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We study distributions F on [0, .) such that for some T [ ., Fg 2(x, x+T] ’

2F(x, x+T]. The case T=. corresponds to F being subexponential, and our
analysis shows that the properties for T < . are, in fact, very similar to this
classical case. A parallel theory is developed in the presence of densities. Appli-
cations are given to random walks, the key renewal theorem, compound Poisson
process and Bellman–Harris branching processes.
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1. INTRODUCTION

For a probability distribution F on the real line, let F(x)=F(−., x]
denote the distribution function and Fa(x)=F(x, .)=1 − F(x) the tail.
The class S of subexponential distributions is defined by the requirement
Fg 2(x) ’ 2Fa(x) as x Q . (Fg n=nth convolution power) and that the
support is contained in [0, .). This class plays an important role in many
applications (see, e.g., Refs. 9, 14, 25, 22, and Ref. 2, Chap. IX). For
example, one of the key results in the theory is:

Theorem 1. Let Sn=t1+ · · · +tn be a sequence of partial sums
of i.i.d. random variables with common distribution F, and let y be an



independent integer-valued random variable. If F ¥ S and E(1+d)y < .

for some d > 0, then P(Sy > x) ’ Ey · Fa(x) as x Q ..

Special cases of this result provide asymptotics for tails of waiting
times in the GI/G/1 queue, for ruin probabilities and Bellmann–Harris
branching processes (see further the references in later parts of this paper).

Any subexponential distribution is long-tailed, i.e., for any fixed T,
Fa(x+T) ’ Fa(x) as x Q .. This easily yields Fg n(x, x+T] =o(Fa(x)) for
all T < . and all n. Some applications, however, call for more detailed
properties of Fg n(x, x+T] when T < ., but the theory is more scattered so
the references that we know of are few: Section 2 in Chover et al. (10) gave
local theorems for some classes of lattice distributions; densities were con-
sidered in Section 2 in Ref. 10 (requiring continuity) and in Klüppelberg (20)

who considered asymptotics of densities for a special case (see also Sgibnev (23)

for some results on the densities on R); and finally Bertoin and Doney (6)

and Asmussen et al. (4) dealt with the case where F is the ladder height dis-
tribution in a random walk in order to provide more detailed asymptotics of
the random walk maximum than the standard consequences of Theorem 1.

The aim of the present paper is to develop a more systematic theory.
Fix 0 < T [ . and write D=(0, T],

x+D — {x+y : y ¥ D}=(x, x+T], x ¥ R.

Motivated from Ref. 4, we call F (concentrated on [0, .)) D-subexponen-
tial if the function F(x+D) is long-tailed (see Definition 1 later) and
Fg 2(x+D) ’ 2F(x+D) (where g(x) ’ h(x) means that g(x)/h(x) Q 1,
x Q .). Here T=. corresponds to ordinary subexponential distributions.
We will see that all standard examples of subexponential distributions
are also D-subexponential when T < ., and that the standard theory for
T=. carries over to T < . practically without changes. We thereby
provide a general theory covering both the classical subexponential case
and some of the more refined questions encountered in Ref. 4, and we also
give some further applications motivating this generalization, see for
example the results from renewal theory in Section 6.

In Section 2, we derive the properties of D-subexponential distribu-
tions and prove a natural analogue of Theorem 1. In Section 3, we define
distributions with subexponential densities and study their properties.
In Section 4, sufficient conditions for D-subexponentiality are given. In
Section 5, we apply results from Sections 2 and 3 to the asymptotic
description of the distribution of the supremum of a random walk with
negative drift. The rest of the paper contains further applications to
Compound Poisson Processes, Infinitely Divisible Laws, Bellman–Harris
Branching Processes, and the Key Renewal Theorem.
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2. D-SUBEXPONENTIAL DISTRIBUTIONS

Definition 1. We say that a distribution F on R belongs to the class
LD if F(x+D) > 0 for all sufficiently large x and

F(x+t+D)
F(x+D)

Q 1 as x Q ., (1)

uniformly in t ¥ [0, 1].

Calling a function g(x) long-tailed if g(x+t)/g(x) Q 1 uniformly in
t ¥ [0, 1], we see that the definition is equivalent to F(x+D) being long-
tailed. If T=., then we write L instead of LD and say that F is long-
tailed. It follows from the definition that one can choose a function
h(x) Q . such that (1) holds uniformly in |t| [ h(x).

Proposition 1. Let the distributions F and G belong to the class LD

for some D. Then F f G ¥ LD and

lim inf
x Q .

(F f G)(x+D)
F(x+D)+G(x+D)

\ 1. (2)

Proof. Let t and g be two independent random variables with corre-
sponding distributions F and G. Take an increasing function h(x) ‘ . such
that h(x) < x/2, F(x − y+D) ’ F(x+D), and G(x − y+D) ’ G(x+D) as
x Q . uniformly in |y| [ h(x). Consider the event B(x, t)={t+g ¥ x+
t+D}. The estimate (2) follows from the inequality

P(B(x, 0)) \ P(B(x, 0), |t| [ h(x))+P(B(x, 0), |g| [ h(x))

combined with

P(B(x, 0), |t| [ h(x))=F
h(x)

−h(x) − 0
G(x − y+D) F(dy)

’ G(x+D) F
h(x)

−h(x) − 0
F(dy)

’ G(x+D),

P(B(x, 0), |g| [ h(x)) ’ F(x+D).

Local Subexponential Behaviour 491



The probability of the event B(x, t) is equal to the sum

P(B(x, t), t [ x − h(x))+P(B(x, t), g [ h(x))

+P(B(x, t), t > x − h(x), g > h(x))

— P1(x, t)+P2(x, t)+P3(x, t).

In order to prove that F f G ¥ LD, we need to check that P(B(x, t)) ’

P(B(x, 0)) as x Q . uniformly in t ¥ [0, 1]. This follows from the relations

P1(x, t)=F
x − h(x)

−.

G(x+t − y+D) F(dy)

’ F
x − h(x)

−.

G(x − y+D) F(dy)=P1(x, 0),

P2(x, t) ’ P2(x, 0), by the same reasons, and

P3(x, t)=F
x − h(x)+t+T

x − h(x)
P(g ¥ x+t − y+D, g > h(x)) F(dy)

[ P(g > h(x)) F(x − h(x)+(0, t+T])=o(F(x+D)).

By induction, Proposition 1 yields

Corollary 1. Let F ¥ LD for some D. Then, for any n \ 2, Fg n ¥ LD

and

lim inf
x Q .

