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Abstract In this paper, the asymptotic behaviour of the
distribution tail of the stationary waiting time W in the
GI/GI/2 FCFS queue is studied. Under subexponential-type
assumptions on the service time distribution, bounds and
sharp asymptotics are given for the probability P{W > x}.
We also get asymptotics for the distribution tail of a stationary
two-dimensional workload vector and of a stationary queue
length. These asymptotics depend heavily on the traffic load.
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1. Introduction

It is well known (see, for example, [1,15,18]) that in the
stable single server first-come-first-served queue GI/GI/1
with typical interarrival time τ and typical service time σ the
tail of stationary waiting time W is related to the service time
distribution tail B̄(x) = P{σ > x} via the equivalence

P{W > x} ∼ 1

Eτ − Eσ

∫ ∞

x
B̄(y) dy as x → ∞, (1)
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provided the subexponentiality of the integrated tail distri-
bution BI defined by its tail

B̄I (x) ≡ min

(
1,

∫ ∞

x
B̄(y) dy

)
, x > 0.

As usual we say that a distribution G on R+ is subexponential
(belongs to the class ) if G ∗ G(x) ∼ 2Ḡ(x) as x → ∞.
The converse assertion is also true, that is, the equivalence
(1) implies the subexponentiality of BI , see [15, Theorem 1]
for the case of Poisson arrival stream and [14, Theorem 1]
for the general case.

In this paper we consider the GI/GI/s FCFS queue which
goes back to Kiefer and Wolfowitz [13]. We have s iden-
tical servers, i.i.d. interarrival times {τn} with finite mean
a = Eτ1, and i.i.d. service times {σn} with finite mean b =
Eσ1. The sequences {τn} and {σn} are mutually indepen-
dent. The system is assumed to be stable, i.e., ρ ≡ b/a ∈
(0, s). We are interested in the asymptotic tail behaviour
of the stationary waiting time distribution P{W > x} as
x → ∞.

It was realized recently (see, for example, existence results
for moments in [16,17]; an asymptotic hypothesis in [19];
asymptotic results for fluid queues fed by heavy-tailed on-off
flows in [5]) that the heaviness of the stationary waiting time
tail depends substantially on the load ρ in the system. More
precisely, it depends on ρ via the value of k ∈ {0, 1, . . . , s −
1} for which k ≤ ρ < k + 1. In particular, Whitt conjectured
that

P{W > x} ∼ γ

( ∫ ∞

ηx
B̄(y) dy

)s−k

as x → ∞,
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“where γ and η are positive constants (as functions of x)”
[sic, [19]]. In the present paper we show that, in general, the
tail behaviour of W is more complicated.

Let R(w) = (R1(w), . . . , Rs(w)) be the operator on Rs

which orders the coordinates of w ∈ Rs in ascending order,
i.e., R1(w) ≤ · · · ≤ Rs(w). Then the residual work vector
Wn = (Wn1, . . . , Wns) which the nth customer observes just
upon its arrival satisfies the celebrated Kiefer-Wolfowitz re-
cursion: W1 = i · 0,

Wn+1 = R((Wn1 + σn − τn+1)+, (Wn2 − τn+1)+,

. . . , (Wns − τn+1)+)

= R(Wn + e1σn − iτn+1)+,

here e1 = (1, 0, . . . , 0), i = (1, . . . , 1) and w+ =
(max(0, w1), . . . , max(0, ws)). The value of Wn1 is the
delay which customer n experiences. In particular, the
stationary waiting time W is a weak limit for Wn1.

The process Wn is a Markov chain in Rs . It is well known
that, for general multi-dimensional Markov chains, large de-
viation problems are very difficult to solve even for stationary
distributions. Usually they can be solved in low dimensions
only, 2 or 3 at most, see [4,12]. Almost all known results
are derived for so-called Cramér case which corresponds
to light-tailed distributions of jumps. In the heavy-tailed
case almost nothing is known for general multi-dimensional
Markov chains.

The process Wn presents a particular but very important
example of a Markov chain in Rs , even if we are interested
in the first component Wn1. As follows from our analysis, the
case s = 2 can be treated in detail. The stability condition
for this particular case is b < 2a. One of the following cases
can occur:

(i) the maximal stability case when b < a;
(ii) the intermediate case when b = a;

(iii) the minimal stability case when b ∈ (a, 2a).

We find the exact asymptotics for P{W > x} in the maxi-
mal and minimal cases. We also describe the most probable
way for the occurrence of large deviations. In the interme-
diate case, we only provide upper and lower bounds. Then
we study the asymptotics for the tail of the distribution of a
stationary two-dimensional workload vector and give com-
ments on the tail asymptotics of the stationary queue length.

For s > 2, the stability condition is b < sa. We hope that,
for s > 2, direct modifications of our arguments may lead to
exact asymptotics in two particular cases when either b < a
(the maximal stability) or b ∈ ((s − 1) a, sa) (the minimal
stability). However, one has to overcome many extra tech-
nicalities for that. Insofar as the case b ∈ [a, (s − 1) a] is

concerned, we are extremely sceptical on the possibility to
get any sharp tail asymptotics in explicit form.

For the two-server queue, in the maximal stability case,
we prove the following:

Theorem 1. Let s = 2 and b < a. When the integrated tail
distribution BI is subexponential, the tail of the stationary
waiting time satisfies the asymptotic relation, as x → ∞,

P{W > x} ∼ 1

a(2a − b)

[
(B̄I (x))2

+ b
∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b)) dy

]
.

The proof follows by combining the lower bound given in
Theorem 3 (Section 3) and the upper bound given in Theorem
4 (Section 4). Simpler lower and upper bounds for P{W > x}
are given in the following

Corollary 1. Under the conditions of Theorem 1,

2a + b

2a2(2a − b)
≤ lim

x→∞inf
P{W > x}
(B̄I (x))2

≤ lim
x→∞sup

P{W > x}
(B̄I (x))2

≤ 1

2a(a − b)
.

In our opinion, in Theorem 1 it is possible to obtain a
compact expression for the tail asymptotics of P(W > x)
only in the regularly varying case. A distribution G (or its tail
Ḡ) is regularly varying at infinity with index γ > 0 (belongs
to the class RV ), if Ḡ(x) > 0 for all x and, for any fixed
c > 0, Ḡ(cx)/Ḡ(x) → c−γ as x → ∞.

Corollary 2. Let b < a and the tail distribution B̄ of service
time be regularly varying with index γ > 1. Then

P{W > x} ∼ c′(B̄I (x))2,

where

c′ = 1

a(2a − b)

[
1 + b

γ − 1

×
∫ ∞

0

dz

(1 + za)γ−1(1 + z(a − b))γ

]
.

Recall definitions of a number of classes of heavy-tailed
distributions. A distribution G is long-tailed (belongs to the
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class L ) if Ḡ(x) > 0 for all x and, for any fixed t ,

Ḡ(x + t)

Ḡ(x)
→ 1 as x → ∞.

A distribution G belongs to the class I RV of intermediate
regularly varying distributions if Ḡ(x) > 0 for all x and

lim
c↓1

lim inf
x→∞

Ḡ(cx)

Ḡ(x)
= 1.

Clearly, RV ⊂ I RV.
In the minimal stability case, we prove the following

Theorem 2. Let s = 2 and a < b < 2a, B ∈ and BI ∈
I RV. Then

P{W > x} ∼ 1

2a − b
B̄I

(
b

b − a
x

)
as x → ∞.

The proof is given in Section 7 and is based on the lower
and upper bounds stated in Theorems 5 and 6 respectively.

One can provide simple sufficient conditions for B ∈
and BI ∈ I RV . Let D be the class of all distributions G
on R+ such that Ḡ(x) > 0 for all x and lim infx→∞ Ḡ(2x)/
Ḡ(x) > 0. Then the following are known: (i) RV ⊂
I RV ⊂ (L

⋂
D ) ⊂ ; (ii) if B ∈ D has a finite first

moment, then BI ∈ I RV (see e.g. [6]). Therefore, if B ∈
L

⋂
D and has a finite first moment, then B satisfies the

conditions of Theorem 2. Note that the converse is not true,
in general: there exists a distribution B ∈ with a finite first
moment such that BI ∈ I RV, but B /∈ L

⋂
D (see Exam-

ple 2 in [9, Section 6]).
The paper is organized as follows. Section 2 contains some

auxiliary results. In Section 3, we formulate and prove a re-
sult concerning a lower bound for P{W > x} in the maximal
stability case. The corresponding upper bound is given in
Section 4. Sections 5, 6, and 7 deal, respectively, with lower
bounds, upper bounds, and asymptotics for P{W > x} in the
minimal stability case. In Section 8, we prove further re-
sults related to the joint distribution of a stationary workload
vector. Comments on the asymptotics for a stationary queue
length distribution may be found in Section 9.

