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Abstract. We consider the sums Sn = ξ1 + · · · + ξn of independent identically distributed
random variables with negative mean value. In the case of subexponential distribution of the sum-
mands, the asymptotic behavior is found for the probability of the event that the maximum of
sums max(S1, . . . , Sn) exceeds high level x. The asymptotics obtained describe this tail probability
uniformly with respect to all values of n.
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1. Introduction. Let ξ, ξ1, ξ2, . . . be independent random variables with a common
distribution F on the real line R; F ((−∞, 0]) < 1. We denote F (x) = F ((−∞, x)) and
F (x) = 1 − F (x). In general, for any measure G we denote by G(x) = G([x,∞)) the tail
of this measure. Put S0 = 0, Sn = ξ1 + · · · + ξn, and Mn = max {Sk, 0 � k � n}. We
assume that Eξ exists and Eξ < 0. Put a = |Eξ|. In view of the strong law of large numbers,
Sn → −∞ almost surely as n → ∞. Therefore, the family of distributions of maxima Mn,
n � 1, is tight.

The main goal of the present paper is to investigate the asymptotic behavior of the
probability P{Mn � x} as x → ∞ in the case when the summands have distribution of
subexponential type. We are interested in fixed values of the time parameter n and un-
boundedly growing n as well. More precisely, we present results on the asymptotic behavior
of the probability P{Mn � x} which are uniform in n.

Let us recall the definitions of some classes of functions and distributions which will be
used in what follows.

Definition 1. The function f is called long-tailed if, for any fixed t, the limit of the
ratio f(x + t)/f(x) is equal to 1 as x → ∞. We say that the distribution G is long-tailed if
the function G(x) is long-tailed.

Definition 2. The distribution G on R+ with unbounded support belongs to the class S
(and is called a subexponential distribution) if the convolution tail G∗G(x) is equivalent
to 2G(x) as x → ∞.

It is shown in [2] that any subexponential distribution G is long-tailed with necessity.
Sufficient conditions for some distribution to belong to the class S may be found, for example,
in [2], [10]. The class S includes, in particular, the following distributions:

(i) Pareto distribution with the tail G(x) = (κ/x)α, x � κ, where κ > 0, α > 0;

(ii) lognormal distribution with the density e−(log x−logα)
2/2σ2

/xσ
√

2π, x > 0, where
σ > 0, α > 0;

(iii) Weibull distribution with the tail G(x) = e−xα

, x � 0, where α ∈ (0, 1).
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Let G be an arbitrary distribution on R with support unbounded from above and with
finite mean value. For any t > 0, let us define the distribution Gt on R+ with the distribution
function

Gt(x) = min

(
1,

∫ x+t

x

G(u) du

)
, x > 0(1)

(hereafter, the integral from x1 to x2 is defined as the integral over the domain [x1, x2)).
The family of distributions {Gt, t > 0} is a stochastically increasing family.

Definition 3. We say that the subexponential distribution G is strongly subexponential
(and write G ∈ S∗) if Gt∗Gt(x)/Gt(x)−→ 2 as x → ∞ uniformly in t ∈ [1,∞].

By definition, S∗ ⊆ S. It may turn out that the class S∗ coincides with the class of
subexponential distributions with finite mean value, but we cannot prove this fact. As is
mentioned in [6], it is not even clear whether the included G ∈ S implies the subexponentiality
of the distribution G∞. Sufficient conditions for some distribution to belong to the class S∗
are given in section 3. It is also shown there that the Pareto distribution (with α > 1), the
lognormal distribution, and the Weibull distribution satisfy these sufficient conditions and,
therefore, belong to the class of strongly subexponential distributions.

Define the random sequence X = {Xn} by the equality

Xn+1 = (Xn + ξn+1)
+.(2)

This sequence is a homogeneous-in-time Markov chain of special type: it is a reflected random
walk. It is well known (see, for example, [4, Chap. VI, section 9]), that the distribution of
this chain X at time n, given zero initial state X0 = 0, coincides with the distribution of Mn,
that is,

P{Mn � x} = P{Xn � x | X0 = 0}.(3)

Hence, the investigation of the asymptotic behavior of the probability P{Mn � x} is equiv-
alent to the same problem for the probability P{Xn � x |X0 = 0}. Notice that the finite-
dimensional distributions of the sequences {Mn} and {Xn} do not coincide.