Fg n(x+D)
F(x+D)

\ n.

Definition 2. Let F be a distribution on R+ with unbounded support.
We say that F is D-subexponential and write F ¥ SD if F ¥ LD and

(F f F)(x+D) ’ 2F(x+D) as x Q ..

Equivalently, a random variable t has a D-subexponential distribution
if the function P(t ¥ x+D) is long-tailed and, for two independent copies
t1 and t2 of t,

P(t1+t2 ¥ x+D) ’ 2P(t ¥ x+D) as x Q ..

Note that SD1
] SD2

if D1 ] D2 ; see the corresponding Examples 1 and 2 in
Section 4.

Remark 1. The class of R+-subexponential distributions coincides
with the standard class S of subexponential distributions. Typical examples

492 Asmussen, Foss, and Korshunov



of SD distributions (for all T > 0) are the same, in particular the Pareto,
lognormal, and Weibull (with parameter between 0 and 1) distributions, as
will be shown in Section 4. Also, many properties of SD-distributions with
finite D are very close to those of subexponential distributions, as will be
shown below. However, a main difference is that for T < ., the function
F(x+D) may be non-monotone in x, whereas it is non-increasing for
T=..

Remark 2. It follows from the definition that, if F ¥ SD for some
finite interval D=(0, T], then F ¥ SnD for any n=2, 3,... and F ¥ S.
Indeed, for any n ¥ {2, 3,..., .},

P(t1+t2 ¥ x+nD)= C
n − 1

k=0
P(t1+t2 ¥ x+kT+D)

’ 2 C
n − 1

k=0
P(t ¥ x+kT+D)=2P(t ¥ x+nD).

Remark 3. In Ref. 10, the authors consider the class of distributions
concentrated on the integers and such that F({n+1}) ’ F({n}) and
Fg 2({n}) ’ 2F({n}) as n Q .. These distributions are D-subexponential
with D=(0, 1].

Proposition 2. Assume F[0, .)=1 and F ¥ LD for some D. Let t1

and t2 be two i.i.d. random variables with distribution F. The following
assertions are equivalent:

(i) F ¥ SD;

(ii) there exists a function h such that h(x) Q ., h(x) < x/2, and
F(x − y+D) ’ F(x+D) as x Q . uniformly in |y| [ h(x),

P(t1+t2 ¥ x+D, t1 > h(x), t2 > h(x))=o(F(x+D)) as x Q .;
(3)

(iii) the relation (3) holds for every function h such that h(x) Q ..

Proof. Note that if (3) is valid for some h(x), then it follows for any
h1 \ h. For h(x) < x/2, the probability of the event B={t1+t2 ¥ x+D} is
equal to

P(B, t1 [ h(x))+P(B, t2 [ h(x))+P(B, t1 > h(x), t2 > h(x))
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and the conclusions of the proposition follow from

P(B, t1 [ h(x))=P(B, t2 [ h(x))

=F
h(x)

0
F(x − y+D) F(dy)

’ F(x+D) F
h(x)

0
F(dy) ’ F(x+D).

Now we prove that the class SD is closed under a certain local tail
equivalence relation.

Lemma 1. Assume that F ¥ SD for some D. If the distribution G on
R+ belongs to LD and

0 < lim inf
x Q .

G(x+D)
F(x+D)

[ lim sup
x Q .

G(x+D)
F(x+D)

< ., (4)

then G ¥ SD. In particular, G ¥ SD, provided G(x+D) ’ cF(x+D) as x Q .

for some c ¥ (0, .).

Proof. Take a function h(x) Q . such that h(x) < x/2 and
G(x − y+D) ’ G(x+D) as x Q . uniformly in |y| [ h(x). Let z1 and z2 be
independent random variables with common distribution G. By Proposi-
tion 2(ii), it is sufficient to prove that

I — P(z1+z2 ¥ x+D, z1 > h(x), z2 > h(x))=o(G(x+D)).

We have

I=F
x − h(x)

h(x)
G(x − y+D) G(dy)

+F
x − h(x)+T

x − h(x)
P(z1 ¥ x − y+D, z1 > h(x)) G(dy)

— I1+I2,

where

I2 [ P(z1 > h(x)) G(x − h(x)+D)=o(G(x+D))
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and, by condition (4), for some c1 < . and for all sufficiently large x,

I1 [ c1 F
x − h(x)

h(x)
F(x − y+D) G(dy)

[ c1P(z1+t2 ¥ x+D, z1 > h(x), t2 > h(x))

=c1 F
x − h(x)

h(x)
G(x − y+D) F(dy)

+c1 F
x − h(x)+T

x − h(x)
P(z1 ¥ x − y+D, z1 > h(x)) F(dy).

Here t1 and t2 are independent random variables with common distribu-
tion F. Hence, by using the same arguments as before and Proposition 2(iii),

I1 [ c2
1 F

x − h(x)

h(x)
F(x − y+D) F(dy)+c1P(z1 > h(x)) F(x − h(x)+D)

[ c2
1P(t1+t2 ¥ x+D, t1 \ h(x), t2 \ h(x))+o(F(x+D))

=o(F(x+D))=o(G(x+D)).

Proposition 3. Assume that F ¥ SD for some D. Let G1, G2 be two
distributions on R+ such that G1(x+D)/F(x+D) Q c1 and G2(x+D)/
F(x+D) Q c2 as x Q ., for some constants c1, c2 \ 0. Then

(G1 f G2)(x+D)
F(x+D)

Q c1+c2 as x Q ..

If c1+c2 > 0 then, by Lemma 1, G1 f G2 ¥ SD.

Proof. Take two independent random variables z1 and z2 with dis-
tributions G1 and G2. Take a function h as before. The probability of the
event B={z1+z2 ¥ x+D} is equal to the sum

P(B, z1 [ h(x))+P(B, z2 [ h(x))+P(B, z1 > h(x), z2 > h(x)).

We have that (see the proof of Proposition 1), as x Q .,

P(B, z1 [ h(x))
F(x+D)

Q c2,
P(B, z2 [ h(x))

F(x+D)
Q c1.
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Following the arguments of Lemma 1, we obtain that

P(B, z1 > h(x), z2 > h(x))=o(F(x+D)).

The proposition is proved.
By induction, Proposition 3 implies the following

Corollary 2. Assume that F ¥ SD for some T ¥ (0, .] and G(x+D)/
F(x+D) Q c \ 0 as x Q .. Then for any n \ 2, Gg n(x+D)/F(x+D) Q nc
as x Q .. If c > 0, then Gg n ¥ SD.