A number of upper and lower bounds for P{W > x} in
s-server queue are proposed in Remarks 2, 3, 4, and 5.

2. Preliminaries

2.1. Reduction to deterministic input stream case in
assertions associated with upper bounds

Consider a general GI/GI/s queue. Take any a′ ∈ (b/s, a).
Consider an auxiliary D/GI/s system with the same service

times {σn} and deterministic interarrival times τ ′
n ≡ a′:W ′

1 =
0 and

W ′
n+1 = R(W ′

n + e1σn − ia′)+.

Let W ′ be a stationary waiting time in this auxiliary
system.

Lemma 1. If P{W ′ > x} ≤ Ḡ(x) for some long-tailed dis-
tribution G, then

lim sup
x→∞

P{W > x}
Ḡ(x)

≤ 1.

Proof. Denote ξn = a′ − τn . Put M0 = 0 and, for n ≥ 1,

Mn = max{0, ξn, ξn + ξn−1, . . . , ξn + · · · + ξ1}
= max(0, ξn + Mn−1) = (ξn + Mn−1)+.

First, we use induction to prove the inequality

Wn ≤ W ′
n + i Mn a.s. (2)

Indeed, for n = 1 we have 0 ≤ 0 + i M1. Assume the inequal-
ity is proved for some n; we prove it for n + 1. Indeed,

Wn+1 = R(Wn + e1σn − iτn+1)+

≤ R(W ′
n + i Mn + e1σn − iτn+1)+

= R(W ′
n + e1σn − ia′ + i(Mn + ξn+1))+.

Since (u + v)+ ≤ u+ + v+,

Wn+1 ≤ R(W ′
n + e1σn − ia′)+ + i(Mn + ξn+1)+

≡ W ′
n+1 + i Mn+1,

and the proof of (2) is complete.
Let M be the weak limit for Mn which exists due to Eξ1 =

a′ − a < 0 and Strong Law of Large Numbers. The following
stochastic equality holds:

M =st max{0, ξ1, ξ1 + ξ2, . . . , ξ1 + · · · + ξn, . . .}.

Since the random variable ξ1 is bounded from above (by
a′), there exists β > 0 such that Eeβξ1 = 1. Then by Cramér
estimate (see, for example, [8, Section 5]), for any x ,

P{M > x} ≤ e−βx . (3)

The inequality (2) implies that W ≤st W ′ + M , where W ′ and
M are independent. Let a random variable η have distribution
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G and be independent of M. Since η ≥st W ′, we have W ≤st

η + M . Therefore, for any h > 0,

P{W > x} ≤
∫ x−h

0
P{M > x − y}P{η ∈ dy}

+ P{η > x − h}

≤
∫ x−h

0
e−β(x−y)G(dy) + Ḡ(x − h),

by (3). Integrating by parts yields

∫ x−h

0
e−β(x−y)G(dy) = −e−β(x−y)Ḡ(y)

∣∣∣∣x−h

0

+ β

∫ x−h

0
Ḡ(y)e−β(x−y)dy

≤ e−βx + β

∫ x

h
Ḡ(x − y)e−βydy.

The distribution G is long-tailed, thus, for any ε > 0 there
exists x(ε) such that

Ḡ(x − y) ≤ Ḡ(x)eε

for any x ≥ x(ε). Hence, there exists c(ε) < ∞ such that

Ḡ(x − y) ≤ c(ε)Ḡ(x)eεy

for any x ≥ x(ε). Take ε = β/2. Then

∫ x

h
Ḡ(x − y)e−βydy ≤ c(ε)Ḡ(x)

∫ x

h
e−βy/2dy

≤ c(ε)

β/2
Ḡ(x)e−βh/2.

Hence,

P{W > x} ≤ e−βx + 2c(ε)Ḡ(x)e−βh/2 + Ḡ(x − h) .

Taking into account also that Ḡ(x − h) ∼ Ḡ(x) for any fixed
h > 0, we obtain

lim sup
x→∞

P{W > x}
Ḡ(x)

≤ 2c(ε)e−βh/2 + 1.

Letting h → ∞ yields the conclusion of the Lemma.

2.2. Reduction to deterministic input stream case in
assertions associated with lower bounds

Take any a′ > a. As in the previous subsection, consider an
auxiliary D/GI/s system with the same service times {σn} and
deterministic interarrival time τ ′

n ≡ a′. Let W ′ be a stationary
waiting time in this auxiliary system.

Lemma 2. If P{W ′ > x} ≥ Ḡ(x) for some long-tailed dis-
tribution G, then

lim inf
x→∞

P{W > x}
Ḡ(x)

≥ 1.

Proof. Put ξn = τn − a′, M0 = 0 and

Mn = max{0, ξn, ξn, +ξn−1, . . . , ξn + · · · + ξ1}
= (Mn−1 + ξn)+.

For any n ≥ 1, the following inequality holds:

Wn ≥ W ′
n − i Mn. (4)

Indeed, by induction arguments,

Wn+1 = R(Wn + e1σn − iτn+1)+

≥ R(W ′
n − i Mn + e1σn − iτn+1)+

= R(W ′
n + e1σn − ia′ − i(Mn + ξn+1))+.

Since (u − v)+ ≥ u+ − v+,

Wn+1 ≥ R(W ′
n + e1σn − ia′)+ − i(Mn + ξn+1)+

≡ W ′
n+1 − i Mn+1,

and the proof of (4) is complete.
Let M be the weak limit for Mn which exists due to

Eξ1 = a − a′ < 0 and the Strong Law of Large Numbers.
The inequality (4) implies that W ≥st W ′ − M where W ′

and M are independent. Therefore, for any h > 0,

P{W > x} ≥ P{W ′ > x + h}P{M ≤ h}
≥ Ḡ(x + h) P{M ≤ h}.

The distribution G is long-tailed, thus Ḡ(x + h) ∼ Ḡ(x) for
any fixed h > 0 and

lim inf
x→∞

P{W > x}
Ḡ(x)

≥ P{M ≤ h}.

Letting h → ∞, we obtain the desired estimate from below.
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2.3. Adapted versions of the Law of Large Numbers

It is well known that obtaining lower bounds for systems un-
der assumptions of heavy tails usually requires some variant
of the Law of Large Numbers. Here we provide such a tool
for the two-server queue.

Lemma 3. Let (ξn, ηn), n = 1, 2, . . ., be independent iden-
tically distributed pairs of random variables. Let the two-
dimensional Markov chain Vn = (Vn1, Vn2), n = 1, 2, . . ., be
defined in the following way: V1 has an arbitrary distribution
and

Vn+1 =
{

Vn + (ξn, ηn), if Vn1 ≤ Vn2,

Vn + (ηn, ξn), if Vn1 > Vn2.

If Eη1 < Eξ1, then the following convergence in probability
holds:

Vn

n
→

(
Eξ1 + Eη1

2
,

Eξ1 + Eη1

2

)
as n → ∞.

Proof. Since Vn+1,1 + Vn+1,2 = Vn1 + Vn2 + ξn + ηn , by the
Law of Large Numbers

Vn1 + Vn2

n
→ Eξ1 + Eη1 as n → ∞. (5)

Define a Markov chain Un = Vn2 − Vn1. If Un ≥ 0, then
Un+1 − Un = ηn − ξn , while if Un < 0, then Un+1 − Un =
ξn − ηn = −(ηn − ξn), so, Un is the oscillating random walk.
Since Eξ1 > Eη1, the mean drift of the chain Un is negative
on the positive half-line and is positive on the negative half-
line. Therefore, for any sufficiently large A, the set [−A, A]
is positive recurrent for this Markov chain. In particular, the
distributions of Un are tight. Hence, Un/n → 0 in probability
as n → ∞. Together with (5), it implies the desired assertion
of Lemma. �

The classical Law of Large Numbers and Lemma 3 imply
the following

Corollary 3. Let Eη1 < Eξ1 < 0 and ε > 0. Then

P{Vn1 > 0, Vn2 > 0 | V1 = (v1, v2)} → 1

as N → ∞ uniformly in n ≥ N and in (v1, v2) on the set

{v1, v2 > n(|Eξ1| + ε), v1 + v2 > n(|Eξ1| + |Eη1| + ε)} .

