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Abstract. We consider the sums S, = &1 +- - - +&; of independent identically distributed random variables.
‘We do not assume that the &’s have a finite mean. Under subexponential type conditions on distribution of
the summands, we find the asymptotics of the probability P{M > x} as x — oo, provided that M =
sup{Sn, n > 1} is a proper random variable. Special attention is paid to the case of tails which are regularly
varying at infinity. We provide some sufficient conditions for the integrated weighted tail distribution to be
subexponential. We supplement these conditions by a number of examples which cover both the infinite-
and the finite-mean cases. In particular, we show that the subexponentiality of distribution F does not imply
the subexponentiality of its integrated tail distribution F' 1

Keywords: supremum of sums of random variables, large deviation probabilities, subexponential distribu-
tion, integrated weighted tail distribution

1. Introduction

Let &, &, &, ... be independent random variables with common nondegenerate distri-
bution F on the real line R. We let F(x) = F((—oo,x]) and F(x) = 1 — F(x). In
general, for any distribution G, we denote its tail by G(x) = G((x,00)). In this paper,
an important role is played by the negative truncated mean function

m(x) = Emin{é~, x) = / PlE > y}dy, x>0,
0

where £~ = max{—£&, 0}; the function m(x) is continuous, m(0) = 0 and m(x) > O for
any x > 0.
Put §=0,8,=& +---+§&,, and

M = sup{S,,n = 0}.

Our main assumption is that M is finite a.s. The latter occurs if and only if S, — —oo as
n — oo with probability one (see [13, chapter XII, section 2, theorem 1]). It is known
that
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(1) if E|&| < oo, then S, - —o0 a.s. asn — oo if and only if E€ < 0;
(i) if E|§| = oo, then §,, - —o0 a.s. as n — oo if and only if

/ = F(dx) is finite, 1)
o m(x)
see [12, corollary 1]. Note that the function x/m(x) is increasing, since
i X m(x) — xm’(x) _ m(x) — xP{&~ > x} 0. @)
dx m(x) m2(x) m2(x)

In the case (ii), m(x) — oo as x — 00, with necessity. Roughly speaking, condi-
tion (1) means that the right tail of the distribution F is lighter than the left one.

The main goal of the present paper is to investigate the asymptotic behaviour of
the probability P{M > x} as x — oo when the distribution of the summands is heavy-
tailed. As far as applications are concerned, (a) in queueing, M coincides in distribution
with the stationary waiting time in the corresponding GI/G/1 queue; (b) in risk theory,
P{M > x} is the probability of ruin.

We recall the definitions of some classes of functions and distributions which will
be used in the sequel.

Definition 1. The function f is called long-tailed if, for any fixed ¢, the limit of the ratio
S +1)/f(x)is equal to I as x — oo. We say that the distribution G is long-tailed
(and write G € L) if the function G (x) is long-tailed.

Definition 2. The distribution G on R* with unbounded support belongs to the class S
(and is called a subexBonential distribution) if the convolution tail G*G (x) is asymptot-
ically equivalent to 2G (x) as x — oo.

It is shown in [6] that any subexponential distribution G is long-tailed with neces-
sity. Sufficient conditions for some distribution to belong to the class S may be found,
for example, in [6,14,18]. The class S includes, in particular, the following distributions
on [0, 00): (i) any distribution G whose tail G(x) is regularly varying at infinity with
index o < 0, that is, for any fixed t > O, G(xt) ~ t°G(x) as x — oo; (ii) the lognor-
mal distribution with the density e~ (n¥—In@?/202 /x~/2mo? with a > 0; (iii) the Weibull
distribution with the tail G (x) = e ™" with « € (0, 1).

It is known (see [10,19]) that, if E£ = —a is finite negative number and the inte-
grated tail distribution F!,

Fl(x) = min(l, fwf(x +u) du), x >0, 3)
0

is subexponential, then the distribution tail of the maximum of sums is equivalent, up to
a constant, to the integrated tail of the distribution of one summand, that is,

Fl(x)

P{M > x} ~ as x — oQ. 4)
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The converse is also true (see [16]): if the asymptotic (4) holds, then the integrated tail
distribution F! is subexponential.