Let {tn} and {zn} be two sequences of i.i.d. non-negative random
variables with common distributions F(B)=P(t1 ¥ B) and G(B)=P(z1 ¥ B)
respectively. Put Sn=z1+ · · · +zn.

Proposition 4. Assume that F ¥ SD for some D and G(x+D)=
O(F(x+D)) as x Q .. Then, for any e > 0, there exist x0=x0(e) > 0 and
V(e) > 0 such that, for any x > x0 and for any n \ 1,

Gg n(x+D) [ V(e)(1+e)n F(x+D).

Proof. For x0 \ 0 and k \ 1, put

Ak — Ak(x0)=sup
x > x0

Gg k(x+D)
F(x+D)

.

Take any e > 0. Following the arguments of Lemma 1, we conclude the
relation, as x Q .,

P(t1+z2 ¥ x+D, t1 > h(x), z2 > h(x))=o(F(x+D)).

Hence, there exists x0 such that, for any x > x0,

P(t1+z2 ¥ x+D, z2 [ x − x0) [ (1+e/2) F(x+D).

For any n > 1 and x > x0,

P(Sn ¥ x+D)=P(Sn ¥ x+D, zn [ x − x0)+P(Sn ¥ x+D, zn > x − x0)

— P1(x)+P2(x),
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where, by the definition of An − 1 and x0,

P1(x)=F
x − x0

0
P(Sn − 1 ¥ x − y+D) P(zn ¥ dy)

[ An − 1 F
x − x0

0
F(x − y+D) P(zn ¥ dy)

=An − 1P(t1+zn ¥ x+D, zn [ x − x0)

[ An − 1(1+e/2) F(x+D). (5)

Further,

P2(x)=F
x0+T

0
P(zn ¥ x − y+D, zn > x − x0) P(Sn − 1 ¥ dy)

[ sup
0 < t [ x0

P(zn ¥ x − t+D) F
x0+T

0
P(Sn − 1 ¥ dy)

[ sup
0 < t [ x0

P(zn ¥ x − t+D).

Thus, if x > 2x0, then

P2(x) [ A1 sup
0 < t [ x0

F(x − t+D) [ A1L1F(x+D),

where

L1= sup
0 < t [ x0, y > 2x0

F(y − t+D)
F(y+D)

.

If x0 < x [ 2x0, then P2(x) [ 1 implies

P2(x)
F(x+D)

[
1

inf x0 < x [ 2x0
F(x+D)

— L2.

Since F ¥ LD, both L1 and L2 are finite for x0 sufficiently large. Put
R=A1L1+L2. Then, for any x > x0,

P2(x) [ RF(x+D). (6)
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It follows from (5) and (6) that An [ An − 1(1+e/2)+R for n > 1. Therefore,
an induction argument yields:

An [ A1(1+e/2)n − 1+R C
n − 2

l=0
(1+e/2) l [ Rn(1+e/2)n − 1.

This implies the conclusion of the proposition.
Let us consider now some random time y with distribution pn=

P(y=n), n \ 0 which is independent of {zn}. Then the distribution of the
randomly stopped sum Sy is equal to

P(Sy ¥ B)= C
n \ 0

pnGg n(B).

Theorem 2. Let 0 < T [ .. Assume F[0, .)=1, G(x+D)/F(x+D)
Q c \ 0 as x Q ., and Ey < ..

(i) If F ¥ SD and E(1+d)y < . for some d > 0, then

P(Sy ¥ x+D)
F(x+D)

Q c · Ey as x Q .. (7)

(ii) If (7) holds, c > 0, pn > 0 for some n \ 2, and, in the case of a
finite D, F ¥ LD, then F ¥ SD.

Proof. (i) follows from Corollary 2, Proposition 4, and the domi-
nated convergence theorem.

We prove the second assertion. First, for any n \ 2,

lim inf
x Q .

Gg n(x+D)
G(x+D)

\ n. (8)

Indeed, if D=(0, .), then (8) follows from Lemma 1 in Ref. 9. If the
interval D is finite, F ¥ LD, and c > 0, then G ¥ LD and (8) follows from
Corollary 1.

If pn > 0 for some n \ 2, then it follows from (8) and (7) that

Gg n(x+D) ’ nG(x+D) as x Q . (9)

(the proof is a straightforward argument by contradiction).
If D=(0, .), then (9) implies the subexponentiality of G, by Lemma 7

in Ref. 15. If D is a finite interval and F ¥ LD, then G ¥ LD and, by
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Corollary 1, the convolution Gg (n − 1) belongs to the class LD too. Thus, by
Proposition 1,

n=lim sup
x Q .

Gg n(x+D)
G(x+D)

=lim sup
x Q .

(G f Gg (n − 1))(x+D)
G(x+D)

\ 1+lim sup
x Q .

Gg (n − 1)(x+D)
G(x+D)

.

By induction we deduce from this estimate that

lim sup
x Q .

Gg 2(x+D)
G(x+D)

[ 2,

which implies the D-subexponentiality of G. Now F ¥ SD by Lemma 1.
In Theorem 2, assertion (i) is valid for any D-subexponential distribu-

tion. For a fixed distribution F, the condition E(1+d)y < . may be sub-
stantially weakened. We can illustrate that by the following example.
Consider the case of the infinite interval D=(0, .). Assume that G=F
and there exist finite positive constants c and a such that Fa(x/n) [ cnaFa(x)
for any x > 0 and n \ 1 (for instance, the Pareto distribution with parameter
a satisfies this condition). Then P(Sy > x) ’ Ey · Fa(x) as x Q . provided
Ey1+a is finite, as follows by combining dominated convergence with

P(Sn > x) [ P(n · max
k [ n

zk > x) [ nP(z1 > x/n) [ n1+aFa(x).

Proposition 4 implies also the following corollary. For x \ 0, put
g(x)=min{n \ 1 : Sn > x} and q(x)=Sg(x) − x. As earlier, let y be a non-
negative integer-valued random variable which does not depend on z’s.

Corollary 3. Assume that G ¥ SD and E(1+d)y < . for some d > 0.
Then P(q(x) ¥ y+D, g(x) [ y) ’ Ey · G(x+y+D) as min(x, y) Q ..

