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TRANSIENT PHENOMENA FOR REAL-VALUED MARKOV
CHAINS*

D. A. KORSHUNOV

(Translated by N. A. Berestova)

This paper considers transient phenomena arising in investigations of stationary real-
valued ergodic Markov chains. They are similar in a sense to nonergodic chains having paths
tending to infinity. This approach enables one to construct approximations for the stationary
distributions of the chains.

Let {X()},=0 be a sequence (in e) of homogeneous real-valued Markov chains (in n)
with transition function P()(x, B), x E R, B ( (R), where (R) is the a-algebra of the
Borel sets in R. An invariant measure r() corresponding to the chain (X(n)}, i.e., a measure
satisfying the equation

(1) r()(B)-/R P()(x, S)r()(dx), r()(R) 1,

is our main subject of study. If the chains {X() } are ergodic for e > 0, then the asymptotic
behavior of their stationary distribution (as e 0) will be discussed. In the sequel, it is
supposed that equation (1) has a unique solution when e > 0. This is the case if conditions
hold for the chains (X()} to be ergodic involving a "mean drift" of the chain towards some
compact set (see Theorem A) and a "mixing" condition of Doob-Doeblin type (see [2]). In
this situation the distribution P ()(x, n, converges in variation to r() (.) with the measure
r() (.) unique.

Consider a family of random variables (r.v.’s) (e)(x) whose distribution coincides with
the distribution of the step of the chain {X()} from the state x: P {x + ()(x) B}
P()(x, B). Below we shall use some regularity conditions. The first one concerns the
assumption of "loadability" of the Markov chains {X(n)} meaning that the "average drift"
tends to zero: E()(x) 0 as x and e 0. We then assume that the transient kernel
is "weakly continuous" (we shall omit the index (0) for the parameters of the limiting chain

Xn =- X(n)): P()(x, .)==v P(y, .) as x y, e 0 for any y R, and that the limiting kernel
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P (x,.) is such that for any compact K C R and any x E R there exists a natural number no
such that P {Xno f[ g lXo x} > O.

We wish to study the asymptotic behavior of the distribution of r(e) (as e 0) under
moment assumptions on the r.v. (e)(x) (listed below). If the limit chain {X} has a unique in-
variant distribution, then this is a problem on stability or continuous dependence of r()
on the parameter e 0. If the chain {X} does not have a proper distribution (X
in probability n. ) then the problem cited above concerns transient phenomena that
describe the ymptotic behavior of the inriant distribution of the chain {X)} 0.

In the present paper we limit ourselves to theorems on transient phenomena for Mkov
chains suming values on the positive half-line. The study of the behavior of invariant
distributions for chains given on the whole real line in many respects reduces to studying
chains given on half-line.

Thus, let X) 0. We use the following notation: m()(x) E()(x), and b()(x)
E(()(x))2. The main regularity condition relates to the behavior of m()(x) and b()(x)
x , e I 0 and is stated completely in (3). In particular, this condition implies that
lim xm(x) , - , and lim b(x) b, 0 < b < , sup b() < exist
for the "limiting chain". The parameters and b chacterizing the ymptotic behavior
of the first two moments of jumps in the process play the decisive role in clsiing the
ymptotic behavior of the distribution (). They e also essential to the lfillment of the
ergodicity conditions for the chain {X} (see, e.g., [4]). The following statement holds true.
Put (x) min {n 1: Xn AXo x}.

THEOREM A [4]. ff 2xm(x)+b(x) - < O ]or x A and 2xm(x) + b(x) C < for
x < A,then supA Er(x) < (unfo positive cunce of the set [0, A]).

As is generally known, the uniform positive recrenee of [0,A] implies ergodicity of
{Xn} under wide sumptions. For example, the existence of a probability meure on R,
a number p > 0, and a natural number n0 I such that

(2) P {X-o e B Xo x} a p(B)

for every x [0, A], B , and the aperiodicity of the chain {Xn} are sufficient (see, for
instance, [5] and [8]). In our ce hlfillment or nonlfillment of the hypotheses of Theorem A
is determined by the value of 2/b. om the statement cited above it follows that {Xn} is
ergodic if 2/b -1 and (2) holds.