In the present paper, we consider mainly the case where the £’s have infinite mean.
In this case, we should assume E§™ = oo, otherwise M = oco. Without further assump-
tions, we can provide lower and upper bounds only.

Theorem 1. Suppose E£E~ = oo and the condition (1) holds. Let the distribution F be
long-tailed and the distribution G with the tail

Gi(x) = min(l, foof(x +1) dL> (5)
0 m(t)

be subexponential. Then the following estimates hold:

. P(M>x} __ P{M>x)
I <liminf ———— < limsup —— <
X—=00 Gi(x) x—>00 Gi(x)

In the case where the function m(x) is regularly varying, we get the following sharp
asymptotics (the symbol I" stands for the Gamma function):

Theorem 2. Suppose E£~ = oo and the condition (1) holds. Let m(x) be regularly
varying at infinity with index 1 — o € [0, 1]. If the distribution F is long-tailed and the
distribution G with the tail (5) is subexponential, then

61 (x)

P{M > x} ~ NTESSCES) as x — 00. 6)

If @ € (0, 1], then the assumption of the subexponentiality of G can be replaced by that
of the subexponentiality of the distribution G, with tail

Go(x) = min(l, /oo Fx+0) dt), 7
1 m(t)
and then
P{M>x}~& as x — 00. ®)
Fre)r2 —a)

The proofs of theorems 1 and 2 are given in section 4. Theorem 2 answers some
questions on the behaviour of the maximums of sums of independent random variables
raised by Dynkin in [7, section 7]. Some related results for Lévy processes can be found
in [15].

Both the tails (5) and (7) are lighter than the integrated tail F! (if the latter exists).

If both the tail F(¢) and the function m (¢) are regularly varying at infinity, we can
specify the assertion of theorem 2 in the following way (the corresponding calculations
are carried out in section 4):
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Corollary 1. Suppose EE~ = oo and the condition (1) holds. Let F(z) = t~#L*(¢)
and m(t) = t'"*L,(t), where L*(¢) and L, (¢) are functions that are slowly varying at
infinity, 0 < o < 1, ¢ < B. If @ < B, then

PM > 3} ~ P~ XF@) )
FBrQ2—oa) mx)

If « = B, then

F(t) L*(1)
[ (a )F(Z—a)/ m(t) F(O{)F(2—oe)/ tL.(t)

P{M > x} ~ de.  (10)

Remark 1. Let « € [0,1) and L(x) be a slowly varying at infinity function. Then
m(x) ~ x'7*L(x) as x — oo if and only if F(—x) ~ (1 —a)x “L(x) (see [13,
chapter XIII, section 5]).

An asymptotic equivalence like (9) for « € (0,1), @ < B is established in [5,
theorem 4.1] by other methods and under some additional technical assumptions. With
regard to (10), note that, for any fixed A > 0,

[os] L*(l) o0 L*(l)
dr ~ dt asx — oo,
v 1L(1) ax TLi(1)
since, by the Uniform Convergence Theorem for regularly varying functions (see
[4, theorem 1.5.2]) and by Karamata’s theorem (see [4, proposition 1.5.9b])

Ax * * 0 *
/ L0 g E (x)lnA:o</ L® dt). (11)
x TL(1) L (x) x TL(1)

Sufficient conditions for the subexponentiality of the distributions (5) and (7) are
given in section 5. In particular, G| and G, are subexponential distributions if F is either
a Pareto, Log-normal or Weibull distribution. However, in general, the subexponentiality
of F only does not imply that of G; and G, (see section 6).

The paper is organized as follows. In sections 2 and 3, we prove some auxiliary re-
sults concerning the first descending and ascending ladder heights of a random walk. In
section 4, we give the proofs of the theorems concerning the asymptotics for P{M > x}.
Sufficient conditions for the subexponentiality of (5) and (7) may be found in section 5.
Finally, section 6 is devoted to examples.