Corollary 4. Let Eη1 < Eξ1 < 0 and ε > 0. Then

P{Vn1 > 0, Vn2 > 0 | V1 = (v1, v2)} → 0

as N → ∞ uniformly in n ≥ N and in (v1, v2) on the
complementary set

{v1 > n(|Eξ1| − ε), v2 > n(|Eξ1| − ε), v1 + v2 > n(|Eξ1| + |Eη1| − ε)}.

Corollary 5. Let Eη1 < 0, Eξ1 > 0, Eη1 + Eξ1 < 0 and
ε > 0. Then

P{Vn1 > x, Vn2 > x | V1 = (v1, v2)} → 1

as x, N → ∞ uniformly in n ≥ N and in (v1, v2) on the set

{v1 > x − n(Eξ1 − ε), v2 > 2x + n(|Eξ1 + Eη1| + ε)} .

3. The maximal stability case: A lower bound

Theorem 3. Assume b ∈ (0, a). Let the integrated service
time distribution BI be long-tailed. Then the tail of the sta-
tionary waiting time W admits the following estimate from
below: as x → ∞,

P{W > x} ≥ 1 + o(1)

a(2a − b)

[
(B̄I (x))2 + b

∫ ∞

0
B̄I (x + ya)

× B̄(x + y(a − b)) dy

]
. (6)

Remark 1. From (6), one can get the lower bound in Corol-
lary 1. Namely, replace B̄(x + y (a − b)) by a smaller term
B̄(x + ya) in the integral in the RHS of (6). Then the new in-
tegral is equal to b (B̄I (x))2/2a, and the lower bound follows
since

1

a(2a − b)

(
1 + b

2a

)
= 2a + b

2a2(2a − b)
.

Remark 2. By use of Strong Law of Large Numbers, one can
get the following result for s-server queue, s ≥ 2. If b < a,
then there exists a constant K ≡ K (a, b, s) such that

P{W > x} ≥ (K + o(1))(B̄I (x))s .

We start with some auxiliary results. The proof of the theorem
is given in Section 3.4.

Springer



36 Queueing Systems (2006) 52: 31–48

3.1. An integral equality

Lemma 4. Let f (y) be an integrable function. Put f I (y) ≡∫ ∞
y f (z)dz. Then, for any positive α and β, α > β,

J ≡
∫ ∞

0

∫ ∞

0
f (αy + βz) f (βy + αz) dy dz

= ( f I (0))2

α2 − β2
− 2β

α2 − β2

∫ ∞

0
f I (αu) f (βu) du.

Proof. Put u = αy + βz and v = βy + αz. Then

J = 1

α2 − β2

∫ ∞

0
f (u) du

∫ αu/β

βu/α

f (v) dv

= 1

α2 − β2

∫ ∞

0
f (u) f I (βu/α) du

− 1

α2 − β2

∫ ∞

0
f (u) f I (αu/β) du

= α

α2 − β2

∫ ∞

0
f (αu) f I (βu) du

− β

α2 − β2

∫ ∞

0
f (βu) f I (αu) du.

�
Integration by parts yields∫ ∞

0
f I (βu) f (αu) du

= ( f I (0))2

α
− β

α

∫ ∞

0
f I (αu) f (βu) du.

By substituting this equality into the previous one, we arrive
at the conclusion of the Lemma.

3.2. Some calculations with two big service times

Fix ε > 0 and put b′ = b − ε. For k and l, k < l ≤ n, define
the events Ankl and Cnkl by the equalities

Ankl = {σK > x + (l − k)a + (n − l)(a − b′),

σl > x + (n − l)(a − b′),

σk + σl > 2x + (l − k)a + (n − l)(2a − b′)}

and

Cnkl =
n⋂

j=1
j =k,l

{σ j ≤ x + (n − j)(a − b′)}.

Note that the events Ankl ∩ Cnkl are disjoint for different pairs
(k, l). Due to the existence of Eσ , uniformly in n ≥ 1 and
k < l ≤ n,

P{C̄nkl} ≤
∞∑
j=0

P{σ1 > x + j(a − b′)} → 0 as x → ∞.

(7)

Lemma 5. Assume b ∈ (0, a). Let the integrated tail dis-
tribution BI be long-tailed. Then, for any fixed N ≥ 1 and
for any ε > 0, as x → ∞,

lim
n→∞

n−N∑
k,l=1
k<l

P{Ankl} ∼ 1

a(2a − b′)

×
[

(B̄I (x))2 + b′
∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b′)) dy

]
.

Proof. Put

A′
kl = {σ1 > x + ka + l(a − b′), σ2 > x + l(a − b′), σ1 + σ2

> 2x + ka + l(2a − b′)},

so that P{Ankl} = P{A′
l−k,n−l} and

lim
n→∞

n−N∑
k,l=1
k<l

P{Ankl} = lim
n→∞

n−1∑
l=N

n−l−1∑
k=1

P{A′
kl}

=
∞∑

l=N

∞∑
k=1

P{A′
kl}. (8)

�

Consider also the events

A(y, z) = {σ1 > x + ya + z(a − b′), σ2 > x + z(a − b′),

σ1 + σ2 > 2x + ya + z(2a − b′)},

which satisfy A(k, l) = A′
kl . Since the probability P{A(y, z)}

is non-increasing in y and z, we have the inequalities

I− ≡
∫ ∞

N

∫ ∞

1
P{A(y, z)} dy dz ≤

∞∑
l=N

∞∑
k=1

P{A′
kl}

≤
∫ ∞

0

∫ ∞

0
P{A(y, z)} dy dz ≡ I+. (9)
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The values of integrals I− and I+ are close to each other in
the following sense:

I+ − I− ≤
∫ N

0

∫ ∞

0
P{A(y, z)} dy dz

+
∫ ∞

0

∫ 1

0
P{A(y, z)} dy dz

≤ NP{σ2 > x}
∫ ∞

0
P{σ1 > x + ya}dy

+ P{σ1 > x}
∫ ∞

0
P{σ1 > x + z(a − b′)} dz.

Recall that the distribution B̄I (x) is long tailed, which is
equivalent to B̄(x) = o(B̄I (x)). Therefore, as x → ∞,

I+ − I− ≤ N + 1

a − b′ B̄(x)B̄I (x) = o((B̄I (x))2).

Now it follows from (9) that, as x → ∞,

∞∑
l=N

∞∑
k=1

P{A′
kl} =

∫ ∞

0

∫ ∞

0
P{A(y, z)}dy dz

+ o((B̄I (x))2). (10)

Further,

P{A(y, z)}
= B̄(x + ya + za)B̄(x + z(a − b′))

+ P{x + ya + z(a − b′) < σ1 ≤ x + ya + za,

σ2 > x + z(a − b′), σ1 + σ2 > 2x

+ya + z(2a − b′)}
= B̄(x + ya + za)B̄(x + z(a − b′))

+ P{x + ya + z(a − b′) < σ1 ≤ x + ya + za,

σ1 + σ2 > 2x + ya + z(2a − b′)}
≡ B̄(x + ya + za)B̄(x + z(a − b′)) + Q(y, z),

since the event {σ1 ≤ x + ya + za, σ1 + σ2 > 2x + ya +
z(2a − b′)} implies the event {σ2 > x + z(a′ − b)}. Conse-
quently integrating over y and z, we obtain

∫ ∞

0

∫ ∞

0
B̄(x + ya + za)B̄(x + z(a − b′)) dy dz

= 1

a

∫ ∞

0
B̄I (x + za)B̄(x + z(a − b′)) dz.

By the total probability formula,

Q(y, z) =
∫ zb′

0
P{σ1 ∈ x + ya + z(a − b′) + dt}

× P{σ2 > x + za − t}

=
∫ zb′

0
B̄(x + za − t)B(x + ya + z(a − b′) + dt).

The integration against y leads to the equalities∫ ∞

0
Q(y, z) dy = 1

a

∫ zb′

0
B̄(x + za − t)

× BI (x + z(a − b′) + dt)

= 1

a

∫ zb′

0
B̄(x + za − t)

× B̄(x + z(a − b′) + t) dt

= b′

a

∫ z

0
B̄(x + za − tb′)

× B̄(x + z(a − b′) + tb′) dt.

