ b)| ≤ ε1ρ sup
x

E|ξ(x)|.

Since ε1 > 0 may be chosen as small as we please,

xEξ̂(x)→ µ+ b as x→∞. (64)
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Finally, we check the condition (22) for the chain X̂n. As already shown,

2xm̂1(x) + m̂2(x)→ 2(µ+ b) + b = 2µ+ 3b > 0 as x→∞.

It allows us to choose x1 > x0 so that U(x1) > 0, V (x) ≥ U(x)/2 for all
x > x1 (this is possible because V (x) ∼ U(x)) and

inf
x>x1

(2xm̂1(x) + m̂2(x)) > 0.

Then the condition (22) holds with x1 instead of x0. Indeed, by the con-
struction, X̂n > x0 for any n ≥ 1 which implies

Ĥy(x0) =
∞∑
n=0

Py{X̂n ≤ x0} ≤ 1.

Further, as follows from (40) and increase of the function U , for every x > x0,

V (x) = Ex{V (Xn); τB > n} ≥ U(x)

2
Px{Xn > x1, τB > n}

≥ U(x1)

2
Px{Xn > x1, τB > n}.

The role of the condition (2) is just to be applied here; it guarantees that

inf
x>x0

V (x) > 0.

Therefore, for every y ∈ [x0, x1],

Ĥy(x1) =
∞∑
n=0

Py{X̂n ≤ x1} =
1

V (y)

∞∑
n=0

∫ x1

x0

V (z)Py{Xn ∈ dz, τB > n}

≤
supx0<z≤x1 V (z)

infy>x0 V (y)

∞∑
n=0

Py{τB > n}

= cEyτB,

and the latter mean value is bounded in y ∈ [x0, x1].
Now it is shown that X̂n satisfies all the conditions of Theorem 5, so

that X̂n is transient and

Ĥ(x) ∼ x2

2(µ+ b)− b
=

x2

2µ+ b
as x→∞.
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Substituting this equivalence into (60) where U(x) is regularly varying with
index ρ we arrive at the following equivalence:

π(x,∞) ∼ 2

(2µ+ b)(ρ− 2)

x2

U(x)

∫
B
π(dz)V (z)

∼ 2ρ

(2µ+ b)(ρ− 2)
xe−R(x)

∫
B
π(dz)V (z) as x→∞.

The proof of Theorem 1 is complete.

8. Proof of Theorem 2

In present section we work with the same function U as defined in the
previous section. Now we should again prove that the corresponding har-
monic function V is ultimately positive and that V (x) ∼ U(x) as x → ∞.
Since here we do not assume convergence of the third moments of jumps,
we need to modify our approach for proving these properties.

As in the previous section, for every C ∈ R, define UC(x) = 0 on [0, x0]
and

UC(x) = U(x) + CeR(x) for x > x0.

Lemma 9. Assume the conditions of Theorem 2 hold. Then there exist
constants C1, C2 ∈ R such that, for all sufficiently large x,

EUC1(x+ ξ(x))− UC1(x) < 0,

EUC2(x+ ξ(x))− UC2(x) > 0.

Proof. As the calculations in Lemma 7 show, without the condition on the
convergence of the third moments of jumps we still have the relation

EU(x+ ξ(x))− U(x) = o(eR(x)/x2),

which together with (56) concludes the proof.

The only place where the condition that the chain if left skip-free is
utilised is the following result.

Lemma 10. Under the conditions of Theorem 2, the increments of the
harmonic function V generated by U satisfy the following bounds: for y > 0,

U(x+ y)− U(x) + C2(e
R(x+y) − eR(x)) ≤ V (x+ y)− V (x)

≤ U(x+y)− U(x) + C1(e
R(x+y)−eR(x))

ultimately in x. In particular, V (x) ∼ U(x) as x → ∞ and V (x) > 0
ultimately in x.
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Proof. Both functions UC1 and UC2 satisfy the conditions of Lemma 6 by
the same arguments as in Lemma 8.

Let y > 0. Given X0 = x+ y, denote τx := min{n ≥ 1 : Xn = x}. Since
the chain is left skip-free, τx < τB. Having in mind that uC1(Xn) < 0 before
this stopping time, we get, by the Markov property,

V (x+ y)− V (x) = UC1(x+ y)− UC1(x)

+Ex+y
τB∑
n=0

uC1(Xn)− Ex
τB∑
n=0

uC1(Xn)

≤ UC1(x+ y)− UC1(x),

and similarly V (x+ y)− V (x) ≥ UC2(x+ y)−UC2(x), which completes the
proof.

We are now able to compute the mean drift of the transformed chain
X̂n. We may just repeate the arguments from the proof of Theorem 1 with
the inequality

|V (x+y)− U(x+y)− (V (x)−U(x))| ≤ max{|C1|, |C2|}(eR(x+y) − eR(x))

instead of (63). As a result we see that (64) is valid under the conditions of
Theorem 2.

All other parts of the derivation of the asymptotics of π(x,∞) can be
taken from the proof of Theorem 1 without any change.
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