2. Asymptotics and bounds for the first descending ladder height in the infinite
mean case

Let n, = min{n > 1: S, < 0} be the first descending ladder epoch (we put min J = o0)
and y, = —§,, be the corresponding descending ladder height. Since M is finite, 1, and
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X« are proper random variables. Moreover (see, e.g., [1, chapter VII, theorem 2.3(c)]),
En, < oo and

p=PM =0} =

En 12)

For the stopping time 7,, we have Wald’s identity Ex, = —En,E§, provided the
mean value of & is finite and negative (see [13, chapter XII, section 2, theorem 2(ii)]).
In our analysis of the infinite-mean case, the key role will be played by the following
analogue of this identity:

Lemma 1. Suppose E£~ = oo and the condition (1) holds. Then

E min {,,
M — En, asx — oo. (13)
m(x)

In addition, for any x > 0,

Emin{y., x} < m(x)En,. (14)

Proof.  Define the taboo renewal measure on R

o0
H*(B)=1{0€ B} + Y P{§;>0,.... 5,> 0,5, € B}.

n=1

This measure is finite since H*((—o0, 0)) = 0 and

H*([0,00)) =1+ ) P{$;>0,...,5, > 0}

n=1

o
=1+ ) P{n. >n}=En, < oc. (15)
n=1
By the total probability formula, for u < 0,

Pl—y. <u) = /OO F(u — t)H*(dr).
0

Therefore,

E min{ x,, x} B 1

X 1 X o0 .
o) _m(x)/(; P{X*2u}du:m(x)/(; /(; F(—u —t)H"(dt)du

_/“m@+ﬂ—mm
0

N m(x)

H*(dr). (16)

For any fixed z > 0, the function min{z, x} is concave in x > 0. Hence, the
function m(x) = Emin{&~, x} is concave as well. In particular, the function m(x) is
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long-tailed. Taking into account also that m(x) — oo as x — oo (since E€~ = 00), we
deduce the convergence, for any fixed t > 0,

m(x+1t) —m(t)
m(x)

— 1 asx — oo.

By m(0) = 0 and by the concavity of m(x),

m(x+t)—m(t) _m(x—l—t)—m(f) < (17)
m(x) T m(x) — m(0)

Applying now the dominated convergence theorem to the finite measure H*, we obtain
the following convergence of the integrals, as x — oc:

/"O m(x +1) —m(t)
0

m(x)

e — [ = 1(0.50) = Bx.
0

by (15). Together with (16), this implies the convergence (13). The inequality (14)
follows from (17) and (16). The proof is complete. O

Let x41, Xs2, - - - be independent copies of .. Define a renewal measure on R

H.(B) =1{0 € B} + ) P{)xs1 + -+ )un € B).

n=1

If E¢ is finite and negative, then H,([0,x]) ~ xEyx, as x — o0, by the Key Re-
newal Theorem. When E£ is infinite, we know only lower and upper estimates in gen-
eral.

Lemma 2 (see [12, lemma 1] or [4, section 8.6.3]). Without any assumptions, for every
x =0,
X 2x
< H.(10,x]) €
E min{y,, x}

E min{., x}
However, in the regularly varying case, the asymptotic behaviour of H, ([0, x]) is
known.

Lemma 3 (see [11, theorem 5]). If the function E min{,, x} is regularly varying at
infinity with index 1 — o, o € [0, 1], then H, ([0, x]) is regularly varying at infinity with
index « and

1 X

as x — OQ.

Using lemma 1 and equality (12), we obtain from lemmas 2 and 3 the following
corollaries.
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Corollary 2. Suppose E£~ = oo and the condition (1) holds. Then

pglimian*([O’x])m(x) < lim sup H, ([0, x])m (x) <

X—00 X X—00 X

2p.

Corollary 3. Suppose EE~ = oo and the condition (1) holds. If m(x) is regularly
varying at infinity with index 1 — o, @ € [0, 1], then, as x — oo,

p b

10~ Tt e

3. Asymptotics and bounds for the first ascending ladder height in the infinite
mean case

Let n* = min{n > 1: §, > 0} be the first ascending ladder epoch and x* = S,
the corresponding first ascending ladder height. Since M is finite a.s., n* and x* are
defective random variables, i.e. P{n* < oo} =1 — p by (12).

