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1 Introduction

Heavy-tailed distributions play a major role in the analysis of many stochastic systems.
For example, they are frequently necessary to accurately model inputs to computer and
communications networks, they are an essential component of the description of many risk
processes, and they occur naturally in models of epidemiological spread.

Since the inputs to such systems are frequently cumulative in their effects, the analysis
of the corresponding models typically features convolutions of such heavy-tailed distribu-
tions. The properties of such convolutions depend on their satisfying certain regularity
conditions. From the point of view of applications practically all such distributions may
be considered to be long-tailed, and indeed to possess the stronger property of subexpo-
nentiality (see below for definitions).

In this paper we study convolutions of long-tailed and subexponential distributions
(probability measures), and (in passing) more general finite measures, on the real line.
Our aim is to prove some important new results, and to do so through a simple, coherent
and systematic approach. It turns out that all the standard properties of such convolutions
are then obtained as easy consequences of these results. Thus we also hope to provide
further insight into these properties, and to dispel some of the mystery which still seems
to surround the phenomenon of subexponentiality in particular.

Our approach is based on a simple decomposition for such convolutions, and on the
concept of “h-insensitivity” for a long-tailed distribution or measure with respect to some
(slowly) increasing function h. This novel approach and the basic, and very simple, new
results we require are given in Section 2. In Section 3 we study convolutions of long-tailed
distributions. The key results here are Theorems 5 and 6 which give conditions under which
a random shifting preserves tail equivalence; in the remainder of this section we show how
other (mostly known) results follow quickly and easily from our approach, and provide
some generalisations. In Section 4 we similarly study convolutions of subexponential
distributions. The main results here—Theorems 15 and 17—are new, as is Corollary 18;
again some classical results are immediate consequences. Finally, in Section 5 we consider
closure properties for the class of subexponential distributions. Theorem 20 gives a new
necessary and sufficient condition for the convolution of two subexponential distributions
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to be subexponential, together with a simple demonstration of the equivalence of some
existing conditions.

Occasionally we take a few lines to reprove something from the literature. This enables
us to give a self-contained treatment of our subject.

Good introductions to the current state of knowledge on long-tailed and subexponential
distributions may be found in Asmussen [1, 2], Embrechts et al. [11], and Rolski et al.
[15].

2 Basic results

We are concerned primarily with probability distributions. However, we find it convenient
to work also with more general finite measures, allowing these to be added, convoluted,
etc, as usual. As we shall discuss further, our later results for distributions translate easily
into this more general setting, where they then provide additional insight.

Recall that, for any two measures F and G and for any two non-negative numbers p and
q, their mixture pF+qG is also a finite measure defined by (pF+qG)(B) = pF (B)+qG(B),
for any Borel set B.

Recall also that a (finite) measure F on R is long-tailed if and only if F (x) > 0 for all
x and, for all constants a,

F (x+ a) = F (x) + o(F (x)) as x→∞, (1)

where the tail function F of the measure F is given by F (x) = F (x,∞). It is easy to
see that it is sufficient that the relation (1) hold for some a 6= 0—an observation due to
Landau [13].

We note also that the class of long-tailed measures has the following readily verified
closure property (see Proposition 1.3.6(iii) of Bingham et al. [5]), which we henceforth use
without comment: if measures F1, . . . , Fn are long-tailed and if the measure F is such
that F (x) ∼

∑n
k=1 ckFk(x) as x→∞, for some c1, . . . , ck > 0, then F is also long-tailed.

(Here and throughout we use “∼” to mean that the ratio of the quantities on either side
of this symbol converges to one; thus, for example, the relation (1) may be written as
F (x+ a) ∼ F (x) as x→∞; we further frequently omit, especially in proofs, the qualifier
“as x→∞”, as all our limits will be of this form.)