We now formulate the regulity conditions for m()(x) and b()(x). We consider the
dependence of P (e)(x,.) on the pameter e such that lim m()(x) -e and the chains
{X)} e ergodic when e > 0 and (2) is satisfied. Moreover, we suppose that

()() - +/+ o( + /), , 0, - < < ,
(3)

sup b() (x) < , lira b() () b, 0 < b < .
x,e x,e0

The sequence {Xe)} determined by y(e) (Xe) + e))+ where x+ m(0, x), and

are independent uniformly distributed r.v.’s with E -e, E ()) b, is a special ce of
such a double array. Limit theorems for a random walk of this type are considered in [1]-[3]
(in this ce z 0).

We sume that the following conditions hold in the theorems:
the chains t.. ) are homogeneous,
the chains {X)) have a unique inviant distribution for e > 0,
the transient kernel satisfies the continuity condition.
THEOREM 1 (stability,2# < -b). Let the asymptotic representations (3) hold and let

If2 < -b and the chain {Xn} has a unique invaant distbution ,then () weakly as

eO.
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In the sequel it will be more convenient for us to study the asymptotic behavior of rCe)
not in terms of this distribution itself but in terms of X(e) having the distribution r(e). We
denote the distribution of X by (X).

THEOREM 2 (convergence to F distribution,2 > -b). Let the asymptotic representations
(3) hold and let

I] cx) > 2# > -b,then

(2X(e)) == rl/b,l+2l/b

weakly,where F, is the Gamma distribution with parameters and A.
It turns out that without improvement of the remainders in the asymptotic represen-

tation (3) in the case 2 -b, there does not exist, generally speaking, a collective limit
theorem for the r.v. X(e). Introduce notation for the iterated logarithms and their products:

lO(g) g, Ik-{-l(X) log(//(X)),
k

Lk(x)- H Ira(x).
m=l

THEOREM 3 (the critical case,2# -b). Suppose that 1 <= k < oo,

k

()() - + ,/ +-,/.() + o( +/L()),
k

b(e)(x) b 4- ,/Ls(x) 4. o(e 4- 1ILk(x)),
8--1

as x c,e 0 and supx, E I(e)(x)lTM < oo for some > O. Let 2 -b,2cl 4- fl -b,
and 2ak_ 4- fk- -b.

(a) I 2ak + < -b and the chain {Xn} has a unique invariant distribution,then
r(e) == weakly as e O.

(b) /]2 4- fk > -b,then

2. ( (lk(X(e))/lk(1/e))l+(2a+f)/b) U[0, 1]

weakly,where U[0, 1] is the uniform distribution on [0, 1].
THEOREM 4 (convergence to a normal distribution,# oo). Suppose that

mCe)(x)
_

4- a/x 4- o(e(1+A)/2; 4- 1/x(1+)/2), be(x) b 4- 0(1)

as x o, e 0 and condition (4) is satisfied. If a > 0 and 0 < A < 1,then E X(ne) (a/e)1/A
as e $ 0 and

weakly,where N(, a2) is the normal distribution with parameters/ and a2.
If m(e)(x) -e +l(x)/x + o(.), where 0 < A < 1 and l(x) > 0 is a slowly varying function,

then there is convergence to the normal law under very broad conditions on the function l(x)
as before.
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ESTIMATION OF THE MAXIMUM OF A NONPARAMETRIC
SIGNAL TO WITHIN A CONSTANT*

O. V. LEPSKII

(Translated by A. E. Shemyakin)

1. Introduction. Let a stochastic process X(t) be observed having on the interval [0,
1] the stochastic differential

(1) dXe(t) S(t) dt + e db(t),

where e > 0 is a small parameter and b(.) is a standard Wiener process. It is required to
estimate the functional

F(.) F(S(.)) sup S(t)
re[O,1]

from the observations over a trajectory of the process X(t), 0 <= =< 1, under the following
a priori assumptions on the signal S(.). Denote by (/,L), 0 < / <= 1, L > 0, the class of
functions g(.) satisfying a Hhlder condition on [0,1] with exponent/ and constant L:

Ig(tx) g(t2)l -_< Lltx tzl, tl, tg. e [0,1].

We will assume the signal S(.) to belong to E(/, L) for some known/ and L.
Let us consider for an arbitrary measurable function of Xe(.) (an estimator Oe

Oe(Xe(.))), a risk of the form

Se(,L)

Here o {2 log(1/e)}fl/(2+1) is a normalizing factor, Es(. is the expectation with respect
to the measure generated by the process Xe(.) providing that the true value of the signal in
(1) is S(.) and w(.) is the loss function (1.f.) with the customary (see [1]) properties: It is
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