The starting point in our analysis of the distribution of x* is the following repre-
sentation (see [13, chapter XII, section 3]):

o
P{x* > x} :/ F(x 4+ t)H,(dr). (18)
0
Lemma 4. Suppose E€~ = oo and the condition (1) holds. If the distribution F is
long-tailed, then, for any fixed 7 > 0,
o
P{x* > x} ~/ H,([0,7 —x])F(dr) asx — oo.
x+T

Proof. Since F is long-tailed and H, ([0, 00)) = oo,
o
F(x) = 0(/ F(x + t)H*(dt)) asx — 0. (19)
0
Integration of (18) by parts gives
_ s ©
P{x" > x} = F(x + D H.(10.1])| +f H,([0.1 = x]) &, F(r).  (20)
Using the upper bound of corollary 2, we obtain, for sufficiently large ¢,

F(x +0)H,([0,1]) < F()H.([0, 1]) < 3pf(t)$ =3p / %F(ds).

Since the function x/m(x) is increasing (see (2)),

F(x + 1) H, ([0, 1]) < 3pf %F(ds) 0 ast— oo,
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due to condition (1). Substituting this into (20), we arrive at the equality (recall that
H.({0}) =1)

oo
P{x* > x} = —F(x) +f H,([0, 1 — x]) F(dr).
Applying now the relation (19), we deduce the equivalence of the lemma. U
In the same way we obtain the following:

Lemma 5. Suppose E€~ = oo and the condition (1) holds. If the distribution F is
long-tailed, then, for any fixed 7 > 0,

/0 F(X+t)dm~£+TmF(df) as x — OQ.

Lemma 6. Suppose E£~ = oo and the condition (1) holds. If the distribution F is
long-tailed, then
P{x* > x} . P{x* > x}

< liminf < limsup —= < 2p.
x—oo [ F (x +1)d(t/m(1)) xsoo [y Flx +1)d(t/m(1))

Proof. Fix ¢ > 0. It follows from corollary 2 that there exists 7 > 0 such that, for
t>T,

(p— 8)— [0,7]) < 2p + 8)—

m(t) H.{10.1) < m(t)
Applying lemma 4, we obtain, for x sufficiently large,

- -
(p — 2e) —F(dt) P{x* > x} <(2p+2e) —F(dt)
x+T m( —X) x+T m( —X)

The asymptotic equivalence in lemma 5 completes the proof, since ¢ > 0 was choosen
arbitrary. g

Using corollary 3 instead of corollary 2, we may deduce the following:

Lemma 7. Suppose E§™ = oo and condition (1) holds. Let the function m(x) be regu-
larly varying at infinity with index 1 — «, o € [0, 1]. If the distribution F' is long-tailed,
then

p
Frd4+aol'2—oa)

— t
P{x* > x} ~ F(x+t)d—— asx — oo.
m(t)
Proof. It follows from corollary 3 that there exists 7 > O such that, fort > T,

pt+e t
rd+aol'2—a) m(t)

p—c¢ t
ra+aol'2—a) m(t)

H.(10.1) <
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By lemma 4, for x sufficiently large,

o]

p—2¢ t—x

T+l C—a) )y ma—xy F@ADS Plx™ > x}

p+2e ©t—x
ST+l QR—a) Jor mt —x)

F(dr).

Applying lemma 5 completes the proof. U

4. The asymptotics and bounds for the distribution tail of the supremum

We start with a general theorem which describes the tail behaviour of the supremum in
terms of the renewal measure H,.

Theorem 3. Suppose E£~ = oo and the condition (1) holds. Let the distribution F be
long-tailed and the distribution G with the tail

G(x) = min(l, /‘000 F(x+1) dﬁ)

be subexponential. Then, as x — oo,

P{M > x} ~ 1 /OO F(x + 1) H.(dr).
P Jo

Proof. Consider the distribution Gy with the tail

Gux) = min(l, foof(x +1) H*(dt)>.
0

This distribution is long-tailed because F is long-tailed. In addition, by lemma 6, the
tail of G  is sandwiched asymptotically between the subexponential tails pG and 2pG.
Therefore, by the weak equivalence property (see [14, theorem 2.1] or [3, lemma 1]) the
distribution Gy is subexponential as well.