Integrating against z, we obtain:∫ ∞

0

∫ ∞

0
Q(y, z)dy dz = b′

a

∫ ∞

0

∫ z

0
B̄(x + za − tb′)

× B̄(x + z(a − b′) + tb′) dt dz

= b′

a

∫ ∞

0

∫ ∞

t
B̄(x + za − tb′)

× B̄(x + z(a − b′) + tb′) dz dt

= b′

a

∫ ∞

0

∫ ∞

0
B̄(x + za + t(a − b′))

× B̄(x + z(a − b′) + ta) dz dt.

By Lemma 4 with f (y) = B̄(x + y), α = a, and β = a − b′,
the latter integral is equal to

1

a(2a − b′)
(B̄I (x))2 − 2(a − b′)

a(2a − b′)

×
∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b′)) dy.

Putting everything together into (10), we obtain the following
equivalence, as x → ∞:

∞∑
l=1

∞∑
k=1

P{A′
kl} ∼ 1

a(2a − b′)
(B̄I (x))2

+ b′

a(2a − b′)

∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b′)) dy,

which due to (8) completes the proof of the Lemma.
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3.3. Proof of Theorem 3

If B̄I (x) is long-tailed, then the function in x

(B̄I (x))2 + b
∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b)) dy

is long-tailed as well. Indeed, for any fixed t , we have, as
x → ∞,

∫ ∞

0
B̄I (x + t + ya)B̄(x + t + y(a − b)) dy

∼
∫ ∞

0
B̄I (x + ya)B̄(x + t + y(a − b)) dy.

Integrating by parts we get the equality for RHS integral

− 1

a − b
B̄I (x + ya)B̄I (x + t + y(a − b))

∣∣∣∣∞
0

−
∫ ∞

0
B̄(x + ya)B̄I (x + t + y(a − b)) dy

∼ 1

a − b
(B̄I (x))2 −

∫ ∞

0
B̄(x + ya)B̄I (x + y(a − b)) dy

=
∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b)) dy.

So, we can apply Lemma 2, and it is sufficient to prove the
lower bound of Theorem 3 for the queueing system D/GI/2
with deterministic input stream. Let the interarrival times τn

be deterministic, i.e., τn ≡ a. Then the event Ankl implies the
event

{Wk+1,2 > x + (l − k)a + (n − l)(a − b′) − a,

Wl+1,1 > x + (n − l)(a − b′) − a, Wl+1,1 + Wk+1,2

> 2x + (l − k)a + (n − l)(2a − b′) − 2a},

which implies

{Wl+1,2, Wl+1,1 > x + (n − l)(a − b′) − a,

Wl+1,1 + Wl+1,2 > 2x + (n − l)(2a − b′) − 2a}.

Thus, by Corollary 3 (with ξ = σ − τ , and η = −τ ) there
exists N such that

P{Wn > x | Ankl} ≥ 1 − ε (11)

for any n > N and k < l < n − N .

Taking into account that the events Ankl ∩ Cnkl are disjoint
for distinct pairs (k, l), we obtain the following estimates:

P{Wn > x} ≥
n−N∑
k=1

n−N∑
l=k+1

P{Wn > x, Ankl, Cnkl}

≥
n−N∑
k=1

n−N∑
l=k+1

P{Wn > x, Ankl}

−
n−N∑
k=1

n−N∑
l=k+1

P{Ankl, C̄nkl}.

Since the events Ankl and Cnkl are independent,

P{Wn > x} ≥
n−N∑
k=1

n−N∑
l=k+1

P{Wn > x, Ankl}

− sup
kl

P{Cnkl}
n−N∑
k=1

n−N∑
l=k+1

P{Ankl}

=
n−N∑
k=1

n−N∑
l=k+1

P{Wn > x | Ankl}P{Ankl}

−o(1)
n−N∑
k=1

n−N∑
l=k+1

P{Ankl}

as x → ∞ uniformly in n, by (7). Together with (11) it im-
plies that, for sufficiently large x and n > N ,

P{Wn > x} ≥ (1 − 2ε)
n−N∑
k=1

n−N∑
l=k+1

P{Ankl}.

Letting now n → ∞, we derive from Lemma 5 the following
lower bound, for all sufficiently large x :

P{W > x} ≥ 1 − 3ε

a(2a − b′)

[
(B̄I (x))2 + b′

∫ ∞

0
B̄I (x + ya)

× B̄(x + y(a − b′)) dy

]
.

Note that, for any b′ < b < a,

∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b′)) dy

≥ a − b

a − b′

∫ ∞

0
B̄I (x + ya)B̄(x + y(a − b)) dy.

We complete the proof of the Theorem by letting ε ↓ 0.
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4. The maximal stability case: An upper bound

Theorem 4. Assume b ∈ (0, a). Suppose that the distribu-
tion BI is subexponential. Then, as x → ∞,

P{W > x} ≤ 1 + o(1)

a(2a − b)

[
(B̄I (x))2 + b

∫ ∞

0
B̄I (x + ya)

× B̄(x + y(a − b)) dy

]
.

By Lemma 1, it is sufficient to prove this upper bound
for the queueing system D/GI/2 with deterministic input
stream. So, let the interarrival times τn be deterministic, i.e.,
τn ≡ a. Let σ (1)

n and σ (2)
n , n ≥ 1, be independent random vari-

ables with common distribution B. In this Section, define the
service times σn recursively. For that, we have to associate
workloads with servers. Put U1 = (U1,1, U1,2) = (0, 0) and
introduce the recursion

Un+1 = (
Un + eαn σn − ia

)+
(12)

where αn = 1 if Un,1 < Un,2 and αn = 2 if Un,1 > Un,2. If
Un,1 = Un,2, then αn takes values 1 and 2 with equal probabil-
ities independently of everything else. Note that Wn = R(Un)
a.s. for any n = 1, 2, . . ..

Now we can define σn by induction. Indeed, α0 is chosen at
random from the set {1, 2}. Put σ0 = σ

(α0)
0 . Then U1 is defined

by recursion (12) with n = 0. Assume that Un is defined for
some n > 0. Then αn is defined, too. Put σn = σ (αn )

n and
determine Un+1 by (12).

Due to the symmetry, for any n,

P{αn = 1} = P{αn = 2} = 1/2. (13)

Consider two auxiliary D/GI/1 queueing systems which
work in parallel: at any time instant Tn = na, n = 1, 2, . . .,
one customer arrives in the first queue and one in the sec-
ond. Service times in queue i = 1, 2 are equal to σ (i)

n . Denote
by W (i)

n , i = 1, 2, the waiting times in the ith queue and put
W (1)

n = W (2)
n = 0. Since b < a, both queues are stable. Let

W (i) be a stationary waiting time in the ith queue. By mono-
tonicity, with probability 1,

Wn ≤ min
(
W (1)

n , W (2)
n

)
(14)

for any n ≥ 1. Hence,

W ≤ min
{
W (1), W (2)

}
. (15)

Lemma 6. The waiting times {W (1)
n } and {W (2)

n } are inde-
pendent.

Proof follows from the observation that the input (deter-
ministic) stream and service times in the first queue do not
depend on the input (also deterministic) stream and service
times in the second one.

Provided BI is a subexponential distribution,

P
{
W (i) > x

} ∼ 1

a − b
B̄I (x) as x → ∞. (16)

Then Lemma 6 together with (15) implies the following sim-
ple upper bound:

lim sup
x→∞

P{W > x}
(B̄I (x))2

≤ 1

(a − b)2
. (17)

Remark 3. For a G I/G I/s queue with a < b and subex-
ponential distribution BI , similar arguments lead to

lim sup
x→∞

P{W > x}
(B̄I (x))s

≤ 1

(a − b)s
.

Introduce the events, for k < n,

A(1)
nk = {

σ
(1)
k > x + (n − k)(a − b)

}
,

A(2)
nk = {

σ
(2)
k > x + (n − k)(a − b)

}
.