It is shown in [11] that, if the distribution F∞ on half-line R+ is subexponential, then
the distribution tail of the maximum of sums is equivalent to the integrated tail of the
distribution of one summand, that is,

P
{

sup
n�1

Sn � x
}

∼ 1

a

∫ ∞

x

F (u) du as x → ∞.(4)

It is shown in [7] that the asymptotic (4) holds if and only if F∞ is subexponential.
In [9], the case of fixed value of time n is considered and it is shown that, if the dis-

tribution of the random variable ξI{ξ � 0} is subexponential, then P{Mn � x} ∼ nF (x)
as x → ∞.

In the present paper we prove the following statement.
Theorem. Let the distribution of the random variable ξI{ξ � 0} be strongly subexpo-

nential. Then

P{Mn � x} =
1 + εn(x)

a

∫ x+na

x

F (u) du,

where εn(x) → 0 as x → ∞ uniformly in n � 1.
This theorem follows from Lemmas 1 and 9 which will be proved in sections 2 and 6,

respectively.
As we have learned, after this paper was prepared for publication, the analogous equiv-

alence was established by other methods in [1, Thm. 6] for the case when Eξ2 < ∞ and the
function F (u) is regularly varying at infinity.

Among the previous results, papers [8] and [5] should be mentioned. In [8], the regularly
varying at infinity function F (x) of index α ∈ (−∞,−2) is considered. Putting g(t) = 1+at/γ
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and x = γn in Theorem 2 of this paper, it is possible to conclude the following asymptotic,
for any fixed γ > 0:

P{Sk � γn for some k � n} ∼ nP{ξ � γn} cα,

where cα =
∫ 1
0

[g(t)]−αdt. This asymptotic coincides with our result when x = γn.
As in [8], the form of the answer in the case α ∈ (−2,−1) is given in [5].

2. Lower bound for large-deviation probabilities for the maximum of sums.
In the following lemma, under minimal conditions on the distribution F , the probability
P{Mn � x} is estimated from below for large values of x.

Lemma 1. Let the distribution F be long-tailed. Then for any ε > 0, there exists x1 such
that the inequality

P{Mn � x} � 1 − ε

a

∫ x+na

x

F (u) du

holds for each x � x1 and n � 1.
Proof. In view of equality (3), it is sufficient to prove the corresponding assertion for

the Markov chain (2) with zero starting point X0 = 0. As was mentioned above, the family
of maxima {Mn, n � 1} is stochastically bounded. Thus, the family {Xn, n � 1} is also
stochastically bounded, that is, the following convergence holds:

inf
n�1

P{Xn < x}−→ 1 as x → ∞.(5)

Consider the event Ain, i ∈ [1, n], which occurs if Xi−1 < x and Xj � x for any j ∈ [i, n].
Since the events Ain, i ∈ [1, n], are disjoint and their union is equal to the event {Xn � x},
we have by the formula of total probability that

P{Xn � x} = P{A1n} + · · · + P{Ann}.(6)

Fix δ > 0 and put b = a + δ. For v � 0, introduce the probability pi(x + v) by

pi(x + v) = P{Xj � x for any j � i | X0 = x + v}.
By definition (2), for the initial state X0 = x + v and for each i, the inequality Xi �
x + v + ξ1 + · · · + ξi is valid. Therefore, pi(x + v) � P{v + ξ1 + · · · + ξj � 0, for any
j � i}. Putting v = U + ib here, we obtain by the strong law of large numbers the following
convergence, uniformly in x and i:

pi(x + U + ib) → 1 as U → ∞.(7)

The intersection of the events {Xi−1 < x}, {Xi � x + U + (n − i) b}, and {Xj � x for
j ∈ [i + 1, n]} implies the event Ain. Hence, the following inequality holds:

P{Ain} �
∫ x

0

P{Xi−1 ∈ dy}
∫ ∞

U+(n−i) b

P{Xi ∈ x + du | Xi−1 = y} pn−i(x + u).