Let us define non-defective random variable ¥ with distribution on (0, 00)

~ P{x*e B
Py e B) = DX € B
l—p
The distribution of X is subexponential. Let X, X2, ... be independent copies of the

random variable . Notice that there exists i > 1 such that S; exceeds a level x if
and only if one of the ladder heights exceeds this level. Hence, by the formula of total
probability we have the equality

P{MeB)=>Y (1-p)"pP{Xi++ X € B}.

n=1
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Since the random variable X has a subexponential distribution, we may apply the stop-
ping time theorem (see, e.g., [2, chapter IX, section 1, lemma 1.8] or [8, section 1.3.2,
lemma 1.3.5]) and write

P{x* > x}

P(M > x}~P{¥ >x}) (1-p)pn= >

n=1

The proof is complete. 0

The latter result looks strange in the sense that while the conditions are expressed
in terms of the reference distribution F, the resulting integral is taken with respect to the
renewal measure which is a rather complicated object. In general, we are unable to write
the asymptotics for the integral

/ ” F(x 4+ t)H,(dr)
0

in terms of the distribution F itself, due to the lack of the information about the asymp-
totic behaviour of the renewal function H,([0, x]) as x — oo in the case of infinite
mean. We may deduce the lower and upper bounds only: combining the asymptotics in
theorem 3 and the bounds in lemma 6, we get the assertion of theorem 1.

To the best of our knowledge, the case when the function m (x) is regularly varying
is the only one where the asymptotic behaviour of H, ([0, x]) is known. In this case,
combining theorem 3 and lemma 7, we obtain the relation (6) of theorem 2.

Fora € [0,1],tF(—t) = (1 —a +o0o(1))m(t) ast — oo. Thus, it follows from (2)
that

d 1t o+ o(l)
dem(t)  m(@)

For o € (0, 1], we can apply this result to deduce (8) from (6).
Finally, we prove corollary 1.

ast — o0.

Proof of corollary 1. Notice that the distribution (5) is subexponential in this case by
lemma 8 from the next section. We start with the case 0 < o < 1, @ < 8. Fix ¢ > 0 and
A > 0. We have

/‘ﬁx F(x —{-f) ( )/ F(x) ex a5 X — 00 @10
1 m(t) 1 m(t) a m(ex)
and
foo Mdt < foo F@ dr ~ I AxF(dx) as x — oQ. (22)
Ax m(1) Ax m(1) B—a m(Ax)
Next,
Ar_ 1 . F(x) [ F(x+1t)mx)
/” et oY nw L Fo mo "
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. xF(x) (A F(x(1+s)) m(x)
 omx) J. F(x) m(xs)
_ xFx) (A (A +s5)P

m(x) J, sl-e

ds asx — o0, (23)

since, by the Uniform Convergence Theorem for regularly varying functions (see
[4, theorem 1.5.2])

F(x(1+s5)) m(x) N (14s)7P
F(x) m(xs) sl

as x — oo uniformly in s € [g, A]. Letting e — 0 and A — oo, we obtain from
(21)—(23) that

P{M > x} ~

1 'xf(x)/ (14 5)-Ps*1 ds = BB —a,a) xf(x)’
Fro)r2—a) mx) Fro)r2—a) mx)

which implies (9); here B is the Beta function.
We now consider the case 0 < o < 1, = 8. Fix A > 0. Now we have

Ax F(x+t) Foo Axdr Nf(x) Ax
/1 Cm() /1 m(t) a m(Ax)

A” L*(x) ©L*(t)
=0 —dr |, (24)
o Ly(x) v tL(0)
since = 8 and using (11). Further, for any small § > 0 there exists A sufficiently large
such that F(x +¢) > (1 —§)F(¢) forany t > Ax. Then

©F t < F(t Lt
/ Mdr}(l—é) er:(l—é) ()dt. (25)
Ax m(t) Ax M t) Ax tL*(t)
On the other hand,
*F t © F(t o L¥(t
f Mdtgf Ldt:/ © 4. (26)
Ax m(t) Ax m(t) Ax tL*(t)
The relations (24)—(26) and (11) imply (10). Corollary 1 is proved. Il