Proof. Let h be such that h(y) [ y/2, h(y) ‘ . as y Q ., and
G(y+t+D) ’ G(y+D) uniformly in |t| [ h(y). Put z=min(h(y), x). For
any n \ 2,

P(q(x) ¥ y+D, g(x)=n)=P(Sn − 1 [ x, Sn ¥ x+y+D)

\ F
z

0
P(Sn − 1 ¥ dt) G(x+y − t+D)

’ G(x+y+D).
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On the other hand,

P(Sn − 1 [ x, Sn ¥ x+y+D)

=P(Sn ¥ x+y+D) − P(Sn − 1 > x, Sn ¥ x+y+D)

[ P(Sn ¥ x+y+D) − P(zn [ z, Sn ¥ x+y+D)

=(n+o(1)) G(x+y+D) − (n − 1+o(1)) G(x+y+D).

Thus, for any fixed n \ 1,

P(q(x) ¥ y+D, g(x)=n) ’ G(x+y+D).

Now Proposition 4 and the dominated convergence theorem complete the
proof, since P(q(x) ¥ y+D, g(x)=n) [ P(Sn ¥ x+y+D) and

P(q(x) ¥ y+D, g(x) [ y)= C
.

k=1
P(y=k) C

k

n=1
P(q(x) ¥ y+D, g(x)=n)

’ G(x+y+D) C
.

k=1
kP(y=k).

3. DISTRIBUTIONS WITH SUBEXPONENTIAL DENSITIES

Similar results (with similar proofs!) hold for densities of absolutely
continuous distributions. More precisely, in this section we consider a class
of distributions {F} with the following property: each distribution F has a
density f(x) for all sufficiently large values of x, i.e., for a certain x̂=x̂(F)
and for any Borel set B ı [x̂, .),

F(B)=F
B

f(y) dy.

We say that a density f on [x̂(F), .) is long-tailed (and write f ¥ L)
if the function f(x) is bounded on [x̂, .), f(x) > 0 for all sufficiently large x,
and f(x+t) ’ f(x) as x Q . uniformly in t ¥ [0, 1]. In particular, if f ¥ L,
then f(x) Q 0 as x Q ..

A distribution F on R+ with a density f(x) on [x̂, .) is said to belong
to the class Sac (the density f is subexponential ) if f ¥ L and, as x Q .,

fg 2(x) — 2 F
x̂

0
f(x − y) F(dy)+F

x − x̂

x̂
f(x − y) f(y) dy ’ 2f(x).
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Typical examples of Sac are given by the Pareto, lognormal, and
Weibull (with parameter between 0 and 1) distributions (for the proof, see
Section 4). Note that distribution with subexponential density is D-sub-
exponential for any 0 < T [ ..

Proposition 5. Let F and G have densities f and g on [x̂, .)
belonging to the class L. Then the density f f g of the convolution F f G is
long-tailed and

lim inf
x Q .

(f f g)(x)
f(x)+g(x)

\ 1. (10)

In particular, if f ¥ L, then fg n ¥ L and lim inf x Q . fg n(x)/f(x) \ n.

Proof. Take a function h(x) ‘ . such that x̂ [ h(x) < x/2, f(x − y) ’

f(x) and g(x − y) ’ g(x) as x Q . uniformly in |y| [ h(x). Then

(f f g)(x+t)=F
x − h(x)

−.

f(x+t − y) G(dy)+F
h(x)

−.

g(x+t − y) F(dy)

+F
x+t − h(x)

x − h(x)
f(x+t − y) g(y) dy

— I1(x, t)+I2(x, t)+I3(x, t).

Now the conclusion of the proposition follows from I1(x, t) ’ I1(x, 0) and
I2(x, t) ’ I2(x, 0) as x Q . uniformly in t ¥ (0, 1] and the estimate

I3(x, t) [ sup
y ¥ [h(x), h(x)+t)

f(y) F
x+t − h(x)

x − h(x)
g(y) dy ’ tf(h(x)) g(x)=o(g(x)).

Proposition 6. Assume that the distribution F on R+ has a density
f ¥ L on [x̂, .). Then the following assertions are equivalent:

(i) the density f is subexponential;

(ii) for some function h such that h(x) Q ., h(x) < x/2, and
f(x − y) ’ f(x) as x Q . uniformly in |y| [ h(x),

F
x − h(x)

h(x)
f(x − y) f(y) dy=o(f(x)) as x Q .; (11)

(iii) the relation (11) holds for every function h such that h(x) Q ..
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Proof. For x̂ [ h(x) < x/2,

fg 2(x)=2 F
h(x)

0
f(x − y) F(dy)+F

x − h(x)

h(x)
f(x − y) f(y) dy.

Here the first integral is equivalent to f(x) as x Q .. This completes the
proof.

Lemma 2. Let f be a subexponential density on [x̂, .). Assume that
the density g on [x̂, .) is long-tailed and

0 < lim inf
x Q .

g(x)/f(x) [ lim sup
x Q .

g(x)/f(x) < ..

Then g is subexponential too. In particular, g ¥ Sac, given g(x) ’ cf(x) as
x Q . for some c ¥ (0, .).

Proof. The result follows by Proposition 6(iii). Indeed, one can
choose c1 < . such that g(x) [ c1 f(x) for all sufficiently large x and

F
x − h(x)

h(x)
g(x − y) g(y) dy [ c2

1 F
x − h(x)

h(x)
f(x − y) f(y) dy.

Proposition 7. Let f be a subexponential density on [x̂, .). Let
f1, f2 be two densities on [x̂, .) such that f1(x)/f(x) Q c1 and
f2(x)/f(x) Q c2 as x Q ., for some constants c1, c2 \ 0. Then

(f1 f f2)(x)
f(x)

Q c1+c2 as x Q ..

If c1+c2 > 0 then, by Lemma 2, the convolution f1 f f2 is a subexponential
density.

Proof. Take a function h as before. Then

f1 f f2(x)=F
h(x)

0
f1(x − y) F2(dy)+F

h(x)

0
f2(x − y) F1(dy)

+F
x − h(x)

h(x)
f1(x − y) f2(y) dy

— I1(x)+I2(x)+I3(x).

502 Asmussen, Foss, and Korshunov



We have I1(x)/f(x) Q c1 and I2(x)/f(x) Q c2 as x Q .. Finally,

I3(x) [ (c1c2+o(1)) F
x − h(x)

h(x)
f(x − y) f(y) dy=o(f(x)),

which completes the proof.

Corollary 4. Assume that F ¥ Sac. Then for any n \ 2, fg n(x) ’

nf(x) as x Q . and Fg n ¥ Sac.

Let {tn} be a sequence of i.i.d. non-negative random variables with a
common distribution F(B)=P(t1 ¥ B). Put Sn=t1+ · · · +tn.