Since the function pi(x + u) is nondecreasing in u,

P{Ain} � pn−i

(
x + U + (n− i) b

) ∫ x

0

P{Xi−1 ∈ dy}P
{
Xi � x + U + (n− i) b | Xi−1 = y

}
.

Taking into account that, for each y ∈ [0, x),

P
{
Xi � x + U + (n− i) b | Xi−1 = y

}
� P

{
ξ � x + U + (n− i) b

}
,

we obtain from the preceding inequality that

P{Ain} � pn−i

(
x + U + (n− i) b

)
P{Xi−1 < x}P

{
ξ � x + U + (n− i) b

}
.
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By virtue of this estimate and convergence (7), there exists sufficiently large U such that,
for any x, i, and n, the inequality P{Ain} � (1− δ/2)P{Xi−1 < x}P{ξ � x+U +(n− i) b}
holds. Thus, by convergence (5), for sufficiently large x, we have

P{Ain} � (1 − δ)F
(
x + U + (n− i) b

)
uniformly in i and n. Using the latter inequality, we deduce from equality (6) the following
estimate, for sufficiently large x:

P{Xn � x} � (1 − δ)

n∑
i=1

F
(
x + U + (n− i) b

)
.

Because function F (v) is long-tailed, we have

n∑
i=1

F
(
x + U + (n− i) b

)
∼ 1

b

∫ x+nb

x

F (v) dv

as x → ∞ uniformly in n. Since b = a + δ and δ > 0 is arbitrary, this implies the lemma
assertion.

3. Conditions for the membership of some distribution to the class S∗. Let G
be a long-tailed distribution on R+ with finite mean value. For each U ∈ (0, x) we have the
following equalities (the distribution Gt is defined in (1)):

Gt∗Gt(x)

Gt(x)
=

∫ x

0

Gt(x− u)

Gt(x)
dGt(u) + 1(8)

=

(∫ U

0

+

∫ x

U

)
Gt(x− u)

Gt(x)
dGt(u) + 1.(9)

Since the function Gt(y) is long-tailed, for any fixed U ,∫ U

0

Gt(x− u)

Gt(x)
dGt(u)−→Gt(U)

as x → ∞ uniformly in t � 1. Therefore, the following lemma holds.
Lemma 2. Let G be a long-tailed distribution. Then the following three conditions are

equivalent:
(i) G ∈ S∗;
(ii) for any ε > 0 there exist U and x0, 0 � U � x0, such that the following inequality

holds, for every x � x0 and t � 1:∫ x

U

Gt(x− u)dGt(u) � εGt(x);

(iii) there exists a function U(x) → ∞, 0 � U(x) � x, such that G(x − U(x)) ∼ G(x)
and, uniformly in t � 1,∫ x

U(x)

Gt(x− u) dGt(u) = o(Gt(x)) as x → ∞;

(iv) for any function U(x) → ∞, 0 � U(x) � x, such that G(x − U(x)) ∼ G(x), the
following relation holds, uniformly in t � 1:∫ x

U(x)

Gt(x− u) dGt(u) = o(Gt(x)) as x → ∞.
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In the following lemma, it is proved that the class S∗ is closed under weak tail equivalence
(the terminology is taken from [6]).

Lemma 3. Let G and H be two long-tailed distributions on R+. If G ∈ S∗ and c1G(x) �
H(x) � c2G(x) for some c1 and c2, 0 < c1 < c2 < ∞, then H ∈ S∗.

Proof. Since the distribution H is long-tailed and G is strongly subexponential, by
Lemma 2, there exists a sequence U(x) → ∞ such that G(x−U(x)) ∼ G(x), H(x−U(x)) ∼
H(x), and ∫ x

U(x)

Gt(x− u) dGt(u) = o(Gt(x))(10)

as x → ∞ uniformly in t � 1. Since H(x) � c2G(x), the partial integration yields∫ x

U(x)

Ht(x− u) dHt(u) � c2

∫ x

U(x)

Gt(x− u) dHt(u)

= −c2Gt(x− u)Ht(u) |xU(x) + c2

∫ x

U(x)

Ht(u) duGt(x− u)

� c2Gt(x− U(x))Ht(U(x)) + c22

∫ x

U(x)

Gt(u) duGt(x− u).