Lemma 7. (See also [3, Theorem 5]). Provided the distri-
bution BI is subexponential, for any fixed N,

lim sup
n→∞

P

{
W (1)

n > x,

n−N⋂
k=1

A(1)
nk

}
= o(B̄I (x)) as x → ∞.

Proof. For any δ > 0, consider the disjoint events

C (1)
nk =

{{
σ

(1)
k > x + (n − k)(a − b + δ)

}
∩

n−1⋂
j=1
j =k

{
σ

(1)
j ≤ x + (n − j)(a − b)

}}
.

Due to the Law of Large Numbers, there exists M > N
such that

P
{
W (1)

n > x | C (1)
nk

} ≥ 1 − δ
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for any n ≥ M and k ≤ n − M and, by the limit
at (7),

P
{
C (1)

nk

} ≥ (1 − δ)P
{
σ

(1)
k > x + (n − k)(a − b + δ)

}
.

The events C (1)
nk , k ≤ n − M , are disjoint, hence,

P

{
W (1)

n > x,

n−M⋃
k=1

C (1)
nk

}
=

n−M∑
k=1

P
{
W (1)

n > x, C (1)
nk

}
≥ (1 − δ)2

n−1∑
k=M

P
{
σ

(1)
k > x

+ k(a − b + δ))
}
.

The latter implies the following lower bound:

lim inf
n→∞ P

{
W (1)

n > x,

n−M⋃
k=1

C (1)
nk

}

≥ (1 − δ)2
∞∑

k=m

B̄(x + k)(a − b + δ)) ∼ (1 − δ)2

a − b + δ
B̄I (x)

as x → ∞. Since A(1)
nk ⊇ C (1)

nk and since M > N and δ > 0
can be chosen arbitrarily,

lim inf
n→∞ P

{
W (1)

n > x,

n−N⋃
k=1

A(1)
nk

}
≥ 1 + o(1)

a − b
B̄I (x)

as x → ∞.

Together with (16), it implies the assertion of the Lemma.
Proof of Theorem 4 continued. Estimate (14) and Lemma

6 imply

P

{
Wn > x,

n−N⋂
k=1

A(1)
nk ∪

n−N⋂
l=1

A(2)
nl

}

≤ P

{
W (1)

n > x, W (2)
n > x,

n−N⋂
k=1

A(1)
nk ∪

n−N⋂
l=1

A(2)
nl

}

≤ P

{
W (1)

n > x,

n−N⋂
k=1

A(1)
nk

}
P
{
W (2)

n > x
}

+ P
{
W (1)

n > x
}
P

{
W (2)

n > x,

n−N⋂
l=1

A(2)
nl

}
.

Applying now Lemma 7 and relation (16), we conclude that,
as x → ∞,

lim inf
n→∞ P

{
Wn > x,

n−N⋂
k=1

A(1)
nk ∪

n−N⋂
l=1

A(2)
nl

}
= o((B̄I (x))2).

Since

n−N⋂
k=1

A(1)
nk ∪

n−N⋂
l=1

A(2)
nl =

n−N⋂
k,l=1

(
A(1)

nk ∪ A(2)
nl

)

=
n−N⋃
k,l=1

(
A(1)

nk ∩ A(2)
nl

)
,

we obtain the equivalent relation, as x → ∞,

lim inf
n→∞ P

{
Wn > x,

n−N⋃
k,l=1

(
A(1)

nk ∩ A(2)
nl

)} = o((B̄I (x))2). (18)

Fix ε > 0 and put b′ = b + ε. For any n and k ≤ l ≤ n,
define

D(1)
nk = {

σ
(1)
k > x + (l − k)a + (n − l)(a − b′)

}
,

D(2)
nl = {

σ
(2)
l > x + (n − l)(a − b′)

}
,

Dnkl = {
σ

(1)
k + σ

(2)
l > 2x + (l − k)a + (n − l)(2a − b′)

}
.

For any n and l ≤ k ≤ n, define

D(1)
nk = {

σ
(1)
k > x + (n − k)(a − b′)

}
,

D(2)
nl = {

σ
(2)
l > x + (k − l)a + (n − k)(a − b′)

}
,

Dnkl = {
σ

(1)
k + σ

(2)
l > 2x + (k − l)a + (n − k)(2a − b′)

}
.

Denote

Fnkl = D(1)
nk ∩ D(2)

nl ∩ Dnkl.

We can derive an upper bound on the probability of the event
{Wn > x} as follows:

P{Wn > x} ≤ P

{
Wn > x,

n−N⋃
k,l=1

Fnkl

}

+ P

{
Wn > x,

n−N⋃
k,l=1

Fnkl,

n−N⋃
k,l=1

(
A(1)

nk ∩ A(2)
nl

)}

+ P

{
Wn > x,

n−N⋃
k,l=1

(
A(1)

nk ∩ A(2)
nl

)}
≡ Pn1 + Pn2 + Pn3. (19)
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Here the first term is not greater than

Pn1 ≤ P

{
Wn > x,

n−1⋃
k,l=1
k<l

Fnkl

}
+ P

{
Wn > x,

n−1⋃
k,l=1
k>l

Fnkl

}

+ P

{
Wn > x,

n−1⋃
k=1

Fnkk

}
≡ Pn11 + Pn12 + Pn13. (20)

The third probability is negligible in the sense that

Pn13 ≤ P

{
n−1⋃
k=1

(
D(1)

nk ∩ D(2)
nk

)} ≤
n−1∑
k=1

P
{

D(1)
nk

}
P
{

D(2)
nk

}
≤ B̄(x)

∞∑
k=1

B̄(x + k(a − b − ε))

≤ B̄(x)B̄I (x)/(a − b − ε) = o((B̄I (x))2) (21)

as x → ∞, since B̄ (x) = o(B̄I (x)). The first probability in
(20) admits the following upper bound:

Pn11 ≤
n−1∑
k=1

P

{
Wn > x, D(1)

nk , αk = 1,

n−1⋃
l=k+1

(
D(2)

nl ∩ Dnkl
)}

+
n−1∑
k=1

P

{
Wn > x, D(1)

nk , αk = 2,

n−1⋃
l=k+1

(
D(2)

nl ∩ Dnkl
)}

≡ �1 + �2.

For �1, we have the following inequality and equalities:

�1 ≤
n−1∑

k,l=1
k<l

P
{

D(1)
nk , αk = 1, D(2)

nl , Dnkl
}

=
n−1∑

k,l=1
k<l

P{αk = 1}P{
D(1)

nk , D(2)
nl , Dnkl

}

= 1

2

n−1∑
k,l=1
k<l

P{Fnkl}, (22)

by independence of the event {αk = 1} from D(1)
nk , D(2)

nl and
Dnkl and by the symmetry (13). The sum �2 is not greater
than

�2 ≤
n−1∑
k=1

P
{
WN > x, D(1)

nk , αk = 2
}

=
n−1∑
k=1

P
{

D(1)
nk

}
P{Wn > x, αk = 2}

≤ P{Wn > x}
n−1∑
k=1

P
{

D(1)
nk

}
.

Hence,�2 = o(P{Wn > x}) as x → ∞uniformly in n. Com-
bining the latter fact with estimate (22) for �1, we get

Pn11 ≤ 1

2

n−1∑
k,l=1
k<l

P{Fnkl} + o(P{Wn > x}). (23)

Taking into account the equality Pn11 = Pn12, we obtain from
(20), (21) and (23) the following estimate:

Pn1 ≤
n−1∑

k,l=1
k<l

P{Fnkl} + o((B̄I (x))2)

as x → ∞ uniformly in n. Now applying the calculations
of Section 3.3 we can write down the following estimate, as
x → ∞:

limsup
n→∞

Pn1 ≤ 1 + o(1)

a(2a − b′)

[
(B̄I (x))2 + b′

∫ ∞

0
B̄I (x + ya′)

× B̄(x + y(a − b′)) dy

]
. (24)

It is proved in (18) that, uniformly in n,

Pn3 = o ((B̄I (x))2) as x → ∞. (25)

We have

n−N⋃
k,l=1

Fnkl ∩
n−N⋃
k,l=1

(
A(1)

nk ∩ A(2)
nl

) ⊆
n−N⋃
k,l=1

(
A(1)

nk ∩ A(2)
nl ∩ F̄nkl

)
.