We shall make frequent use of the following construction: given any long-tailed mea-
sure F , we may choose a positive function h on R+ = [0,∞) such that h(x) → ∞ as
x→∞ and additionally h is increasing sufficiently slowly that

F (x± h(x)) ∼ F (x) as x→∞. (2)

For example, we may choose a sequence xn increasing to infinity such that, for all n,

|F (x± n)− F (x)| ≤ F (x)/n for all x > xn,

and then set h(x) = n for x ∈ (xn, xn+1]. (The introduction of such a function h will allow
us to avoid the general messiness of repeatedly taking limits first as x tends to infinity and
then as a further constant a—essentially that featuring in (1)—tends to infinity.) Given a
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long-tailed measure F and a function h satisfying the above conditions, we shall say that
F is h-insensitive.

Note further that, given a finite collection of long-tailed measures F1, . . . , Fn, we may
choose a function h on R+ such that each Fi is h-insensitive. For example, for each i we
may choose hi such that Fi is hi-insensitive, and then define h by h(x) = min

i
hi(x).

The tail function of the convolution of any two measures F and G is given by

F ∗G(x) =
∫ ∞
−∞

F (x− y)G(dy) =
∫ ∞
−∞

G(x− y)F (dy). (3)

For any measure F and for any Borel set B we denote by FB the measure given by
the restriction of F to B, that is FB(A) = F (A ∩B) for all Borel sets A. We also use the
shortenings F≤h = F(−∞,h] and F>h = F(h,∞). Finally, we define mF = F (R) to be the
total mass associated with the measure F .

Now let h be any positive function on R+. Then the tail function of the convolution
of any two measures F and G possesses the following decomposition: for x ≥ 0,

F ∗G(x) = F≤h ∗G(x) + F>h ∗G(x), (4)

and upper estimate:

F ∗G(x) ≤ F≤h ∗G(x) + F ∗G≤h(x) + F>h ∗G>h(x), (5)

where in (4) and (5) above h stands for h(x), so that, for example, F≤h(B) = F≤h(x)(B) =
F (B ∩ (−∞, h(x)]), again for any Borel set B. If in addition h(x) ≤ x/2, then

F ∗G(x) = F≤h ∗G(x) + F ∗G≤h(x) + F>h ∗G>h(x), (6)

because in this case F≤h ∗G(x) = F≤h ∗G>h(x) and F ∗G≤h(x) = F>h ∗G≤h(x). Note
that

F≤h ∗G(x) =
∫ h(x)

−∞
G(x− y)F (dy), (7)

F>h ∗G(x) =
∫ ∞
−∞

F (max(h(x), x− y))G(dy), (8)

while F>h ∗G>h is symmetric in F and G and

F>h ∗G>h(x) =
∫ ∞

h(x)
F (max(h(x), x− y))G(dy) =

∫ ∞
h(x)

G(max(h(x), x− y))F (dy). (9)

Note also that if, on some probability space with probability measure P, ξ and η are
independent random variables with respective distributions F andG (with mF = mG = 1),
then for x ≥ 0,

F≤h ∗G(x) = P(ξ + η > x, ξ ≤ h(x)),

F>h ∗G>h(x) = P(ξ + η > x, ξ > h(x), η > h(x)).

The following four lemmas are the keys to everything that follows.
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Lemma 1. Suppose that the measure G is long-tailed and that h is such that G is h-
insensitive. Then, for any measure F ,

F≤h ∗G(x) ∼ mFG(x) as x→∞.

Proof. It follows from (7) that F≤h ∗G(x) ≤ mFG(x− h(x)). On the other hand,

F≤h ∗G(x) ≥ F[−h,h] ∗G(x)

≥ F [−h(x), h(x)]G(x+ h(x))

∼ mFG(x+ h(x)) as x→∞,

where the last equivalence follows since h(x) → ∞ as x → ∞. The required result now
follows from the h-insensitivity of G.

We now prove a version of Lemma 1 which is symmetric in F and G and will allow us
to get many important results for convolutions—see the further discussion below.

Lemma 2. Suppose that measures F and G are such that mFG+mGF is long-tailed and
that h is such that mFG+mGF is h-insensitive. Then, as x→∞,

F≤h ∗G(x) + F ∗G≤h(x) ∼ mFG(x) +mGF (x).