Proposition 8. Assume that F ¥ Sac. Then, for any e > 0, there exist
x0=x0(e) \ x̂ and V(e) > 0 such that, for any x > x0 and for any integer
n \ 1,

fg n(x) [ V(e)(1+e)n f(x).

Proof. For x0 ¥ R+ and k \ 1, put Ak — Ak(x0)=supx > x0
fg k(x)/

f(x). Take any e > 0. Fix an integer j such that (j+1+e)1/j < 1+e/2. By
Corollary 4, Aj+1(x0) Q j+1 as x0 Q .. Choose x0 \ x̂ such that

Aj+1(x0) [ (j+1+e) < (1+e/2) j.

For any n > j and x > 2x0,

fg n(x)=F
x − x0

0
fg (n − j)(x − y) Fg j(dy)+F

x0

0
fg j(x − y) Fg (n − j)(dy)

— I1(x)+I2(x),

where, by the definition of An − j and Aj+1,

I1(x) [ An − j F
x − x0

0
f(x − y) Fg j(dy) [ An − j fg (j+1)(x) [ An − j Aj+1 f(x)

(12)

and

I2(x) [ max
0 < t [ x0

fg j(x − t) [ Aj max
0 < t [ x0

f(x − t) [ Aj L1 f(x), (13)
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where L1=sup0 < t [ x0, y > 2x0
f(y − t)/f(y). If x0 < x [ 2x0, then

fg n(x)
f(x)

[
supx ¥ (x0, 2x0] fg n(x)

infx0 < x [ 2x0
f(x)

— L2. (14)

Since f ¥ L, we may choose x0 such that L1 and L2 < .. Put R=
Aj L1+L2. It follows from (12)–(14) that, for any x > x0,

fg n(x) [ (An − j Aj+1+R) f(x).

Hence, for n > j, An [ An − j Aj+1+R. The remaining part of the proof is the
same as that of Proposition 4.

Theorem 3. Let {pn}n \ 1 be a non-negative sequence such that mp —

; n \ 1 npn is finite. Denote

g(x)= C
n \ 1

pn fg n(x).

(i) If a distribution F has a subexponential density f on [x̂, .) and
; n \ 1 (1+d)n pn < . for some d > 0, then

g(x) ’ mp f(x) as x Q .. (15)

(ii) If equivalence (15) holds, p1 < 1, F[0, .)=1, and f ¥ L, then
F ¥ Sac.

Proof. Assertion (i) follows from Corollary 4, Proposition 8, and
the dominated convergence theorem. We prove the second assertion. By
Lemma 5, for any n \ 2,

lim inf
x Q .

fg n(x)/f(x) \ n.

If pn > 0 for some n \ 2, then this estimate and (15) imply that

fg n(x) ’ nf(x) as x Q .. (16)

By Proposition 5, fg (n − 1) ¥ L and

n=lim sup
x Q .

fg n(x)
f(x)

=lim sup
x Q .

(f f fg (n − 1))(x)
f(x)

\ 1+lim sup
x Q .

fg (n − 1)(x)
f(x)

.

By induction we deduce from this estimate that lim supx Q . fg 2(x)/f(x)
[ 2, which implies the subexponentiality of f.
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4. SUFFICIENT CONDITIONS FOR D-SUBEXPONENTIALITY AND
SUBEXPONENTIALITY OF DENSITIES

The sufficient conditions for distributions to be subexponential are
well-known (see, e.g., Ref. 24 and Section 2.5.3 in Ref. 22). In this section,
we propose similar conditions for distributions to belong either to SD for a
finite T, or to Sac.

Proposition 9. Let a distribution F on R+ belong to the class LD for
some finite T > 0. Assume that there exist c > 0 and x0 < . such that
F(x+t+D) \ cF(x+D) for any t ¥ (0, x] and x > x0. Then F ¥ SD.

Proof. Let a function h(x) Q . be such that h(x) < x/2. Then

P(t1+t2 ¥ x+D, t1 > h(x), t2 > h(x))

[ 2 F
x/2+T

h(x)
F(x − y+D) F(dy)

[ 2(c+o(1)) F
x/2+T

h(x)
F(x+D) F(dy)=o(F(x+D))

as x Q .. Applying now Lemma 2(ii) we conclude that F ¥ SD.
The Pareto distribution (with the tail Fa(x)=x−a, a > 0, x \ 1) satisfies

conditions of Proposition 9. The same is true for any distribution F such
that P(t ¥ x+D) is regularly varying at infinity, i.e., for F(x+D) ’ x−al(x),
where l(x) is slowly varying at infinity.

Proposition 10. Let a distribution F on R+ belong to the class LD for
some finite D. Let there exist x0 such that the function g(x) — − ln F(x+D)
is concave for x \ x0. Let there exist a function h(x) ‘ . as x Q . such
that F(x+t+D) ’ F(x+D) uniformly in |t| [ h(x) and xF(h(x)+D) Q 0.
Then F ¥ SD.

Proof. Due to Lemma 1, without loss of generality assume x0=0.
Since g(x) is concave, the minimum of the sum g(x − y)+g(y) on the
interval y ¥ [h(x), x − h(x)] is equal to g(x − h(x))+g(h(x)). Therefore,

F
x − h(x)

h(x)
F(x − y+D) F(dy) [ c1 F

x − h(x)

h(x)
F(x − y+D) F(y+D) dy

=c1 F
x − h(x)

h(x)
e−(g(x − y)+g(y)) dy

[ c1xe−(g(x − h(x))+g(h(x))).
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Since e−g(x − h(x)) ’ e−g(x),

F
x − h(x)

h(x)
F(x − y+D) F(dy)=O(e−g(x)xe−g(h(x)))=o(F(x+D)),

which completes the proof.
Consider the Weibull distribution, Fa(x)=e−xb

, x \ 0, b ¥ (0, 1). Then

F(x+D) ’ bTxb − 1 exp(−xb) as x Q ..

Consider the distribution F1 with the tail Fa1(x)=min(1, xb − 1e−xb

). Let x0 be
the unique positive solution to the equation x1 − b=e−xb

. Then the function
g1(x)=−ln F1(x+D) is concave for x \ x0, and conditions of Proposition 10
are satisfied with h(x)=xc, c ¥ (0, 1 − b). Therefore, F1 ¥ SD and, due to
Lemma 1, F ¥ SD.