5.  Sufficient conditions for the integrated weighted tail distribution to be
subexponential

In this section, we present sufficient conditions for the subexponentiality of the distrib-
utions (5) and (7). We consider an even more general problem: let F' be a distribution
on R™ and H a non-negative measure on R™ such that

f F(t)H (dr) is finite. (27)
0
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In this case we can define the distribution Gz on R with the tail
o
Gu(x) = min<1,f F(x + t)H(dt)), x>0. (28)
0

We can formulate the following question: what type of conditions on F imply the subex-
ponentiality of Gy ?
First, recall that if F is long-tailed, then G is long-tailed as well.

Definition 3. The distribution F on R* is called dominated varying (F € D) iff, for
some ¢ > 0, F(2x) > cF(x) for any x.

It is known that (£ ND) C S. Also, it is known that if F € D, then F' € LN D,
but the converse is not true, in general (see [14, section 4]).

Lemma 8. If F ¢ D N L, then Gy € D N L and, therefore, Gy € S.
Proof. This result follows from the inequalities

o o t o

/ FQ2x+t)H(dt) > c/ F(x + E)H(dt) P c/ F(x +1t)H((dr). O
0 0 0
Definition 4. The distribution F on R™ with finite mean m belongs to the class S* if
/ F(x —y)F(y)dy ~2mF(x) asx — oo.
0

It is known (see [14]) that
FeS* implies FeSandF'eS. (29)

It turns out that the following more general conclusion holds. For any b > 0, define the
class H,, of all non-negative measures H on R* such that

sup H((t, t+ 1]) < b.
t

Lemma9. Let F € S*and H € H;, b € (0,00). Then Gy € S. Moreover,
Gy *Gg(x)~ 2611(36)

as x — oo uniformly in H € H,.

Remark 2. Here are four examples of such measures H:
(1) if H(B) =I{0 € B}, then Gy = F;
(ii) if H(dr) = dt is Lebesgue measure on R™, then Gy = F L

(iii) if H is the renewal measure H,, then Gy is the distribution of the first ascending
ladder height x*;
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@v) if H([0, x]) = x/m(x), then Gy is G from (5).

Remark 3. 1t is natural to consider the following two questions:

(i) may the assumption F € S* of lemma 9 be weakened to F € S? In the case
of Lebesgue measure H, i.e. when Gy = F I this question is raised in [8, sec-
tion 1.4.2].

(i1) is the converse of (29) also true?

In the next section, we show (by examples) that the answers to both these questions
are negative.

Proof of lemma 9. Since Gy is long-tailed uniformly in H € H,, it is sufficient to
show that
1

x—A
lim limsup sup — / Gy(x —y)Gy(dy) =0, (30)
A—>00 x 00 HeH, Gu(x) Ja

see, e.g., [3, proposition 2]. -
The mean value of F is finite. Thus, F(¢) H((0, t]) = o(1/t)O(t) - Oast — o0
and integration by parts yields, for x large enough,

Gpx) = /m H (0,1 — x])F(dr).

Hence, 00
Gu((x,x+1]) = / H((t —x — 1,1 —x])F(dr) < bF(x).

In addition, G g is long-tailed. Therefore, (30) holds if and only if

1 x—A_ o
lim limsup sup — f Gyulx —y)F(y)dy =0. (31)
A—0o0 x50 HeH, GH()C) A
Fix ¢ > 0. Since F € S*, there exist xy and A such that, for all x > x,
x—A
f F(x —u)F(u)du < eF(x).
A
Then, for x > xo,
x—A_ . x—A oo _
| Gua-pFma= [ (/ Flx+1— y>H<dr))F(y> dy
A A 0
00 x+t—A_ _
</ (/ Flx+1— )FQ) dy)H(dt)
0 A

<e /oof(x +1)H(dr) = eG y(x).
0

Letting € to 0, we get (31). The proof is complete. g
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Lemma 9 also implies that any S*-distribution F' is strongly subexponential in the
sense of [17], i.e.,

Fjy % Fj(x) ~ 2F,(x)

as x — oo uniformly in & € [1, 00), where the distribution Fj, is defined as follows:

_ x+h
F,(x) = min(l,/ F(t) dt), x > 0.

