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Abstract

We consider a transient random walk on Zd which is asymptotically stable,
without centering, in a sense which allows different norming for each compo-
nent. The paper is devoted to the asymptotics of the probability of the first
return to the origin of such a random walk at time n.
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1. Introduction

Let Sn, n ≥ 0, be a random walk in Zd generated by independent
identically distributed steps ξn = (ξn1, . . . , ξnd), n ≥ 1, that is, S0 = 0,
Sn = ξ1+. . .+ξn. Define τ0 = 0 and recursively τn+1 = min{k > τn : Sk = 0};
by standard convention min ∅ = ∞. Then τ = τ1 is the first return to the
origin of the random walk Sn.

In this paper we study the asymptotic behavior of

pn := P{τ = n} = P{the first return to zero occurs at time n}
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as n →∞. Put G(B) = P{τ ∈ B} and

p :=
∞∑

n=1

pn = P{τ < ∞} = G[1,∞) ≤ 1.

The measure un := P{Sn = 0} on Z+ is actually the renewal measure gener-
ated by the τ ’s, that is,

un =
∞∑

k=0

P{τk = n} =
∞∑

k=0

G∗k(n). (1)

Then
∞∑

n=0

P{Sn = 0} =
∞∑

k=0

G∗k[0,∞) =
∞∑

k=0

pk =
1

1− p
, (2)

which implies

p =

∑∞
n=1 P{Sn = 0}

1 +
∑∞

n=1 P{Sn = 0}
. (3)

The random walk Sn is called aperiodic if Zd is a minimal lattice for Sn

in the sense that, for every ε > 0,

sup
λ∈[−π,π]d\[−ε,ε]d

|Eei(λ,ξ1)| < 1.

Aperiodicity is clearly no essential restriction, as the state space can always
be redefined, if necessary, so as to make a random walk aperiodic.

In what follows we will be studying aperiodic random walks on Zd which
are asymptotically stable in the following sense: there is sequence cn =
(cn1, . . . , cnd) such that

Xn := (Sn1/cn1, . . . , Snd/cnd)
D→ Y = (Y1, . . . , Yd),

where Y is a strictly d-dimensional stable random variable. Since this implies
that each component of Xn is asymptotically stable, we know that each cnr

is in the class RV (1/αr) of regularly varying at infinity with index 1/αr

sequences (see, e.g. Bingham et al. 1987, Section 1.9), where αr ∈ (0, 2] is
the index of the univariate stable random variable Yr. Thus Cn :=

∏d
1 cnr

is in RV (η), where η =
∑d

1 1/αr ≥ d/2. We need the following local limit
theorem, in which g denotes the density function of Y .
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Theorem 1. If Sn is an aperiodic random walk on Zd which is asymptoti-
cally stable in the above sense, it holds that uniformly for x ∈ Zd

CnP{Sn = x} = g(x1/cn1, . . . , xd/cnd) + o(1) as n →∞.

In particular, un = P{Sn = 0} ∼ g(0, . . . , 0)/Cn as n →∞.

For d = 1 this is the classical local limit theorem of Gnedenko (see Kol-
mogorov and Gnedenko (1954, § 50); for the case d = 2 it is proved in Doney
(1991), and as remarked there, the proof extends in a straightforward way
to the case d > 2. It can also be viewed as a special case of Theorem 6.4 in
Griffin (1986), where the more general case of matrix norming is treated.

Since it is known that g and its derivatives are bounded, we deduce the
following

Corollary 2. If Sn is an aperiodic random walk on Zd which is asymptoti-
cally stable, there exists a constant A such that

P{Sn = x} ≤ A/Cn for all x ∈ Zd,

and, for every fixed k,

P{Sn−k = x} = P{Sn = x}+ o(1/Cn)

as n →∞ uniformly for x ∈ Zd.

Remark 3. Since every random walk is transient when d ≥ 3, a result
which for the simplest symmetric random walk goes back to Polya (1921),
the requirement of transience only features for d = 1 and d = 2, when under
our assumptions it is equivalent to

∑∞
n=1 1/Cn < ∞.

Suppose we know that P{τ = n} ∈ RV (−γ) for some γ ≥ 1. Then G/p
is the so-called locally subexponential distribution. In this case, the local
asymptotics of the defective renewal function is described in Asmussen et al.
(2003, Proposition 12): the following limit exists:

lim
n→∞

∑∞
k=0 G∗k(n)

G(n)
=

∞∑
k=0

kpk−1 =
1

(1− p)2
,

so that P{Sn = 0} ∼ P{τ = n}/(1 − p)2. This is the intuition behind the
following, which is our main result.
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Theorem 4. Let Sn be an aperiodic, transient random walk on Zd, d ≥ 1,
which is asymptotically stable in the above sense. Then as n →∞,

P{τ = n} ∼ (1− p)2P{Sn = 0} ∼ (1− p)2g(0, . . . , 0)

Cn

.