This estimate, in view of (10) and condition H(x) � c1G(x), implies the relation∫ x

U(x)

Ht(x− u) dHt(u) = o(Gt(x)) = o(Ht(x)),

which completes the proof, by Lemma 2.
Lemma 4. Let G be a subexponential distribution with finite mean value and let there

exist c > 0 such that G(2x) � cG(x) for each x. Then G is a strongly subexponential
distribution.

Proof. We have

Gt(2x) = min

(
1,

∫ 2x+t

2x

G(u) du

)

= min

(
1, 2

∫ x+t/2

x

G(2u) du

)
� min

(
1,

∫ x+t

x

G(2u) du

)
.

Since G(2u) � cG(u), it implies the inequality

Gt(2x) � min

(
c, c

∫ x+t

x

G(u) du

)
= cGt(x).(11)

Further, the function G(y) is long-tailed. Thus, for any fixed u, uniformly in t � 1,

Gt(x− u) [Gt(x)]−1−→ 1 as x → ∞.(12)

Integrating by parts and using the continuity of the distribution Gt at points u > 0, we
obtain the following representations for the tail of the convolution Gt∗Gt:

Gt∗Gt(x) = −
(∫ x/2

0

+

∫ ∞

x/2

)
Gt(x− u) dGt(u)

=

∫ x/2

0

Gt(x− u) dGt(u) +

∫ ∞

x/2

Gt(u) duGt(x− u) +

(
Gt

(
x

2

))2

= 2

∫ x/2

0

Gt(x− u) dGt(u) +

(
Gt

(
x

2

))2
.(13)
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Let us consider the integral∫ x/2

0

Gt(x− u)

Gt(x)
dGt(u) =

(∫ U

0

+

∫ x/2

U

)
Gt(x− u)

Gt(x)
dGt(u).

In view of (12), for any fixed U the first summand tends to Gt(U) as x → ∞. By virtue
of (11), the second summand does not exceed G∞(U)/c, and may be done as small as we need,
by the choice of sufficiently large U . These considerations imply the following convergence
of the integrals, as x → ∞ uniformly in t � 1:∫ x/2

0

Gt(x− u)

Gt(x)
dGt(u)−→ 1.

Also, it follows from (11) that (Gt(x/2))2 � Gt(x)Gt(x/2)/c = o(Gt(x)) as x → ∞. Sub-
stituting the latter two relations in (13), we arrive at the desirable asymptotic Gt∗Gt(x) ∼
2Gt(x) as x → ∞ uniformly in t � 1.

Lemma 5. Let G be a subexponential distribution with finite mean value. Let there
exist x0 such that the function g(x) ≡ − logG(x) is concave for x � x0 and, in addition,∫ x

0

G(x− u)G(u) du ∼ G(x)

∫ ∞

0

G(u) du as x → ∞.(14)

Then G is a strongly subexponential distribution.
Proof. Denote Jt(x) = Gt(x)/G(x). In particular, if the random variable ζ has distri-

bution G, then J∞(x) = E{ζ | ζ � x} for those values of x for which G∞(x) � 1.
Since the function g(x) is concave, the difference g(x + u) − g(x) is nonincreasing in x

and, therefore, the ratio G(x + u)/G(x) = e−(g(x+u)−g(x)) does not decrease with respect
to x. Hence, the function

Jt(x) =
Gt(x)

G(x)
=

∫ t

0

G(x + u)

G(x)
du

also does not decrease in x. Because of Gt(x) = Jt(x)G(x), this implies that the value of
the second integral in (9) admits the following estimate:∫ x

U

Jt(x− u)

Jt(x)

G(x− u)

G(x)
dGt(u) �

∫ x

U

G(x− u)

G(x)
dGt(u)

=

∫ x

U

G(x− u)

G(x)

(
G(u) −G(u + t)

)
du �

∫ x

U

G(x− u)G(u)

G(x)
du.

In view of condition (14), the value of the latter integral may be done arbitrarily small by
the choice of sufficiently large U . According to Lemma 2, this implies that the distribution G
is strongly subexponential.

The Pareto distribution with parameter α > 1, as well as any distribution with regu-
larly varying at infinity tail and finite mean value, satisfies the conditions of Lemma 4 and,
therefore, is strongly subexponential.