Due to the main result of [17], it allows us to formulate the following:

Corollary 4. Let & have finite negative mean value and its distribution F' be from S*.
Then

x+n|EE|

P{ max S, > x} ~_— F@)dt
0<k<n |E&| Jx

as x — oo uniformly inn > 1.

6. Examples

In this section, we give an example of F € S with finite mean such that F' ¢ S. In
fact, we provide a more general example: for any fixed @ € [0, 1), we construct a
subexponential distribution F* with finite mean such that the distribution G,, with the tail

oo
Go(x) = min(l, / Lj”@) (32)
1 y

is not subexponential. In particular, when a = 0, F! does not belong to S.

In our second example, we show that two conditions F € S and F' € S taken
together do not imply that F' € S*.

Both examples are based on the following construction.

Define two increasing sequences of positive numbers, namely, {#,} and {R,}, such
that, as n — oo,

tw = 0(fnt1), (33)
R}'H—l - Rn — OQ. (34)

Define the hazard function R(x) = —In F(x) as
R(X) = Rn +rn(-x - tn) for I, <x < It

where

R,y1— R, R,;1—R,
= et = Re | Rur 35)

tn+1 — Iy tn+1

by (33) and (34). In other words, the hazard rate r(x) = R’(x) is defined as r(x) = r,
for x € (¢, t,+1], where r, is given by (35).
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Note that
Int1 _ Int1 e_Rn —_ e_Rn+1 e_Rn
J, = / F(u)du = / e R qy = < ,
In In In Iy
and that the mean value of F is finite provided
e R
Z < oo. (36)
n rn
We assume that (36) holds. Assume also that
Fpy1 = 0(r,) and r,t, > 0 asn — oo. 37

It follows from (37) that rit, — 0 as n — oo uniformly in £ > n. However,

rntn+1 ~ R}'H—l — Rn — OO (38)
from (35) and (34). It follows from (37) that r(x) decreases eventually to 0, and we can
apply the following results.
Proposition 1 (See [14, corollary 3.8 and theorem 3.6]). If the hazard rate exists and is

eventually decreasing to O, then F € £ and

(i) F € Sif and only if

lim r(x) [ e"9F(y)dy =0. (39)

X—>0Q0 0

(i) F € S§*if and only if F has finite mean and

X

lim | ¢ “WF(y)dy = / F(y)dy. (40)
0

X—>00 0
Note that (40) is equivalent to

lim lim [ ¢ “F(y)dy =0. (41)

[—>00 X—>00 t

Put
Tkt1 _ Il _ n
b= [ FOay and = [ e Foray =3 b
t 1 k=1
In our case, (39) holds if and only if
rnl, = 0 asn — oo. (42)
Relation (41) fails, in particular, if

liminf 7, , > 0. (43)

n—oo
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From (37),

rn=rdtk _ a(rn—Ti)tk+1 —Ri+ratk — Ry
I, = e—Rk-i-rktke ¢ < ¢ ~ ¢

~
ek — Ty e — Ty Tk

as k — oo uniformly in n > k 4 1. Thus, for some C < oo,

nXI:In.,k <C 3 e;Rk < Ci e < 00 (44)
k=1 k=1 'k k=1 'k
if (36) holds. Further,
Fudy = Tn(tagy — o) € ~ (R, — Ry) e (45)
from (35) and (37). Thus, r,1,,, — O if
Ryt = o(e™). (46)

Hence, under conditions (33), (34), (36), (37) and (46), F is a subexponential distribution
with finite mean.
We now turn to the examples.

Example 1. Fix o € [0, 1) and put R, = e” R where the constant y = y (a) € (0, 1)
will be specified later. If we take Ry = R,(y) sufficiently large, then the sequence R,
will be increasing and, moreover, R,1/R, — o0o. Putt,,; = % = R2 | condi-
tion (33) is satisfied. We have

+1°

F(t,) =e Vi,

We also have r,, ~ R, /t,1 = eV,

Condition (36) is valid since J, ~ e ®(!1=¥)_ Condition (37) holds since 7, /7, ~
eV Ret1=R0) and 7,1, ~ e VRiF2rRi-t = g7V Ruto(Ra) - Finally, condition (46) follows
since R,y e R = e~U=R: Hence, F has a finite mean and is subexponential.