Proof. It follows from (7) that

F≤h ∗G(x) + F ∗G≤h(x) ≤ mFG(x− h(x)) +mGF (x− h(x)).

On the other hand,

F≤h ∗G(x) + F ∗G≤h(x) ≥ F[−h,h] ∗G(x) + F ∗G[−h,h](x)

≥ F [−h(x), h(x)]G(x+ h(x)) +G[−h(x), h(x)]F (x+ h(x))

∼ mFG(x+ h(x)) +mGF (x+ h(x)) as x→∞,

where the last equivalence follows since h(x) → ∞ as x → ∞. The required result now
follows from the h-insensitivity of mFG+mGF .

Note that special cases under which mFG + mGF is long-tailed are (a) F and G

are both long-tailed, and (b) F is long-tailed and G(x) = o(F (x)) as x → ∞.1 The
importance of this lemma arises because in many applications, while we may naturally be
concerned primarily with long-tailed measures (e.g. service times in queueing models), we
nevertheless require to make small corrections arising from other input measures whose
tails are relatively lighter (e.g. those of interarrival times); Lemma 2 is then necessary in

1There are also other possibilities. For instance, here is an example where F and G are probability

distributions such that F is long-tailed and F +G is long-tailed while G does not satisfy (a) or (b). Take

α > 0 and let F (x) = x−α for x ≥ 1 and F (x) = 1 for x ≤ 1. Let G(x) = 1 for x ≤ 1 and construct G

on (1,∞) inductively on the intervals [xn, xn+1], with x1 = 1. For n = 1, 2, . . ., let yn = min{x > xn :

1 + ln(x/xn) = 2n} and then, for x ∈ [xn, yn), let G(x) = F (x)/(1 + ln(x/xn)). Further, let G(yn) =

F (yn) · 2−n−1 (this means that G(yn) = G(yn−)/2). Finally, let xn+1 = min{x > yn : F (x) = G(yn)} and

then let G(x) = G(yn) for x ∈ [yn, xn+1].

As n increases the jumps of G at the points yn become negligible with respect to F , so F +G is long-tailed.

On the other hand, these jumps are not negligible with respect to G itself, and G cannot be long-tailed.

Also, G(xn) = F (xn), and so condition (a) is violated.
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order to obtain asymptotic results such as Theorem 15 below, ensuring that such lighter
tails indeed make a negligible contribution. In the case where we are solely concerned with
long-tailed measures, there are obvious simplifications to the proofs of our main results.

Finally, the following two simple lemmas will be useful when we come to consider
subexponential measures.

Lemma 3. Let h be any positive function on R+ such that h(x) → ∞. Then, for any
measures F1, F2 and G on R,

lim sup
x→∞

(F1)>h ∗G(x)

(F2)>h ∗G(x)
≤ lim sup

x→∞

F1(x)
F2(x)

.

In particular, in the case where the limit of the ratio F1(x)/F2(x) exists, we have

lim
x→∞

(F1)>h ∗G(x)

(F2)>h ∗G(x)
= lim

x→∞

F1(x)
F2(x)

.

Proof. The results are immediate from (8) and from the first of the integral representations
in (9) on noting that max(h(x), x− y)→∞ as x→∞ uniformly in all y ∈ R.

Taking into account the symmetry of F>h ∗G>h in F and G (see (9)), we obtain also
the following result.

Lemma 4. Let h be any positive function on R+ such that h(x) → ∞. Then, for any
measures F1, F2, G1 and G2 on R,

lim sup
x→∞

(F1)>h ∗ (G1)>h(x)

(F2)>h ∗ (G2)>h(x)
≤ lim sup

x→∞

F1(x)
F2(x)

· lim sup
x→∞

G1(x)
G2(x)

.

In particular, in the case where the limits of the ratios F1(x)/F2(x) and G1(x)/G2(x) exist,
we have

lim
x→∞

(F1)>h ∗ (G1)>h(x)

(F2)>h ∗ (G2)>h(x)
= lim

x→∞

F1(x)
F2(x)

· lim
x→∞

G1(x)
G2(x)

.