The Weibull distribution G(x) = e−xα

, α ∈ (0, 1), satisfies the conditions of Lemma 5.
Indeed, the function g(x) = xα is concave for α ∈ (0, 1) and it remains to check the fulfillment
of condition (14). The function (x − u)α + uα reaches its maximum with respect to u ∈
[U, x− U ] at the endpoints of this interval. Therefore,∫ x−U

U

G(x− u)G(u) du =

∫ x−U

U

e−((x−u)α+uα) du � xe−((x−U)α+Uα) = o(e−xα

),

for example, for U = U(x) = log2/α x. In addition, under this choice of U(x),(∫ U

0

+

∫ x

x−U

)
G(x− u)G(u) du ∼ G(x)

∫ ∞

0

G(u) du.
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The latter two relations imply (14).
In the same way, it may be verified that the lognormal distribution satisfies the conditions

of Lemma 5 and, therefore, is strongly subexponential.

4. Some convolution properties for strongly subexponential distribution.
Let G be a strongly subexponential distribution on R+. In this section we prove that some
analogous standard properties of subexponential distributions are valid for the distributions
belonging to the class S∗.

Lemma 6. For any natural number k, the distribution tail of the kth convolution of the
distribution Gt is equivalent to kGt(x) as x → ∞ uniformly in t � 1.

The proof of the theorem follows by induction. Indeed, it is sufficient to use the equality
for the tail of the convolution G

(k+1)∗
t as follows:

G
(k+1)∗
t (x) =

(∫ U

0

+

∫ x

U

)
Gk∗

t (x− u) dGt(u) + Gt(x)(15)

and Lemma 2.
The tail of the kth convolution of the measure Gt may be estimated in the following

way.
Lemma 7. For any ε > 0, there exists c = c(ε) such that for each x � 0, t � 1, and

k = 1, 2, . . . , the following inequality holds:

Gk∗
t (x) � cGt(x)(1 + ε)k.

Proof. Fix ε > 0. In view of the strong subexponentiality of G, it follows from (8) that
there exists x0 = x0(ε) such that, for each x � x0 and t � 1,∫ x

0

Gt(x− u)

Gt(x)
dGt(u) � 1 + ε.(16)

Put Ak ≡ supx�0, t�1[G
k∗
t (x)/Gt(x)]. Let us estimate from above the value of Ak+1

via Ak. By virtue of (15),

Ak+1 � sup
x�0,t�1

∫ x

0

Gk∗
t (x− u)

Gt(x)
dGt(u) + 1.(17)

By the definition of Ak, we have the inequality∫ x

0

Gk∗
t (x− u)

Gt(x)
dGt(u) =

∫ x

0

Gk∗
t (x− u)

Gt(x− u)

Gt(x− u)

Gt(x)
dGt(u) � Ak

∫ x

0

Gt(x− u)

Gt(x)
dGt(u).

Substituting (16) here, we obtain for x � x0 the following estimate:∫ x

0

Gk∗
t (x− u)

Gt(x)
dGt(u) � Ak(1 + ε).

Also, for x < x0 and t � 1, we have the inequality∫ x

0

Gk∗
t (x− u)

Gt(x)
dGt(u) � 1

Gt(x0)
� 1

min(1, G(x0 + 1))
≡ c1(x0) < ∞.

It now follows from the latter two estimates that, for each x � 0 and t � 1,∫ x

0

Gk∗
t (x− u)

Gt(x)
dGt(u) � Ak(1 + ε) + c1.

Substituting this estimate in (17), we obtain that Ak+1 � Ak(1 + ε) + c1 + 1. This implies
the inequality Ak+1 � (c1 + 1)(k + 1)(1 + ε)k, which is equivalent to the lemma estimate.
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5. Upper estimate for the distribution tail of the first (up to time n) non-
negative sum. Let η = min{k � 1: Sk � 0} be the index of the first nonnegative sum (or
ascending ladder epoch; we put min ∅ = ∞), let η[n] = min{k ∈ [1, n] : Sk � 0} be the index
of the first (up to time n) nonnegative sum, and let χ[n] = Sη[n] be the first (up to time n)
nonnegative sum.