Thus,

Pn2 ≤
n−N∑
k,l=1

P
{
Wn > x | A(1)

nk , A(2)
nl , F̄nkl

}
P
{

A(1)
nk ∩ A(2)

nl

}
.

(26)

Conditioning on Wnk and Wnl yields, for any w > 0;

P
{
Wn > x

∣∣A(1)
nk , A(2)

nl , F̄nkl
}

≤ P
{
Wn > x

∣∣Wk1 ≤ w, Wl2 ≤ w, A(1)
nk , A(2)

nl , F̄nkl
}

+ P{Wk1 > w} + P{Wl2 > w}.

Since b < 2a, the two-server queue is stable and, in par-
ticular, the sequence of distributions of random variables
(Wn1, Wn2) is tight. It means that, for any fixed ε > 0, there
exists w such that, for any k ≥ 0 and l ≥ 0,

P{Wk1 > w} ≤ ε and P{Wl2 > w} ≤ ε.
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Also, from the stability and from Corollary 4, for any fixed
ε > 0, and w > 0, there exists N such that, for any n ≥ N
and k, l ≤ n − N ,

P
{
Wn > x | Wk1 ≤ w, Wl2 ≤ w, A(1)

nk , A(2)
nl , F̄nkl

} ≤ ε.

Combining these estimates we obtain from (26),

Pn2 ≤ 3ε

n−N∑
k,l=1

P
{

A(1)
nk ∩ A(2)

nl

} = 3ε

(
n=N∑
k=1

P
{

A(1)
nk

})2

.

Hence,

Pn2 ≤ 3ε

( ∞∑
k=1

B̄(x + k(a − b′))

)2

≤ 3ε

(a − b′)2
(B̄I (x))2.

(27)

Since the choice of ε > 0 is arbitrary, relations (19)–(25) and
(27) imply the conclusion of Theorem 4.

5. The minimal stability case: Lower bounds

Theorem 5. Let b ∈ (a, 2a) and the integrated tail dis-
tribution BI be long tailed. Then the tail of the stationary
waiting time satisfies the following inequality, for any fixed
δ > 0:

P{W > x} ≥ 1 + o(1)

2a − b
B̄I

(
b + δ

b − a
x

)
as x → ∞.

Notice that if b ∈ (a, 2a) then b
b−a > 2.

Remark 4. By use of similar arguments, one can get the
following result for an s-server queue, s ≥ 2: if the integrated
distribution BI is long tailed and b ∈ ((s − 1)a, sa) then, for
any δ > 0,

P{W > x} ≥ 1 + o(1)

sa − b
B̄I

(
(s − 1)b − s(s − 2)a + δ

b − (s − 1)a

)
as x → ∞.

Theorem 5 implies the following

Corollary 6. Assume that BI ∈ I RV. Then, as x → ∞,

P{W > x} ≥ 1 + o(1)

2a − b
B̄I

(
b

b − a
x

)
.

In the case b ∈ [a, 2a) one can also derive a lower bound
which is similar to (6). More precisely, assume b ∈ [a, 2a).
Then introduce another two-server queue with the same
service times and with inter-arrival times τ ′

n = cτn , where
c > b/a. For this queue, denote by W ′ a stationary waiting
time of a typical customer. Due to monotonicity, P{W ′ >

x} ≤ P{W > x} for all x . Applying Theorem 3 and Remark
1, we get the following lower bound for the case b ∈ [a, 2a):
if the integrated tail distribution BI is long-tailed, then, for
any c > b/a,

P{W > x} ≥ (1 + o(1))
2ca + b

2c2a2(2ca − b)
(B̄I (x))2. (28)

Proof of Theorem 5. By Lemma 2, it is sufficient to prove
the lower bound for the queueing system D/G I/2 with de-
terministic input stream. Let the inter-arrival times τn be de-
terministic, i.e., τn ≡ a. For any δ > 0, set ε = δ(b−a)

a+δ
. Put

b′ = b − ε and N = x
b′−a . For any k ∈ [1, n − N ] consider

the events

Ank = {σk > 2x + (2a − b′)(n − k)},

Cnk =
n⋂

l=1
l =k

{σl ≤ 2x + (2a − b′)(n − l)}.

Since Eσ is finite,

P{C̄nk} ≤
∞∑

l=1

P{σ1 > 2x + (2a − b′)l} = O(B̄I (2x)) → 0

(29)

as x → ∞ uniformly in n ≥ 1 and k ≤ n. Since the events
Ank ∩ Cnk, k ∈ [1, n], are disjoint, we obtain

P{Wn > x} ≥
n−N∑
k=1

P{Wn > x, Ank, Cnk}

≥
n−N∑
k=1

P{Wn > x, Ank} −
n−N∑
k=1

P{Ank, C̄nk}.

Since the events Ank and Cnk are independent, we get

P{Wn > x} ≥
n−N∑
k=1

P{Wn > x, Ank}

− sup
k≤n

P{C̄nk}
n−N∑
k=1

P{Ank}

=
n−N∑
k=1

P{Wn > x | Ank}P{Ank}

−o(1)
n−N∑
k=1

P{Ank} (30)
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as x → ∞uniformly in n ≥ 1, by (29). The event Ank implies
the event

Wk+1,2 > 2x + (2a − b′)(n − k) − a.

Thus, it follows from Corollary 5 that

P{Wn > x | Ank} → 1

as x → ∞ uniformly in n and k ≤ n − N . Therefore, we can
derive from (30) the estimate

P{W > x} = lim
n→∞ P{Wn > x} ≥ (1 − ε) lim

n→∞

n−N∑
k=1

P{Ank}

= (1 − ε)
∞∑

k=N

B̄(2x + (2a − b′)k),

which is valid for all sufficiently large x . Since the tail B̄I (v)
is long-tailed,

∞∑
k=N

B̄(2x + (2a − b′)k) ∼ 1

2a − b′ B̄I (2x + (2a − b′)k)N )

= 1

2a − b′ B̄I

(
b′

b′ − a
x

)
= 1

2a − b′ B̄I

(
b + δ

b − a
x

)
as x → ∞. The proof is complete. �

6. The minimal stability case: An upper bound

Theorem 6. Assume b ∈ [a, 2a). Let both B and BI be
subexponential distributions. Then the tail of the stationary
waiting time satisfies the following inequality, as x → ∞:

P{W ≥ x} ≤ 1 + o(1)

2a − b
B̄I (2x).

Remark 5. By use of the same arguments, one can get the
following result for any s-server queue, s ≥ 2: if BI ∈ and
b < sa, then

P{W ≥ x} ≤ 1 + o(1)

sa − b
B̄I (sx) as x → ∞

provided that either (i) σ1 ≥ (s − 1)a a.s., or (ii) B ∈ .

Remark 6. For an s-server queue, Foss and Chernova [10]
have proposed another way of obtaining upper bounds; it is
based on comparison with a queue with the so-called cyclic
service discipline.

Proof of Theorem 6. From Lemma 3, it is sufficient to
consider the case of constant interarrival times τn ≡ a only.
Put Mn,0 = 0 and

Mn,i+1 = (Mn,i + σn+i − a)+.

Since b > a, M0,n → ∞ a.s. as n → ∞ and, due to the Law
of Large Numbers,

M0,n

n
→ b − a a.s. (31)

and in mean. Note that EM0,n ≥ n(b − a), since M0,n ≥
σ0 + · · · + σn−1 − na. For any given ε > 0, choose an in-
teger L > 0 such that

EM0,L

L
∈ [b − a, b − a + ε). (32)

Consider any initial workload vector W0 =
(W0,1, W0,2) ≥ 0. Put Zn = Wn,1 + Wn,2 Since the in-
crements of the minimal coordinate of the waiting time
vector is not greater than the increments of Mo,n ,

W1,n − W1,0 ≤ M0,n for any n.

Hence, provided Wn,2 ≥ a, we have the inequality

Zn+1 − Zn ≤ M0,n+1 − M0,n − a.

If Z0 ≥ 2aL , then W0,2 ≥ aL and, for n = 0, . . . , L −
1, Wn,2 ≥ a(L − n) ≥ a. Therefore, if Z0 ≥ 2aL , then

ZL ≤ Z0 + M0,L − aL .

Monotonicity implies, for any initial vector W0,

ZL ≤ max{2aL , Z0} + M0,L − aL .