3 Convolutions of long-tailed distributions

For the remainder of this paper we specialise to distributions, i.e. to probability measures
on R each of total mass one. This simplifies the statements and proofs of our results,
enabling us to dispense with the constants mF , etc, and is in line with most applications.
Of course our results may nevertheless be translated to the case of more general finite mea-
sures by renormalising the latter, applying the results, and re-expressing the conclusions
in terms of the original measures.

We denote by L the class of long-tailed distributions on R. We shall say that two
distributions F1, F2 on R are tail equivalent if and only if F1(x) ∼ F2(x) as x→∞. The
following two theorems, which provide conditions under which a random shifting preserves
tail equivalence, turns out to be of key importance in studying convolutions where at least
one of the distributions involved belongs to the class L.

Theorem 5. Suppose that F1, F2, and G are distributions on R such that F1 and F2 are
tail equivalent. If G ∈ L then the distributions F1 ∗G and F2 ∗G are tail equivalent.
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Proof. Let the function h on R+ be such that G is h-insensitive. We use the decomposition
(4). It follows from Lemma 3 that

(F2)>h ∗G(x) ∼ (F1)>h ∗G(x).

Further, by Lemma 1,

(F2)≤h ∗G(x) ∼ G(x) ∼ (F1)≤h ∗G(x),

so that the conclusion of the theorem follows now from (4).

The next theorem generalises Lemma 2.4(ii) of Cline [7] where the case F1, F2, G1,
G2 ∈ L was considered.

Theorem 6. Suppose that F1, F2, G1 and G2 are distributions on R such that F 1(x) ∼
F 2(x) and G1(x) ∼ G2(x) as x → ∞. If the measure F1 + G1 is long-tailed, then the
distributions F1 ∗G1 and F2 ∗G2 are tail equivalent.

Proof. The conditions imply that F2 + G2 is long-tailed. Let the function h on R+ be
such that h(x) ≤ x/2 and both F1 + G1 and F2 + G2 are h-insensitive. We use the
decomposition (6). By Lemma 4,

(F2)>h ∗ (G2)>h(x) = (F1)>h ∗ (G1)>h(x) + o((F1)>h ∗ (G1)>h(x))

= (F1)>h ∗ (G1)>h(x) + o(F1 ∗G1(x)). (10)

Further, by Lemma 2,

(F1)≤h ∗G1(x) + F1 ∗ (G1)≤h(x) = G1(x) + F1(x) + o(G1(x) + F1(x))

= G2(x) + F2(x) + o(G1(x) + F1(x))

= (F2)≤h ∗G2(x) + F2 ∗ (G2)≤h(x) + o(G1(x) + F1(x)).

It further follows from Lemma 2 and from (6) that F1(x) = O(F1 ∗G1(x)) and G1(x) =
O(F1 ∗G1(x)). Thus we obtain

(F1)≤h ∗G1(x)+F1 ∗ (G1)≤h(x) = (F2)≤h ∗G2(x)+F2 ∗ (G2)≤h(x)+o(F1 ∗G1(x)). (11)

Hence, again from the decomposition (6), together with (10) and (11),

F2 ∗G2(x) = F1 ∗G1(x) + o(F1 ∗G1(x)),

as x→∞, implying that F1 ∗G1 and F2 ∗G2 are tail equivalent as required.

Theorems 5 and 6 have a number of important corollaries, the first of which is well-
known from Embrechts and Goldie [8], but of which we may now give a very simple proof.

Corollary 7. The class L of long-tailed distributions is closed under convolutions.

Proof. Suppose that F , G ∈ L. Fix y > 0. Define the distribution Fy to be equal to F
shifted by −y, that is, Fy(x) = F (x + y). Then Fy ∗ G is equal to F ∗ G shifted by −y.
Since F ∈ L it follows that F and Fy are tail-equivalent, and since also G ∈ L it follows
from Theorem 5 that F ∗G and Fy ∗G are tail-equivalent. Hence F ∗G(x) ∼ F ∗G(x+y),
implying that F ∗G ∈ L.
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We also have the following, and new, generalisation of Corollary 7, the proof of which
is identical, except that we must appeal to the (slightly less straightforward) Theorem 6
in place of Theorem 5.