Since Eξ < 0, η, η[n], and χ[n] are defective random variables, put p = P{η < ∞} and
p[n] = P{η[n] < ∞}. For any n, the following inequalities hold:

0 < P{ξ � 0} � p[n] � p < 1.(18)

Also,

p[n] ↑ p as n → ∞.(19)

For sufficiently large values of n and x, the following upper bound is valid for the
probability of the event {χ[n] � x}.

Lemma 8. Let F be a long-tailed distribution. Then, for any ε > 0, there exist num-
bers n1 and x1 such that, for n � n1 and x � x1, the following inequality holds:

P{χ[n] � x} � (1 + ε)
1 − p

a

∫ x+na

x

F (u) du.

Proof. By the formula of total probability, we have

P{χ[n] � x} =

n∑
j=1

P{Si < 0 for any i � j − 1, Sj � x}.(20)

Put ψj(B) = P{Si < 0 for any i � j, Sj ∈ B}, B ⊆ (−∞, 0). By the formula of total
probability, the equality

P{Si < 0 for any i � j − 1, Sj � x} =

∫ ∞

x

F (dy)ψj−1([x− y, 0))

is valid. Substituting this equality into (20), we obtain

P{χ[n] � x} =

∫ ∞

x

F (dy)

n∑
j=1

ψj−1([x− y, 0)).(21)

Let us estimate the sum in the latter representation. For each N < n,

n∑
j=1

ψj−1([x− y, 0)) � N +

n∑
j=N+1

P{S1 < 0, . . . , SN < 0, Sj � x− y}

= N + P{S1 < 0, . . . , SN < 0}
n∑

j=N+1

P{Sj � x− y | S1 < 0, . . . , SN < 0}.

Since

P{S1 < 0, . . . , SN < 0}−→ 1 − p as N → ∞,(22)

for any δ > 0, there exists N such that

n∑
j=1

ψj−1([x− y, 0)) � N + (1 − p + δ)

n∑
j=N+1

P{Sj � x− y | S1 < 0, . . . , SN < 0}

� N + (1 − p + δ)

∞∑
j=N+1

P{Sj � x− y | S1 < 0, . . . , SN < 0}.



LARGE-DEVIATION PROBABILITIES FOR MAXIMA OF SUMS 363

The asymptotic behavior of the renewal function does not depend on the first N summands.
Therefore, by the renewal theorem, for any fixed N and δ > 0 there exists t such that, for
y − x � t,

∞∑
j=N+1

P{Sj−1 � x− y | S1 < 0, . . . , SN < 0} � (1 + δ)
y − x

a
.

Also, for y ∈ [x, x + t) the estimate

∞∑
j=N+1

P{Sj−1 � x− y | S1 < 0, . . . , SN < 0}

�
∞∑

j=N+1

P{Sj−1 � −t | S1 < 0, . . . , SN < 0} = c̃ = c̃(−t) < ∞

is valid. The latter two estimates imply the following inequality, which is valid for each y � x
(ĉ = N + c̃):

n∑
j=1

ψj−1([x− y, 0)) � (1 − p + δ)(1 + δ)
y − x

a
+ ĉ.(23)

For each y � x we have the following inequality and asymptotic:

n∑
j=1

ψj−1([x− y, 0)) �
n∑

j=1

P{S1 < 0, S2 < 0, . . . , Sj < 0} ∼ n(1 − p)

as n → ∞, in view of (22). Therefore, for sufficiently large n,

n∑
j=1

ψj−1([x− y, 0)) � n(1 − p + δ).(24)

Put g(x, y) ≡ (1− p+ δ) min((1 + δ) (y− x)/a, n). Substituting estimates (23) and (24)
in (21), we arrive at the inequality

P{χ[n] � x} � ĉ

∫ ∞

x

F (dy) +

∫ ∞

x

F (dy) g(x, y)

= ĉF (x) − F (y) g(x, y) |∞x +

∫ ∞

x

F (y) dyg(x, y)

= ĉF (x) + (1 − p + δ)
1 + δ

a

∫ x+na/(1+δ)

x

F (y) dy.(25)

Since the function F (x) is long-tailed, F (x) = o(
∫ x+na/(1+ε)

x
F (y) dy) as n, x → ∞. Hence,

(25) implies the assertion of the lemma.