Similarly, one can check that, for the lognormal distribution with the
density f(x)=e−(ln x − ln a)2/2s

2
/x `2ps2,

F(x+D) ’ Tf(x),

the function g(x)=−ln(x−1e−(ln x − ln a)2/2s
2
)=ln x+(ln x − ln a)2/2s2 is even-

tually concave, and conditions of Proposition 10 are satisfied with any
h(x)=o(x). Thus, F ¥ SD.

Similarly to Propositions 9 and 10 we obtain the following

Proposition 11. Let a distribution F on R+ have a long-tailed density
f(x). Let one of the following conditions hold:

(i) there exists c > 0 such that f(y) \ cf(x) for any y ¥ (x, 2x];

(ii) the function g(x) — − ln f(x) is concave for x \ x0 and, for
some h(x) Q ., f(x+t) ’ f(x) uniformly in |t| [ h(x) and
xe−g(h(x))

Q 0.

Then f is subexponential.

The density of the Pareto distribution satisfies condition (i) of Propo-
sition 11. The density of the Weibull distribution with parameter b ¥ (0, 1)
satisfies condition (ii) of Proposition 11 with h(x)=ln2/b x.

Example 1. Assume that t takes positive integer values only,
P(t=2k)=c/k2 and P(t=2k+1)=c/2k, where c is a normalizing con-
stant. Then t has a lattice distribution F with span 1. By Proposition 9,
F ¥ S(0, 2], but F cannot belong to any S(0, a] if a is not infinity or an even
integer.
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Example 2. Assume that t is a sum of two independent random
variables: t=g+z where g is distributed uniformly on (−1/8, 1/8) and
P(z=k)=c/k2. Then the distribution F of t is absolutely continuous. It
may be checked that F ¥ S(0, 1], but F cannot belong to any S(0, a] if a is not
infinity or an integer.

Example 3. Consider a long-tailed function f(x) in the range f(x) ¥

[1/x2, 2/x2] for any x > 0. Let us choose the function f in such a way that
f is not asymptotically equivalent to a non-increasing function.

For instance, one can define f as follows. Consider the increasing
sequence xn=2n/4. Put f(x2n)=1/x2

2n and f(x2n+1)=2/x2
2n+1. Then

assume that f is linear between any two consecutive points.
Consider the lattice distribution F on the set of natural numbers with

F({n})=f(n) for all sufficiently large integer n. Then by Lemma 1,
F ¥ S(0, 1], but f(n)=F((n − 1, n]) is not asymptotically equivalent to a
non-increasing function.

Example 4. Let G+ be the ascending ladder height distribution of a
random walk with increment distribution F. It is shown in Ref. 4 that
G+ ¥ SD for all T < . when F is non-lattice. However, G+ cannot have a
subexponential density when F is singular (say concentrated on { − 1, `2})
since then also G+ is singular.

5. SUPREMUM OF A RANDOM WALK

Theorems 2 and 3 give us a unified approach for obtaining the local
and integral asymptotic theorems for the supremum of a random walk.

Let {tn} be a sequence of independent random variables with a
common distribution F(B)=P(tn ¥ B) and Et1=−m < 0. Let

FI(x) — 1 − FI(x)=1 − min 11, F
.

x
Fa(y) dy2

denote the integrated-tail distribution function. It is easy to see that

(a) if F is long-tailed, then FI is long-tailed, too;

(b) FI is long-tailed if and only if Fa(x)=o(FI(x)) as x Q ..

Put S0=0, Sn=t1+ · · · +tn. By the SLLN, M=supn \ 0 Sn is finite
with probability 1. Write p(B)=P(M ¥ B), p(x) — p(−., x]=1 − p̄(x).
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It is well-known (see, e.g., Refs. 2, 13, 16 and references therein) that if
FI ¥ S, then, as x Q .,

p̄(x) ’
1
m

FI(x). (17)

In particular, p ¥ S. Korshunov (21) proved the converse: (17) implies
FI ¥ S.

Recently, Asmussen et al. (4) proved that if F ¥ Sg, i.e., if

F
x

0
Fa(x − y) Fa(y) dy ’ 2E max(t1, 0) Fa(x), x Q .,

then, for any T ¥ (0, .),

p(x+D) ’
T
m

Fa(x) (18)

(if the distribution F is lattice then x and T should be restricted to values of
the lattice span). In particular, p ¥ SD for any 0 < T < ..

In the lattice case, (18) was proved earlier by Bertoin and Doney. (6)

They also sketched a proof of (18) for non-lattice distributions.
It follows from Theorem 2(b) in Ref. 18 that the converse is also true:

if (18) holds for any T ¥ (0, .) and F is long tailed, then F ¥ Sg.

Remark 4. Since (18) holds for any T > 0, it implies that, for any
T0 > 0,

p(x+D) ’
1
m

F
x+T

x
Fa(y) dy (19)

as x Q . uniformly in T ¥ [T0, .].

One can see that Theorem 2 gives a unified approach for obtaining
(17) and (18). We start with the following

Lemma 3. Let v(x) be a long-tailed function and let

V(x) — F
.

x
v(y) dy.
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Assume that V(0) < .. For any n, define the event An={Sj [ 0 for all
j [ n} and put p=P(M > 0). Then, as x Q .,

C
.

n=0
E(v(x − Sn); An) ’

1 − p
m

V(x).

Proof. Since v is long-tailed, V is long-tailed, too, and v(x)=
o(V(x)).

Assume that the distribution F is non-lattice (the proof in the lattice
case is similar). For n \ 0, consider the measures

Hn(B)=P{Sj [ 0 for any j [ n, Sn ¥ B}, B ı (−., 0]

and the corresponding taboo renewal function

H(B)= C
.

n=0
Hn(B).

It is well-known that, for a non-lattice distribution,

H(y+(0, 1]) ’ (1 − p)/m as y Q − .. (20)

Since

E(v(x − Sn); An)=F
0

−.

v(x − y) Hn(dy)

and the function v(x) is long-tailed, we obtain

C
.

n=0
E(v(x − Sn); An)=F

.

0
v(x+y) H(−dy) ’ C

.

j=0
v(x+j) H((−j − 1, −j]).

Take an integer-valued function h(x) Q . such that v(x+t) ’ v(x) uni-
formly in |t| [ h(x) and v(x) h(x)=o(V(x)). Then, by (20),

C
.

n=0
E(v(x − Sn); An) ’ C

.

j=h(x)
v(x+j) H((−j − 1, −j])

’
1 − p

m
C
.

j=h(x)
v(x+j)

’
1 − p

m
F

.

x
v(y) dy.