Corollary 8. Suppose that the distributions F and G are such that F ∈ L and F +G is
long-tailed. Then the distribution F ∗G ∈ L.

We remark also that a further special case of Corollary 8 arises when we have F ∈ L

and G is such that G(x) = o(F (x)) as x→∞, so that here again F ∗G ∈ L.

We give two further general, and known, theorems for convolutions of long-tailed dis-
tributions.

Theorem 9. Suppose that the distributions F1, . . . , Fn ∈ L. Then

F1 ∗ . . . ∗ Fn(x) ≥ (1 + o(1))
n∑

k=1

Fk(x) as x→∞.

Proof. It is sufficient to prove the result for the case n = 2, the general result following
by induction (since, from Corollary 8 above, the class L is closed under convolutions).
Let the function h be such that h(x) ≤ x/2 and both F1 and F2 are h-insensitive. The
required result is now immediate from the inequality

F1 ∗ F2(x) ≥ (F1)≤h ∗ F2(x) + F1 ∗ (F2)≤h(x)

and Lemma 1 above.

In particular we have the following corollary (where, as usual, F ∗n denotes the n-fold
convolution of F with itself).

Corollary 10. Suppose that F ∈ L. Then, for any n ≥ 2,

lim inf
x→∞

F ∗n(x)
F (x)

≥ n.

Theorem 11. Suppose that F ∈ L. Then, for any distribution G on R,

lim inf
x→∞

F ∗G(x)
F (x)

≥ 1.

If, furthermore, the function h on R+ is such that F ∈ L is h-insensitive and G(h(x)) =
o(F (x)) as x→∞, then F ∗G(x) ∼ F (x) as x→∞. In particular this conclusion holds
for F ∈ L and any distribution G such that G(a) = 0 for some a.

Proof. Let the function h be such that F is h-insensitive. We use the decomposition (4)
with F and G interchanged. From Lemma 1,

F ∗G≤h(x) ∼ F (x), (12)

and so the first result is immediate. For the second result note that, under the given
additional condition and for h as above,

F ∗G>h(x) ≤ G(h(x)) = o(F (x)),

so that the required result again follows on using (4) and (12).
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4 Convolutions of subexponential distributions on R

We recall that a distribution F on the positive real line R+ is subexponential if and only
if F (x) > 0 for all x and

F ∗ F (x) = 2F (x) + o(F (x)) as x→∞; (13)

this notion goes back to Chistyakov [6]. By way of interpretation, suppose that, on some
probability space with probability measure P, ξ1 and ξ2 are independent random variables
with common distribution F . Then, since P(max(ξ1, ξ2) > x) = 2F (x) + o(F (x)), it
follows that the subexponentiality of F is equivalent to the condition that P(ξ1 + ξ2 >

x) ∼ P(max(ξ1, ξ2) > x) as x→∞, i.e. that, for large x, the only significant way in which
ξ1 + ξ2 can exceed x is that either ξ1 or ξ2 should itself exceed x. This is the well-known
“principle of a single big jump” for sums of subexponentially distributed random variables.

It is also well-known [6] (see also [4]) that if F on R+ is subexponential then F ∈ L.
(To see this, note that, for any distribution F on R+ such that F (x) > 0 for all x, for any
a > 0 and for all x ≥ a,

F ∗ F (x) = F ∗ F[0,x−a](x) + F ∗ F(x−a,x](x) + F ∗ F(x,∞)(x)

≥ F (x)F (x− a) + F (a)F (x− a, x] + F (x);

since F (x − a) → 1 and F (a) > 0, it follows that under the condition (13) we have
F (x− a, x] = o(F (x)) as x→∞, and so F ∈ L as required.)