6. Upper bound for large-deviation probabilities for maxima of sums. Let us
define the nondefective random variable χ̃[n] with distribution

P{χ̃[n] ∈ B} = P{χ[n] ∈ B}(p[n])−1, B ⊆ [0,∞).

Fix ε > 0. Put b = (1 + ε)(1 − p)/pa. By Lemma 8 and convergence (19), there exist n0
and x0 such that, for any n � n0 and x � x0,

P{χ̃[n] � x} � b

∫ x+na

x

F (u) du.(26)
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Define the probability measure G on the positive half-line R+ with distribution tail

G(x) = min
(
1, bF (x)

)
for x � x0 + 1, G(x0 + 1) = 1.(27)

Then, by (26) we have the inequality, for n � n0 and x � 0,

P{χ̃[n] � x} � Gna(x).(28)

Let χ̃
[n]
1 , χ̃

[n]
2 , . . . be independent copies of the random variable χ̃[n]. Notice that there

exists i ∈ [1, n] such that Si exceeds a level x if and only if one of the ladder heights exceeds
this level. The probability of the event that the ith ladder epoch exists up to the moment
of time n does not exceed (p[n])i. Denote by p̂i

[n] the conditional probability of the event
that the ith ladder epoch is the last one, given it exists up to the moment of time n. For
any fixed i we have the monotone convergence

p̂
[n]
i ↓ 1 − p as n → ∞.(29)

By the formula of total probability, we have the inequality

P
{

max
0�i�n

Si � x
}

�
n∑

i=1

(p [n])ip̂
[n]
i P{χ̃ [n]1 + · · · + χ̃

[n]
i � x}.

Let N < n. Splitting the latter sum into two sums and using (18), inequalities p̂
[n]
i � p̂

[n]
i+1,

and (28), we obtain the estimate

P{Mn � x} � p̂
[n]
N

N∑
i=1

piGi∗
na(x) +

∞∑
i=N+1

piGi∗
na(x),(30)

which is valid for any long-tailed distribution F .
Now we assume that the random variable ξ has strongly subexponential distribution.

Accordingly, by definition (27) and Lemma 3, the distribution G is also strongly subexpo-
nential. The following lemma takes place.

Lemma 9. Let F ∈ S∗ and ε > 0. Then there exists x1 such that, for each n � 1 and
x � x1, the estimate

P{Mn � x} � 1 + ε

a

∫ x+na

x

F (u) du

is valid.
Proof. Since the time parameter n is countable and the function F (u) is long-tailed, it

is sufficient to prove the following two relations: For any fixed n,

lim
x→∞

P{Mn � x}
F (x)

=
n

a
, lim sup

n,x→∞

P{Mn � x}∫ x+na

x
F (u) du

� 1

a
.(31)

Since the distribution F is subexponential, equality (3) allows us to verify the first
relation in (31) by induction. Indeed, for n = 1, we have X1 = ξ+1 and P{X1 � x} = F (x)
for x > 0. Since P{Xn+1 � x} = P{Xn + ξn+1 � x} for x > 0, the induction step follows
from the standard properties of subexponential distributions (see, for example, the proofs of
Theorem 1 in [2] and Proposition 1 in [3]).

Now we prove the second relation in (31) by using estimate (30). Distribution G is
strongly subexponential, and thus it follows from Lemma 7 that, for any δ > 0, there
exists c1 such that

lim sup
x→∞

1

Gna(x)

∞∑
i=N+1

piGi∗
na(x) � c1[p(1 + δ)]N+1

1 − p(1 + δ)
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uniformly in n � 1. Substituting this inequality in (30) and using (29) and Lemma 6, we
obtain

lim sup
n,x→∞

P{Mn � x}
Gna(x)

� (1 − p)

N∑
i=1

pii +
c1[p(1 + δ)]N+1

1 − p(1 + δ)
.

By the arbitrary choice of δ and N , this implies the inequality

lim sup
n,x→∞

P{Mn � x}
Gna(x)

� p

1 − p
.

Now, by the definition of G,

lim sup
n,x→∞

P{Mn � x}∫ x+na

x
F (u) du

� 1 + ε

a
.

Since ε > 0 was arbitrary, the second relation in (31) is valid. This completes the proof.
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