Thus, the following inequalities are valid for any n:

Z(n+1)L ≤ max{2aL , ZnL} + MnL ,L − aL . (33)

Consider a single-server queue with i.i.d. service times
σ̂n = MnL ,L and constant inter-arrival times τ̂n = La and
denote by Ŵn a waiting time of nth customer. This queue
is stable since b̂ ≡ Eσ̂1 < aL ≡ â. Put Ŵ0 = 0. Assuming
that Z0 = 0, we can derive from (33) the following bounds:
for all n = 0, 1, . . .,

ZnL ≤ 2aL + Ŵn a.s. (34)
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Denote Ḡ(x) = P{σ̂0 > x}. We show that the integrated
tail distribution G I is a subexponential one. We need to con-
sider only the case L > 1. Note first that

σ0 + · · · + σL−1 − La ≤ σ̂0 ≤ σ0 + · · · + σL−1 a.s. (35)

Since the distribution of σ1, is assumed to be subexponential,
the asymptotics for the lower and upper bounds in the latter
inequalities are the same: as x → ∞,

P

{
L−1∑

0

σi − La > x

}
∼ P

{
L−1∑

0

σi > x

}
∼ L B̄(x). (36)

Therefore, the tail Ḡ(x) has the same asymptotics and G is
a subexponential distribution. Thus,

Ḡ I (x) =
∫ ∞

x
Ḡ(y) dy ∼ L B̄I (x), (37)

and G I is a subexponential distribution, too. Thus, by classic
result (1) for the single server queue, the steady state distribu-
tion of the waiting time Ŵn satisfies the following relations,
as x → ∞:

lim
n→∞ P{Ŵn > x} ∼ 1

â − b̂
Ḡ I (x) ≤ 1

(2a − b − ε)L
Ḡ I (x)

∼ 1

2a − b − ε
B̄I (x), (38)

by (32) and (37). Since Zn = Wn,1 + Wn,2 ≥ 2Wn,1,

P{W > x} = P{2W > 2x} ≤ lim
n→∞ P{ZnL > 2x}.

Now it follows from (34) and (38) that

P{W > x} ≤ lim
n→∞ P{Ŵn > 2x − 2aL}

≤ 1 + o(1)

2a − b − ε
B̄I (2x − 2aL)

∼ 1

2a − b − ε
B̄I (2x),

since BI is long-tailed. Letting ε ↓ 0 concludes the proof.

7. The minimal stability case: Exact asymptotics

In this Section, we prove Theorem 2. First note that, as fol-
lows from (28), the tail P{W > x} may be heavier than that
in Theorem 2, in general. For instance, this happens if

B̄I

(
b

b − a
x

)
= o(B̄2

I (x)) as x → ∞. (39)

Assume b ∈ (a, 2a) and consider, for example, a service
time distribution with the Weibull integrated tail B̄I (x) =
e−xβ

, β ∈ (0, 1). Then (39) holds if ( b
b−a )β > 2.

Proof of Theorem 2. Since BI ∈ I RV, both the lower bound
in Theorem 5 and the upper bound in Theorem 6 are of the
same order,

B̄I (2x) = O

(
B̄I

(
b

b − a
x

))
. (40)

We use the notation from the previous Section. In par-
ticular, we fix ε > 0 and choose L satisfying (32). For any
constant c ≥ 0, (35) implies

L−1⋃
i=0

{σkL+i > x + La + (L − i)c}

⊆
{

L−1∑
i=0

σkL+i − La > x

}
⊆ {σ̂k > x}.

Therefore, from (35) and (36),

P

{
{σ̂k > x}\

L−1⋃
i=0

{σkL+i > x + La + (L − i)c}
}

= o(B̄(x)). (41)

Take c = (â − b̂)/L . By (34)

P{W > x} = lim
n→∞ P{WnL ,1 > x}

= lim
n→∞ P{WnL ,1 > x, Ŵn > 2x − 2aL}.

Standard arguments concerning how large deviations in the
single server queue Ŵn occur imply the relation

P{W > x} = lim
n→∞

n−1∑
k=0

P{WnL ,1 > x,

σ̂k > 2x + (n − k)(â − b̂)} + o(B̄I (2x))

= lim
n→∞

nL−1∑
i=0

P{WnL ,1 > x, σi > 2x + (n − i)c}

+ o(B̄I (2x)),

by (41). Now it follows from (32) that

P{W > x} = lim
n→∞

nL−1∑
k=0

P{WnL ,1 > x,

σi > 2x + (n − i)(2a − b − ε)} + o(B̄I (2x))

Springer



Queueing Systems (2006) 52: 31–48 45

≤ lim
n→∞

nL∑
j=1

P{WnL ,1 > x,

σnL− j > 2x + j(2a − b + ε)} + εO(B̄I (2x))

+ o(B̄I (2x)) = lim
n→∞

(
N (1−ε)∑

j=1

+
nL∑

j=N (1−ε)

)
+ εO(B̄I (2x))

≡ lim
n→∞(�1 + �2) + εO(B̄I (2x)),

where N = x/(b − a). The second term admits the following
estimate

�2 ≤
∞∑

j=N (1−ε)

P{σ > 2x + j(2a − b)}

∼ 1

2a − b
B̄I (2x + N (1 − ε)(2a − b))

= 1

2a − b
B̄I

(
b

b − a
x − ε

2a − b

b − a
x

)
.

It follows from BI ∈ RV that, for any δ > 0, there exists
ε > 0 such that

�2 ≤ 1

2a − b
B̄I

(
b

b − a
x

)
+ δ B̄I (2x),

which coincides with the lower bound in Theorem 5.
Now consider the first term �1. Since the queue is stable,

one can choose K > 0 such that P{Wn,2 ≤ K } ≥ 1 − ε for
all K . Then

�1 ≤
N (1−ε)∑

j=1

P{WnL− j,2 > K , σnL− j > 2x + (2a − b + ε) j}

+
N (1−ε)∑

j=1

P{WnL ,1 > x, WnL− j,2 ≤ K ,

σnL− j > 2x + (2a − b + ε) j}
≡ �1,1 + �1,2.

We have

�1,1 ≤
N (1−ε)∑

j=1

P{WnL− j,2 > K }P{σ1 > 2x + (2a − b + ε) j}

≤ ε

∞∑
j=1

P{σ1 > 2x + (2a − b) j} ≤ ε

2a − b
B̄I (2x).

Note that if WnL− j,2 ≤ K , then WnL ,1 ≤ K +
MnL− j+1, j−1. Therefore,

�1,2 ≤
N (1−ε)∑

j=1

P{σnL− j > 2x + (2a − b) j,

K + MnL− j+1, j−1 > x}

=
N (1−ε)∑

j=1

P{σnL− j > 2x + (2a − b) j}

× P{K + M0, j−1 > x}.

Since the sequence M0, j stochastically increases,

�1,2 ≤ P
{

K + M0,N (1−ε) > x
} ∞∑

j=1

P{σ1 > 2x + (2a − b) j}

≤ P
{

M0,N (1−ε) > x − K
} 1

2a − b
B̄I (2x).

Since

x − K

N (1 − ε)
→ b − a

1 − ε
> b − a as x → ∞,

we have by (31)

P
{

M0,N (1−ε) > x − K
} = P

{
MN (1−ε)

N (1 − ε)
>

x − K

N (1 − ε)

}
→ 0.

Thus, we have shown that the upper bound for P{W > x}
is not bigger than the lower bound in Theorem 5 plus a term
of order

(ε + δ)O(BI (2x)) ≤ (ε + δ)O

(
BI

(
bx

b − a

))
due to (40). Since ε > 0 and δ > 0 may be chosen as small
as we please, the proof of Theorem 2 is complete.

8. Tail asymptotics for the two-dimensional workload
vector

Denote by W 0 = (W 0
1 , W 0

2 ) a weak limit for the vectors Wn

as n → ∞. Clearly, W = W 0
1 .

8.1. Maximal stability case

First, we obtain simple lower and upper bounds which are
equivalent up to some constant. Second, we give (without a
proof) a result related to the exact asymptotics.
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Theorem 7. Let b < a and BI ∈ L. Then, as x, y →
∞, x ≤ y,

P
{
W 0

1 > x, W 0
2 > y

} ≥ 1 + o(1)

a2
B̄I (x)B̄I (y).