Following recent practice, we extend the definition of subexponentiality to distributions
on the entire real line by saying that a distribution F on R is subexponential if and only
if F ∈ L and (13) holds (the latter condition no longer being sufficient to ensure F ∈ L).
We write S for the class of subexponential distributions on R.

We shall make repeated use of the following observation which follows from the upper
estimate (5), Lemma 1 (or Lemma 2) and (13):

Lemma 12 (Asmussen et al. [3]). If F ∈ L then the following are equivalent:

(i) F ∈ S;

(ii) for every function h such that h(x)→∞, F>h ∗ F>h(x) = o(F (x)) as x→∞;

(iii) for some function h such that h(x)→∞ and F is h-insensitive, F>h ∗ F>h(x) =
o(F (x)) as x→∞.

The following statement provides the foundation for our results on convolutions of
subexponential distributions.

Lemma 13. Suppose that F ∈ S and that the function h is such that h(x) → ∞ as
x→∞. Let distributions G1, G2 be such that, for i = 1, 2, we have Gi(x) = O(F (x)) as
x→∞. Then (G1)>h ∗ (G2)>h(x) = o(F (x)) as x→∞.

Proof. Since Gi(x) = O(F (x)), it follows from Lemma 4 that

lim sup
x→∞

(G1)>h ∗ (G2)>h(x)
F>h ∗ F>h(x)

≤ lim sup
x→∞

G1(x)
F (x)

· lim sup
x→∞

G2(x)
F (x)

<∞.

Hence, it follows from Lemma 12 since F ∈ S that

(G1)>h ∗ (G2)>h(x) = O(F>h ∗ F>h(x)) = o(F (x)).

Hence we have the required result.
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We shall say that distributions F and G on R are weakly tail equivalent if both
F (x) = O(G(x)) and G(x) = O(F (x)) as x → ∞. We now have the following corol-
lary to Lemma 13.

Corollary 14 (Klüppelberg [12]). Suppose that F ∈ S, that G ∈ L, and that F and G

are weakly tail-equivalent. Then G ∈ S.

Proof. Choose the function h on R+ so that both F and G are h-insensitive. Then, from
Lemma 13 and the given weak tail-equivalence, G>h ∗G>h(x) = o(G(x)), and so it follows
from Lemma 12 that G ∈ S.

Remark 1. It follows in particular, as is well known, that subexponentiality is a tail
property of a distribution, i.e. for any given x0 it depends only on the restriction of the
distribution to the right of x0. (Indeed this result also follows from Theorem 6: suppose
that distributions F1, F2 on R are tail equivalent and that F1 ∈ S; since F1 ∈ L we have
also F2 ∈ L; hence, from Theorem 6, on identifying Fi with Gi for i = 1, 2 and on using
(13), we have F2 ∈ S.) Thus also a distribution F on R is subexponential if and only if
the distribution F+ on R+, given by F+(x) = F (x) for x ≥ 0 and F+(x) = 0 for x < 0,
is subexponential; this provides an alternative definition of subexponentiality on R.

We now have the following theorem.

Theorem 15. Let (a reference distribution) F ∈ S. Suppose that distributions G1, . . . ,
Gn are such that, for each k, the measure F +Gk is long-tailed and Gk(x) = O(F (x)) as
x→∞. Then

G1 ∗ · · · ∗Gn(x) =
n∑

i=1

Gi(x) + o(F (x)) as x→∞. (14)

Corollary 16. Let F ∈ S and so F ∈ L. Suppose that distributions G1, . . . , Gn are
such that, individually for each k, either (i) Gk ∈ L and Gk(x) = O(F (x)) as x → ∞ or
(ii) Gk(x) = o(F (x)) as x→∞. Then (14) holds.

The latter corollary was proved in [10] for the case n = 2, G1 = F , G2(x) = o(F (x)).

Proof of Theorem 15. Note first that it follows from the conditions of the theorem that,
for each i and for any constant a,

F (x+ a) +Gi(x+ a) = F (x) +Gi(x) + o(F (x) +Gi(x))

= F (x) +Gi(x) + o(F (x)).