Remark 5. The special case where d ≥ 3, Eξn = 0 and Eξnjξnj = Bij < ∞
with det B 6= 0 reads

P{τ = n} ∼ (1− p)2P{Sn = 0} ∼ (1− p)2

(2π)d/2
√

det B
n−d/2.

This was proved in an unpublished communication by one of us, and is quoted
in Chapter A.6 of Giacomin (2007); this illustrates the increasing importance
of local results such as this in Mathematical Physics. To the best of our
knowledge, Theorem 4 was not proved in the literature even in the case of
the simplest symmetric random walk on Zd with d ≥ 3.

In the next section we prove Theorem 4 by analytic means via a Banach
algebra technique; this is the method that was used in proving the above
special case. Then in Section 3 we give a probabilistic proof capturing the
most probable way that large values of τ occur.

Note also that the recurrent one-dimensional case d = 1 was first studied
by Kesten (1963) where it was proved in Theorems 7 and 8 that when Eξ =0

and Eξ2 < ∞, we have P{τ = n} ∼
√

Varξ
2π

n−3/2 as n →∞; the recurrent case

of convergence to a stable law with index α ∈ [1, 2] was also considered. Two
different approaches for proving this equivalence may be found in Bender et
al. (2004, Theorem 1.2).

In dimension 2 Jain and Pruitt (1972, Theorem 4.1) proved, assuming
zero mean and finite covariance B, that P{τ = n} ∼ 2π

√
det Bn−1 log−2 n as

n →∞.
The only local result for dimensions 3 and higher we found is one by

Kesten and Spitzer (1963, Theorem 1b) where they proved that P{τ = n +
1} ∼ P{τ = n} as n →∞ given Eξ = 0.

In conclusion note that different mechanisms are involved in formation
of large deviations of τ in dimensions d = 1, d = 2 and d ≥ 3. In the
one-dimensional recurrent case, the equation (1) says that we deal with the
renewal process generated by τ ’s where τ has an infinite mean. In principle
the same is true for the case d = 2 but here the tail of τ is very heavy, it is
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slowly varying at infinity. In the case d ≥ 3 transience holds, so that we have
the renewal process generated by a defective distribution which yields that
the renewal atoms un are proportional to pn; this is the main topic addressed
to in the present article.

2. Banach algebra approach

The proof of Theorem 4 is straightforward, if we assume additionally that∑∞
n=1 un < 1 which is equivalent to p < 1/2. The discrete renewal relation

(1) between the u’s and p’s implies that

1 + u(s) =
1

1− p(s)
,

where we put u(s) =
∑∞

n=1 uns
n and p(s) =

∑∞
n=0 pns

n, so that

p(s) =
u(s)

1 + u(s)
=

∞∑
n=1

(−1)n+1(u(s))n, |s| ≤ 1.

This is equivalent to

pn =
n∑

k=1

(−1)k+1u∗(k)
n

where u
∗(k)
n is the k-fold convolution of {un}. Note that un is regularly varying

at infinity so that the defective distribution {un} is locally subexponential,
see Asmussen et al. (2003) or Foss et al. (in press, Chapter 4). Then, as
follows from Foss et al. (2011, Theorem 4.30),

pn

un

=
n∑

k=1

(−1)k+1u
∗(k)
n

un

→
∞∑

k=1

(−1)k+1k(u(1))k−1 =
1

(1 + u(1))2
.

Note 1 + u(1) = 1/(1− p), so pn ∼ (1− p)2un as n →∞.
What happens if

∑∞
n=1 un ≥ 1? In this case we cannot expand u(s)/(1 +

u(s)) as a power series in u(s). Nevertheless this is an analytic function
in u(s), for all (complex) s in |s| ≤ 1, because u(1) < ∞ by the assumed
transience. We can then apply Theorem 1 from the paper Chover et al.
(1973) and get the same result; this reference is based on Banach algebra
techniques.
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3. Probabilistic approach

The starting point of the probabilistic proof of Theorem 4 is the following
result, which holds in any dimension.

Lemma 6. Let a sequence Qn which is regularly varying at infinity be such
that

P{Sn = x} ≤ Qn for all x ∈ Zd, (4)
∞∑

n=1

Qn < ∞, (5)

and, for every fixed k,

P{Sn−k = x} = P{Sn = x}+ o(Qn) (6)

as n →∞ uniformly in all x ∈ Zd. Let rn be any fixed unboundedly increasing
sequence. Then

P{Sn = x, τ > n} = (1− p)P{Sn = x}+ o(Qn)

as n →∞ uniformly in x ∈ Zd such that ‖x‖ > rn.

Proof. It is equivalent to prove the relation

P{Sn = x, τ < n} = pP{Sn = x}+ o(Qn). (7)

We start with the following decomposition:

P{Sn = x, τ < n} =
n−1∑
k=1

P{Sn = x, τ = k}

=
n−1∑
k=1

P{Sn−k = x}P{τ = k}.