If, in addition, BI ∈ , then

P
{
W 0

1 > x, W 0
2 > y

} ≤ 2 + o(1)

(a − b)2
B̄I (x)B̄I (y).

Proof. Fix ε > 0 and put a′ = a + ε. For k, l ≤ n, k = l,
define the events Ankl and Cnkl by the equalities

Ankl = {σk > x + (n − k)a′, σl > y + (n − l)a′}

and

Cnkl =
n⋂

j=1
j =k,l

{σ j ≤ x + (n − j)a′}.

Note that the events Ankl ∩ Cnkl are disjoint for different pairs
(k, l) and

P{Wn1 > x, Wn2 > y} ≥
n∑

k=1

n∑
l=k+1

P{Wn1 > x,

Wn2 > y, Ankl, Cnkl}.

Then the same calculations as in Section 3.3 imply the esti-
mate, as x, y → ∞,

P{Wn1 > x, Wn2 > y}

≥ (1 + o(1))
n∑

k=1

n∑
l=k+1

B̄(x + (n − k)a′)B̄(y + (n − l)a′)

= (1 + o(1))
n−1∑
k=1

n−k−1∑
l=1

B̄(x + ka′)B̄(y + la′).

Hence,

P
{
W 0

1 > x, W 0
2 > y

} ≥ (1 + o(1))
∞∑

k=1

∞∑
l=1

B̄(x + ka′)

× B̄(y + la′) ∼ B̄I (x)B̄I (y)/a′2

and the lower bound is proved.

Proceed to the upper bound. Due to construction of the
majorant (W (1)

n , W (2)
n ) in Section 4, we have the inequality

P
{
W 0

1 > x, W 0
2 > y

} ≤ lim
n→∞

[
P
{
W (1)

n > x, W (2)
n > y

}
+ P

{
W (1)

n > y, W (2)
n > x

}]
= 2 lim

n→∞ P
{
W (1)

n > x
}
P
{
W (2)

n > y
}
.

Together with (16) it implies the desired upper bound.
Theorem 7 is proved.

Turn now to the exact asymptotics. Below is the result. The
proof is rather complicated and will be presented in another
paper. Denote

R(x, y) = B̄I (x)B̄I (y) + b
∫ ∞

0
B̄I (y + za)

× B̄(x + x(a − b)) dz.

Recall that Theorem 1 states that P{W 0
1 > x} ∼

R(x, x)/a(2a − b) given BI ∈ .

Theorem 8. Assume b < a and BI ∈ . Let x, y →
∞, x ≤ y. Then

P
{
W 0

1 > x, W 0
2 > y

}
∼ 1

a(2a − b)
R(y, y) + 1

a2
(R(x, y) − R(y, y)).

8.2. Minimal stability case

We prove the following

Theorem 9. Assume a < b < 2a, B ∈ , and BI ∈
I RV . Let x, y, → ∞ in such a way that y/x → c ∈ [1, ∞].
Then

P
{
W 0

1 > x, W 0
2 > y

} ∼ 1

a
B̄I

(
y

(
1 + a

c(b − a)

))
+ b − a

a(2a − b)
B̄I

(
y

b

b − a

)
.

Proof. Start with the case c = ∞. From Theorem 10 in [3],
one can get the following:

Corollary 7. Assume b ∈ (a, 2a). If B ∈ and BI ∈ ,
then, as y → ∞,

P
{
W 0

2 > y
} ∼ 1

a
B̄I (y) + b − a

a(2a − b)
B̄I

(
y

b

b − a

)
.
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It is clear that

P
{
W 0

1 > x, W 0
2 > y

} ≤ P
{
W 0

2 > y
}
.

On the other hand, for any N = 1, 2, . . .,

P
{
W 0

1 > x, W 0
2 > y

} = lim
n→∞ P{Wn,1 > x, Wn,2 > y}

≥ lim
n→∞ P

{
Wn−N ,2 > y + Na,

n−1∑
j=n−N

(σ j − τ j ) > x

}

= lim
n→∞ P{Wn−N ,2 > y + Na}P

{
N∑

j=1

(σ j − τ j ) > x

}
.

Fix ε > 0. Put N = N (x) = x(1 + ε)/(b − a). Then by LLN

P

{
N∑

j=1

(σ j − τ j ) > x

}
≥ 1 − ε

for all sufficiently large x and, as n → ∞,

P{Wn−N ,2 > y + Na} → P
{
W 0

2 > y + Na
}
.

Since BI ∈ I RV,

P
{
W 0

2 > y + Na
} ∼ P

{
W 0

2 > y
}

as y → ∞.

By letting ε → 0, we get the result.
Now consider the case c < ∞. If c = 1, then the re-

sult follows from Theorem 2. Let c ∈ (1, ∞). We give here
only a sketch of the proof, by making links to the proof of
Theorem 2.

Since

P
{
W 0

1 > y
} ≤ P

{
W 0

1 > x, W 0
2 > y

} ≤ P
{
W 0

1 > x
}

and

P
{
W 0

1 > y
} ∼ P

{
W 0

1 > cx
} ≥ (K + o(1))P

{
W 0

1 > x
}

where K = inft B̄I (ct)/B̄I (t) > 0, one can get from the
proof of Theorem 2 the following equivalences: for Nx =
x/(b − a), Ny = y/(b − a), and for ε ∈ (0, 1 − 1/

√
c),

P
{
W 0

1 > x, W 0
2 > y

}
= lim

n→∞

n−Nx (1−ε)∑
i=1

P{Wn,1 > x, Wn,2 > y,

σi > 2x + (n − i)(2a − b)} + εO(B̄I (2x))

= lim
n→∞

(
n−Ny (1+ε)∑

i=1

+
n−Nx (1−ε)∑

i=n−Ny (1+ε)

)
+ εO(B̄I (2x))

≡ (�1 + �2) + εO(B̄I (2x)).

Choose K > 0 such that P{Wn,2 > K } ≤ ε for all n. Then

�2 = lim
n→∞

n−Nx (1−ε)∑
i=n−Ny (1+ε)

P{Wi,2 ≤ K , Wn,1 > x, Wn,2 > y,

σi > 2x + (n − i)(2a − b)} + εO(B̄I (2x)).

From Lemma 2 and its Corollaries,

�2 = (1 + o(1))
Ny (1+ε)∑

j=Nx (1−ε)

P{σ1 > y + ja} + εO(B̄I (x))

= 1 + o(1)

a

(
B̄I

(
y + x(1 − ε)a

b − a

)
− B̄I

(
y(b + εa)

b − a

))
+ εO(B̄I (x))

= 1 + o(1)

a

(
B̄I

(
y

(
1 + a

c(b − a)

))
− B̄I

(
yb

b − a

))
+ (ε + δ)O(B̄I (x)),

due to BI ∈ I RV. From Lemma 3 and its Corollaries,
one can also conclude that, for i < n − Ny(1 + ε), if σi <

2y + (n − i)(2a − b − ε) and Wi,2 ≤ K , then, with proba-
bility close to one, both coordinates of the vector (Wn,1, Wn,2)
take values less then y for all sufficiently large n. From the
other side, if σi > 2y + (n − i)(2a − b + ε) then, with prob-
ability close to one, y < Wn,1 ≤ Wn,2. Therefore,

�1 = (1 + o(1))
∞∑

j=Ny (1+ε)

P{σ1 > 2y + j(2a − b)}

+ εO(B̄I (x))

= 1 + o(1)

2 − b
B̄I

(
yb

b − a

)
+ εO(B̄I (x)).

Summing up the terms and letting ε and δ → 0 concludes
the proof.

9. Comments on stationary queue length

Let Qn be a queue length viewed by an arriving customer
n, and Q its stationary version in discrete time (i.e. Palm-
stationary). Due to the distributional Little’s law,

P{Q > n} = P{W > Tn}

where W is the stationary waiting time, Tn = τ1 + · · · + τn ,
and W , and Tn do not depend on each other. When a dis-
tribution of W is long-tailed, the asymptotics for P{W >

Tn}, n → ∞, have been found in [2] and in [11]. If, in addi-
tion, τn has a non-lattice distribution, there exists a stationary
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distribution G for a queue length in continuous time. Then,
from Lemma 1 in [11],

Ḡ(n) ∼ P{Q > n} as n → ∞.
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