Hence from the representation F +
∑k

i=1Gi =
∑k

i=1(F + Gi) − (k − 1)F and since F is
also long-tailed, for each k and for any constant a,

F (x+ a) +
k∑

i=1

Gi(x+ a) = F (x) +
k∑

i=1

Gi(x) + o(F (x)),

and so the measure F +
∑k

i=1Gi is also long-tailed. Note also that for each k we have∑k
i=1Gi(x) = O(F (x)). It now follows that it is sufficient to prove the theorem for case

n = 2, the general result then following by induction.
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Let the function h on R+ be such that h(x) ≤ x/2 and all F , F +G1 and F +G2 are
h-insensitive. It then follows from Lemma 1 that, as x→∞,

G1 ∗ (G2)≤h(x) = (G1 + F ) ∗ (G2)≤h(x)− F ∗ (G2)≤h(x)

= G1 + F (x)− F (x) + o(G1(x) + F (x))

= G1(x) + o(F (x)), (15)

and similarly

(G1)≤h ∗G2(x) = G2(x) + o(F (x)). (16)

Further, from Lemma 13,

(G1)>h ∗ (G2)>h(x) = o(F (x)). (17)

The required result (14) now follows from the decomposition (6) and from (15)–(17).

The following result strengthens the conditions of Theorem 15 to provide a sufficient
condition for the convolution obtained there to be subexponential.

Theorem 17. Suppose again that the conditions of Theorem 15 hold, and that additionally
G1 satisfies the stronger condition that G1 ∈ L and that G1 is weakly tail equivalent to F .
Then G1 ∗ · · · ∗Gn ∈ S, and additionally G1 ∗ · · · ∗Gn is weakly tail equivalent to F .

Proof. It follows from Corollary 14 that G1 ∈ S. Further the weak tail equivalence of F
and G1 implies that, for each k, Gk(x) = O(G1(x)). Hence by Theorem 15 with F = G1,
the distribution G1 ∗ G2 ∗ · · · ∗ Gn is long-tailed and weakly tail equivalent to G1 and so
also to F . In particular, again by Corollary 14, G1 ∗ · · · ∗Gn ∈ S.

We have the following two corollaries of Theorems 15 and 17. The first is new (the
version with G ∈ L was proved in Embrechts and Goldie [8]), while the other is well-known
(and goes back to [9] where the case n = 2, G1 = G2 was considered; some particular results
may be found in Teugels [16] and Pakes [14], see also [3]).

Corollary 18. Suppose that distributions F and G are such that F ∈ S, that F + G is
long-tailed and that G(x) = O(F (x)) as x→∞. Then F ∗G ∈ S and

F ∗G(x) = F (x) +G(x) + o(F (x)) as x→∞.

Proof. The result follows from Theorems 15 and 17 in the case n = 2 with G1 replaced by
F and G2 by G.

Corollary 19. Suppose that F ∈ S. Let G1, . . . , Gn be distributions such that Gi(x)/F (x)→
ci as x→∞, for some constants ci ≥ 0, i = 1, . . . , n. Then

G1 ∗ . . . ∗Gn(x)
F (x)

→
n∑

i=1

ci as x→∞.

If c1 + . . .+ cn > 0, then G1 ∗ . . . ∗Gn ∈ S.

Proof. The first statement of the corollary is immediate from Theorem 15. If c1+. . .+cn >
0, we may assume without loss of generality that c1 > 0, so that the second statement
follows from Theorem 17.
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5 Closure properties of subexponential distributions

It is well-known that the class of regularly varying distributions, which is a subclass of the
class S of subexponential distributions, is closed under convolution.2 Indeed if F and G

are regularly varying, the result that F ∗ G is also regularly varying is straightforwardly
obtained from Theorem 15 by taking the “reference” distribution of that theorem to be
(F + G)/2. It is also known that the class S does not possess this closure property.
However, if distributions F , G ∈ S, then it follows from Corollary 18 that a sufficient
condition for F ∗G ∈ S is given by G(x) = O(F (x)) as x→∞. (Indeed, as the corollary
shows, G may satisfy weaker conditions than that of being subexponential.) Further it
follows that under this condition we have that, for any function h such that both F and
G are h-insensitive,