The proof is complete.
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Consider the defective stopping time

g=inf{n \ 1 : Sn > 0} [ .

and let {kn} be i.i.d. random variables with common distribution function

G(x) — P(kn [ x)=P(Sg [ x | g < .).

It is well-known (see, e.g., Chap. 12 in Feller (17)) that the distribution of the
maximum M coincides with the distribution of the randomly stopped sum
k1+ · · · +kn, where the stopping time n is independent of the sequence
{kn} and is geometrically distributed with parameter p=P(M > 0) < 1,
i.e., P(n=k)=(1 − p) pk for k=0, 1,... . Equivalently,

P(M ¥ B)=(1 − p) C
.

k=0
pkGg k(B).

From Chap. 4, Theorem 10 in Borovkov, (7) if FI is long-tailed, then

Ga(x) ’
1 − p
pm

FI(x). (21)

For any T ¥ (0, .) and D=(0, T], if the function v(x)=F(x+D) is long-
tailed, then by Lemma 3,

G(x+D)=P(Sg ¥ x+D)/P(g < .)=
1
p

C
.

n=1
P(Sn ¥ x+D, g=n)

’
1 − p
pm

F
.

x
F(y+D) ’

(1 − p) T
pm

Fa(x). (22)

Now (17) and (18) follow from (21) and (22) by Theorem 2.
Similarly, Theorem 3 allows us to get the asymptotics for the density

of p.

Theorem 4. Assume that F ¥ Sg and that the density f on [x(F), .)
of the distribution F is long-tailed. Then, as x Q ., the density of p is
equivalent to Fa(x)/m.

Indeed, if the density f of the distribution F is long-tailed, then by
Lemma 3 (with v(x)=f(x)), G has a density g on the interval [x̂(F), .)
which is long-tailed and

g(x) ’
1 − p
pm

Fa(x).
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Further, if F ¥ S g, then G has a subexponential density. The density of the
distribution p may be represented as

(1 − p) C
.

k=1
pkgg k(x),

and, by Theorem 3(i), is equivalent to

g(x)(1 − p) C
.

k=1
kpk ’ Fa(x)/m as x Q .. (23)

Remark 5. The result of Theorem 4 is new. In Proposition 1 in
Ref. 4, it was claimed that the same asymptotics may be obtained under
different conditions.

6. THE RENEWAL FUNCTION AND THE KEY RENEWAL
THEOREM

Let G be a non-negative measure on (0, .). We will assume through-
out that h [ 1 where h=G(0, .). Then the renewal measure

U= C
.

n=0
Gg n

is well-defined and finite on compact sets. In addition, if h < 1 then U is a
finite measure (in fact, U[0, .)= (1 − h)−1). See, e.g., Ref. 17 or Ref. 1 for
this and further basic facts from renewal theory.

Blackwell’s renewal theorem states that when h=1 and G is non-
lattice, then U(x+D) ’ T/mG where mG is the mean of G. When h < 1 and
G is light-tailed, it is easy to see by standard techniques (Ref. 1, VI.5)
that U(x+D) decreases exponentially fast. Callaert and Cohen (8) gave an
asymptotic expression for a special heavy-tailed case with h < 1, T=..
Here is a more complete and local version. We will say that G ¥ SD if
F ¥ SD where F is the probability measure G/h.

Proposition 12. Assume 0 < h < 1. If T < ., assume also that
G ¥ LD. Then U(x+D) ’ (1 − h)−2 G(x+D) as x Q . if and only if G ¥ SD.

Proof. By Theorem 2,

U(x+D)= C
.

n=1
Gg n(x+D)= C

.

n=1
hnFg n(x+D)
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is asymptotically eqiuvalent to

C
.

n=1
nhnF(x+D)=

h

(1 − h)2 F(x+D)=
1

(1 − h)2 G(x+D)

if and only if G ¥ SD.
Alternatively, one may use the representation U=H/(1− h) where H

is the distribution of X1+ · · · +Xy where P(y=n)=(1− h) hn, n=0, 1, 2,...
and the Xk are i.i.d. with distribution F=G/h (see Ref. 1, Proposition 2.6,
p. 114). Hence by Theorem 2

U(x+D)=
H(x+D)

1 − h
’

EyF(x+D)
1 − h

=
h

(1 − h)2 F(x+D)=
1

(1 − h)2 G(x+D).

We now turn to the renewal equation

Z(x)=z(x)+F
x

0
Z(x − y) G(dy), x \ 0, (24)

where z \ 0 and z is locally bounded. This together with h [ 1 is more than
sufficient to ensure that

Z(x)=F
x

0
z(x − y) U(dy)

is the unique locally bounded solution. The key renewal theorem states that
Z(x) has limit m−1

G >.

0 z(y) dy when h=1. Light-tailed asymptotics of Z(x)
when h < 1 is also available (see Ref. 17 or Ref. 1, VI.5) and has found
numerous applications. Therefore, it is surprising that heavy-tailed asymp-
totics when h < 1 appears not to have been discussed before a specific
application came up in Asmussen. (3) A result was stated there which con-
tains the basic intuition, but the proof is heuristic as well as the conditions
are not formulated in a precise form. The analysis of the preceding parts of
this paper allows for a more rigorous treatment, and we shall show (see
Refs. 1 and 17 for the definition of z to be d.R.i.=directly Riemann inte-
grable):

Theorem 5. Assume h < 1 and define g(x)=G(x, x+1], I=
>.

0 z(y) dy. Then:
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(i) if G ¥ SD for all T < ., z is d.R.i., and z(x)/g(x) Q 0, then

Z(x) ’
I

(1 − h)2 g(x);

(ii) if G ¥ SD for all T < ., z is d.R.i., and z(x)/g(x) Q c ¥ (0, .),
then

Z(x) ’ 1 I
(1 − h)2+

c
1 − h

2 g(x);

(iii) if the probability density z(y)/I is subexponential and
z(x)/g(x) Q ., then

Z(x) ’
1

1 − h
z(x).

Proof. In (i) and (ii), the assumptions imply G(x, x+1/n] ’ g(x)/n
for all n and g(x+y)/g(x) Q 1 uniformly in |y| < y0 < .. Therefore
applying Proposition 2 to the probability measure (1 − h) U and appealing
to Proposition 12 with T=1/n shows that for each n we can find
hn(x) Q . such that hn(x) < x/2 and

U(x − (k+1)/n, x − k/n] ’
g(x)

n(1 − h)2 uniformly in k [ nhn(x), (25)

F
x − hn(x)

0
g(x − y) U(dy) ’ (1 − h)−1 g(x), (26)

F
x − hn(x)

hn(x)
g(x − y) U(dy)=o(g(x)) (27)

(without loss of generality, we may assume that nhn(x) is an integer).
We will use the decomposition Z(x)=J1, n+J2, n+J3, n where J1, n=
>hn(x)

0 z(x − y) U(dy) and similarly J2, n, J3, n are the integrals over (hn(x),
x − hn(x)], resp. (x − hn(x), x].