For every fixed N , we have

n−N∑
k=N

P{Sn−k = x}P{τ = k} ≤
n−N∑
k=N

P{Sn−k = x}P{Sk = 0}

≤
n−N∑
k=N

QkQn−k, (8)
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by the condition (4). For every fixed k, P{Sk = x} → 0 as ‖x‖ → ∞.
Together with (4) it implies that, for every fixed N ,

n−1∑
k=n−N

P{Sn−k = x}P{τ = k} ≤
n−1∑

k=n−N

P{Sn−k = x}Qk

≤
n−1∑

k=n−N

Qko(1) = o(Qn) (9)

as n →∞ uniformly in ‖x‖ ≥ rn. Finally, by (6), for every fixed N ,

N∑
k=1

P{Sn−k = x}P{τ = k} = P{Sn = x}
N∑

k=1

P{τ = k}+ o(Qn) (10)

as n →∞ uniformly in all x.
Combining (8)–(10) we obtain that

lim sup
n→∞

1

Qn

|
n−1∑
k=1

P{Sn = x, τ = k} − P{Sn = x}P{τ ≤ N}|

≤ lim sup
n→∞

1

Qn

n−N∑
k=N

QkQn−k.

By regular variation of Qn at infinity, taking into account that the series (5)
converges, we conclude that the right hand side can be made as small as we
please by choosing N sufficiently large; this is also a well-known property
in the theory of locally subexponential distributions, see e.g Foss et al. (in
press, Chapter 4). Now the proof of (7) follows by letting N →∞.

Lemma 7. Under the conditions of Lemma 6, as n →∞,

P{τ = n} = (1− p)2P{Sn = 0}+ o(Qn).

Proof. Let m be such that n = 2m in the case of even n and n = 2m + 1
otherwise. We have

P{τ = n} =
∑

x∈Zd\0

P{Sm = x, τ = n}.
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Since Sm and the sequence {Sm+k − Sm, k ≥ 1} are independent, the xth
summand in the latter sum is equal to the product

P{Sm = x, τ > m}
×P{Sm+k − Sm 6= −x for all k = 1, . . . , n−m− 1, Sn − Sm = −x}.

The second probability here is equal to

P{Sn − Sm+k 6= 0 for all k = 1, . . . , n−m− 1, Sn − Sm = −x}
= P{S̃k 6= 0 for all k = 1, . . . , n−m− 1, S̃n−m = −x}
= P{τ̃ > n−m, S̃n−m = −x},

where S̃k := ξ̃1 + . . . + ξ̃k, ξ̃k := ξn−k+1, and τ̃ is the first return time to zero
of the random walk S̃k. The random walk S̃k has the same distribution as
Sk, so

P{τ = n} =
∑

x∈Zd\0

P{Sm = x, τ > m}P{S̃n−m = −x, τ̃ > n−m}

=
∑

x∈Zd\0

P{Sm = x, τ > m}P{Sn−m = −x, τ > n−m}

= Σ1 + Σ2, (11)

where Σ1 is the sum over ‖x‖ ≤ log n =: rn and Σ2 is the sum over ‖x‖ >
log n. By the condition (4) and regular variation of Qn,

Σ1 ≤
∑

‖x‖≤log n

P{Sm = x}P{Sn−m = −x}

≤ QmQn−m(2 log n)d = o(Qn) as n →∞. (12)

By Lemma 6, as n →∞,

Σ2 = (1− p)
∑

‖x‖>log n

P{Sm = x, τ > m}[P{Sn−m = −x}+ o(Qn)]

= (1− p)
∑

‖x‖>log n

P{Sm = x, τ > m}P{Sn−m = −x}+ o(Qn).

Repeating these arguments to the first multiple we obtain that

Σ2 = (1− p)2
∑

‖x‖>log n

P{Sm = x}P{Sn−m = −x}+ o(Qn).
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Taking also into account (12) we finally obtain that

Σ2 = (1− p)2P{Sn = 0}+ o(Qn). (13)

Substituting (12) and (13) into (11), we arrive at the desired conclusion.
The proof of Theorem 4 is now immediate, since by Corollary 2 the se-

quence Qn = A/Cn satisfies all conditions of Lemma 6, for suitable A. The
proof is complete.

Remark 8. The same question may be addressed in the more general setting
of matrix norming with the help of results by Griffin (1986). The key point is
that the norming sequence |Bn| in his Theorem 6.4 is automatically regularly
varying: we owe this comment to Phil Griffin, in a private communication.
It is then easy to see that our result extends to this situation whenever d ≥ 3
or d = 2 and transience is assumed.
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Séminaire Lotharingien de Combinatoire 50, Article B50h.

[3] Bingham, N. H., Goldie, C. M., and Teugels J. L., 1987. Regular varia-
tion, Cambridge University Press, Cambridge.

[4] Chover, J., Ney, P., and Wainger, S., 1973. Functions of probability
measures. J. d’Analyse Mathématique 26, 255–302.
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