F>h ∗G>h(x) = o(F (x) +G(x)) as x→∞. (18)

(See, for example, the proof of Theorem 15 above.) The following result is therefore not
surprising: if F , G ∈ S, the condition (18) is necessary and sufficient for F ∗G ∈ S. This
is one of the results given by Theorem 20 below. The first three equivalences given by the
theorem are known from Embrechts and Goldie [8]; the novelty of the result lies in the
fact that each of them is equivalent to the condition (iv) (condition (18) above) and in
that we give new and very short proofs of these equivalences.

Theorem 20. Suppose that the distributions F and G on R are subexponential. Suppose
also that p is any constant such that 0 < p < 1, and that the function h on R+ is such
that h(x) ≤ x/2 and both F and G are h-insensitive. Then the following conditions are
equivalent:

(i) F ∗G(x) ∼ F (x) +G(x) as x→∞;

(ii) F ∗G ∈ S;

(iii) the mixture pF + (1− p)G ∈ S;

(iv) F>h ∗G>h(x) = o(F (x) +G(x)) as x→∞.

Proof. We show that each of the conditions (i)–(iii) is equivalent to the condition (iv).
First, since F and G are subexponential, and hence long-tailed, it follows from the decom-
position (6) and Lemma 1 that

F ∗G(x) = F ∗G≤h(x) + F≤h ∗G(x) + F>h ∗G>h(x)

= F (x) + o(F (x)) +G(x) + o(G(x)) + F>h ∗G>h(x). (19)

Hence the conditions (i) and (iv) are equivalent.

To show the equivalence of (ii) and (iv) observe first that the subexponentiality of F
and G implies that

F ∗2(x) ∼ 2F (x), G∗2(x) ∼ 2G(x), (20)

and thus in particular, from Lemma 4, that

(F ∗2)>h ∗ (G∗2)>h(x) ∼ 4F>h ∗G>h(x). (21)

2A distribution F is regularly varying if its right tail F is a regularly varying function. This means that

the latter can be represented as F (x) = x−αl(x) for all x positive where l(x) is a slowly varying function,

i.e. l is strictly positive and l(cx) ∼ l(x) as x→∞, for any positive constant c.
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Further, since (F ∗ G)∗2 = F ∗2 ∗ G∗2 and since both F ∗2 and G∗2 are h-insensitive,
(F ∗G)∗2(x) may be estimated as in (19) with F ∗2 and G∗2 replacing F and G. Hence,
using also (20) and (21),

(F ∗G)∗2(x) = (2 + o(1))(F (x) +G(x)) + (4 + o(1))F>h ∗G>h(x). (22)

Now since the subexponentiality of F and G also implies, by Corollary 7, that F ∗G ∈ L,
the condition (ii) is equivalent to the requirement that

(F ∗G)∗2(x) = (2 + o(1))F ∗G(x)

= (2 + o(1))(F (x) +G(x)) + (2 + o(1))F>h ∗G>h(x), (23)

where (23) follows from (19). However, the equalities (22) and (23) hold simultaneously
if and only if F>h ∗G>h(x) = o(F (x) +G(x)), i.e. if and only if the condition (iv) holds.

Finally, to show the equivalence of (iii) and (iv), note first that pF + (1 − p)G is h-
insensitive. Hence, by Lemma 12, the subexponentiality of pF + (1 − p)G is equivalent
to

(pF + (1− p)G)>h ∗ (pF + (1− p)G)>h(x) = o(F (x) +G(x)).

The left side is equal to

p2F>h ∗ F>h(x) + (1− p)2G>h ∗G>h(x) + 2p(1− p)F>h ∗G>h(x).

By the subexponentiality of F and G and again by Lemma 12, F>h ∗ F>h = o(F (x)) and
G>h ∗G>h = o(G(x)). The equivalence of (iii) and (iv) now follows.
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