In (i), we replace hn by a smaller hn if necessary to ensure
z(x − y)/g(x) Q 0 uniformly in |y| [ hn(x) (this is possible since g ¥ L),
implying J1, n=o(g(x)). Next,

J2, n=o(1) F
x − hn(x)

hn(x)
g(x − y) U(dy)=o(g(x))

Local Subexponential Behaviour 513



by (27). Finally, writing z̄n(x)=sup |y − x| [ 1/n z(y), (25) yields

J3, n [ C
nhn(x)

k=0
z̄n(k/n) U(x − (k+1)/n, x − k/n]

’
g(x)/n
(1 − h)2 C

nhn(x)

k=0
z̄n(k/n)

’
g(x)/n
(1 − h)2 C

.

k=0
z̄n(k/n).

Since z is d.R.i., n−1 ; · · · Q I as n Q ., yielding lim sup Z(x)/g(x) [

(1 − h)−2 I in (i). The proof of lim inf Z(x)/g(x) \ (1 − h)−2 I is similar.
In (ii), we may assume z(x − y)/g(x) Q c uniformly in |y| [ hn(x) and

then get

J1, n ’ cg(x) U(hn(x)) ’ cg(x) U(.)=cg(x)(1 − h)−1.

For J2, n, we have to replace o(1) by O(1), but the result remains o(g(x)).
Finally, J3, n can be treated just as in (i), and (ii) is proved.

In (iii), consider the probability measure K with density z(x)/I. The
measure K is D-subexponential for any D. Put D=(0, 1] and write

F
x

0
z(x − y) U(dy)=F

x − h

0
z(x − y) U(dy)+F

x

x − h
z(x − y) U(dy)

=I1(x, h)+I2(x, h),

(K f U)(x+D)=F
x − h

0
K(x − y+D) U(dy)+F

x+1

x − h
K(x − y+D) U(dy)

=I −

1(x, h)+I −

2(x, h).

For any fixed h we have, as x Q .,

I2(x, h) [ h · sup
y [ h

|z(y)| · U(x − h, x]=o(z(x))

and, by the same reasons, I −

2(x, h)=o(z(x)). Then it is possible to choose
h(x) ‘ . such that still I2(x, h(x))=o(z(x)) and I −

2(x, h(x))=o(z(x)).
Since z ¥ L, z(x) ’ I · K(x+D) and I1(x, h(x)) ’ I · I −

1(x, h(x)). Combining
these estimates we deduce

F
x

0
z(x − y) U(dy) ’ I · (K f U)(x+D).
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Applying Proposition 3 with G1=K, G2=U(1 − h), c1=1, and c2=0
finally yields

I · (K f U)(x+D) ’
I

1 − h
K(x+D) ’

z(x)
1 − h

.

7. THE COMPOUND POISSON PROCESS

Let F be a distribution on R+ and m a positive constant. Let G be the
compound Poisson distribution

G(B)=e−m C
n \ 0

mn

n!
Fg n(B).

Theorem 6. Let 0 < T [ .. If T < ., then assume F ¥ LD. Then the
following assertions are equivalent:

(i) F ¥ SD;
(ii) G(x+D) ’ mF(x+D) as x Q ..

The proof follows from Theorem 2, with pn=mne−m/n!.
The case T=. was considered, for regularly varying tails, in Refs. 8

and 12, and for subexponential tails, in Ref. 15.

8. INFINITELY DIVISIBLE LAWS

Let F be an infinitely divisible law on [0, .). The Laplace transform
of an infinitely divisible law F can be expressed as

F
.

0
e−lxF(dx)=e−al − >.

0 (1 − e − lx) n(dx)

(see, for example, Ref. 17, p. 450). Here a \ 0 is a constant and the Lévy
measure n is a Borel measure on (0, .) with the properties m=n((1, .))
< . and >1

0 xn(dx) < .. Put G(B)=n(B 5 (1, .))/m.
The relations between the tail behaviour of measure F and the corre-

sponding Lévy measure n were considered in Theorem 1 in Ref. 15. We
prove the following local analogue of that result.

Theorem 7. Let 0 < T [ .. If T < ., then assume G ¥ LD. Then the
following assertions are equivalent:

(i) G ¥ SD;
(ii) n(x+D) ’ F(x+D) as x Q ..
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Proof. It is pointed out in Ref. 15 that the distribution F admits the
representation F=F1 f F2, where F1(x, .)=O(e−ex) for some e > 0 and

F2(B)=e−m C
.

n=0

mn

n!
Gg n(B).

Now, by Theorem 2, with pn=mne−m/n! we have

F2(x+D) ’ mG(x+D)=n(x+D) as x Q ..

Since F1(x+D)=o(G(x+D)) as x Q ., by Proposition 3

F(x+D)=(F1 f F2)(x+D) ’ F2(x+D) ’ n(x+D).

9. BRANCHING PROCESSES

In this section we consider the limit behaviour of sub-critical, age-
dependent branching processes for which the Malthusian parameter does
not exist.

Let h(z) be the particle production generating function of an age-
dependent branching process with particle lifetime distribution F (see
Chap. IV in Ref. 5 and Chap. VI in Ref. 19 for background). We take the
process to be sub-critical, i.e., A — hŒ(1) < 1. Let Z(t) denote the number of
particles at time t. It is known (see, for example, Ref. 5, Chap. IV, Section 5
or Ref. 9) that A(t)=EZ(t) admits the representation

A(t)=(1 − A) C
.

n=1
An − 1(1 − Fg n(t)). (28)

It was proved in Ref. 9 for sufficiently small values of A and then in
Refs. 10 and 11 for any A < 1 that A(t) ’ Fa(t)/(1 − A) as t Q ., provided
F ¥ S.

Applying Theorem 2 with pn=(1 − A) An − 1 (see also Proposition 12),
we deduce

Theorem 8. If F ¥ LD, then the following are equivalent:

(i) F ¥ SD;

(ii) A(t) − A(t+T) ’ F(t+D)/(1 − A) as t Q ..
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