Take now the distribution G, defined in (32) and estimate its density. For x €
(tna bny1 — 1],

G;(x)z_/ooF(x:—y)dy=/°°r()€+y)y{:(x+y)dy
1 1

In41—X f
>/ FAENFCAY) 4y v, @7)
1

y()(
where

Inp1—X
Va(x) = / F(x 4+ y)y *dy.
1

We also have that, for any x <, — 1,

Go(x) = Vy(x). (48)
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For any x € (t,, f,+1 — 1],

Galx) = (/ + Y / )f(yxy—x)—“dyz Vi) + Y Wi(x).
x+1 k=n+1"Y k=n+1

For x € (¢,,t,+1] and k > n + 1, by (37) and (38),

Ti+1
Wy (x) = e~ Rt f ey —x)"%dy

I

Tk+1 e—Rk Tklk+1
~e / e (y—x)""dy = / e (y —nex)"* dy
Ik ¥

l—a
Ty Kk

-« -«

e—Rk 00 e—Rk
~ / e Yy *dy = 'l—a) ask— oo.
Ty 0 Ty

Similarly, for x € (¢, t,+1/21,

R Inp1—x
‘/I‘l (x) —e~ n+rntp—rnX / e_rnyy_a dy
1

e_Rn_rn n(ty41—X) e_Rn_rn
~ 7/ ez %dz~—T({U—-—«a) asn — oo.
r

1—-a 1—-a
r)‘l n n

Since y < 1,

-«
Wi () < i ) e Rer1+Re o oy (1—)=11(Resi=Ro) _ ()
Wi (x) Tkl

Take any integer [ > 2 such that y (1 — «) < (I — 1)/1. Then, as n — oo,

[[n+l(-x) Fn : —Ryp1+Ry+rntns1/1 [y(A—a)—(—1)/11Ry+1+0(Ry+1)
~ € ! ! =€ ! YV — 0.
{n(ln—‘rl/l) Tyl

Therefore,

N tn tn e_Rn_rntn+l/l
Ga< ;1) ~ Vn( ;1) ~ TF(l —a) asn — oQ.

On the other hand, by (47), for n sufficiently large,

tn t)H»l/ZZ_ tn
Ga*Ga( 1+1)>f Ga< l“ —y)Go,(dy)
173

/2 _ g
2")1/ Ga( ! —y>Vn()’)d)’
tn
Applying now (48), we get

. tn1/2 ,n
Ga*Ga( l“)%/ Vn( a —y)vn(wdy
t)‘l

l

31
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F2(1 —a) thy1/21

e_Rn_rn(t)H»l/l_y)_Rn_rny dy
rl1-2a
n

n
2

~ —F (1 _ a) . _tn+1 e_ZRn_rnthrl/Z‘
rl=2 21

Then the ratio
Ga * Ga(tn+1/l)

G_a(tn+1/l)
is asymptotically not less than
- (-
fd-o) a)r,?tnﬂ e~ M- efnCreat2r=b o0
21 21

as n — oo provided y (2 — &) > 1. Thus, forany y € (1/(2 — @), 1), F € S and has
finite mean, but G, ¢ S.

Example 2. For y > 2, take R, = n” and ., = e® = ¢"”. Then
F(tn) — t_(n/(”_l))y‘
Conditions (33), (34) and (37) are satisfied, r, ~ yn”~'/t,,1, and (36) holds. Further,

(46) holds too. Hence, F € S.
On the other hand, for x € (¢,, t,41],

o 9]
Fl(x) < Z Ji and FI(2x) > Z J.
k=n k=n+2

In addition, J;y ~ 1/yk”~! as k — oo. Thus, ﬁ(2x) ~ F(x) as x — oo and the
function F!(x) is slowly varying at infinity. Hence, F' € S.
However, from (45) and (35),

In.,n ~ tn—i-le_Rn =1

and so, from (43), F cannot belong to S*.
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