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Let ξ = (ξ1, ξ2, …, ξd) be a normally distributed ran�
dom vector in �d with zero mean and covariance
matrix B, Bij := �ξiξj. A problem of great interest is to
analyze the asymptotic behavior of the distribution tail

of the product . This problem arises in various

domains, for example in stochastic geometry, random
difference equations, and risk theory.

Consider a more general case of functions of the
vector ξ, namely, the so�called Gaussian chaos h(ξ),
where h: �d → � is a continuous homogeneous func�
tion of order α > 0; i.e., h(xt) = xαh(t) for all x > 0 and
t ∈ �d. Traditionally, in the literature, the term Gaus�
sian chaos of order α ∈ � is referred to the case where
g is a homogeneous polynomial of degree α. This con�
cept goes back to Wiener [14], who was the first to con�
sider processes of polynomial chaos. We follow a
broader treatment of the concept of Gaussian chaos.

The distribution of ξ is equal to the distribution of

 if the vector η = (η1, η2, …, ηd) has independent
coordinates with a standard normal distribution. Then

where g(u) = h( ). The continuous function g:
�d → � is also homogeneous of order α like h. Thus,
the problem is reduced to the case of a unit covariance
matrix. For this reason, in what follows, we study
g(η).By virtue of homogeneity,
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Therefore, the asymptotic behavior of probability (1)
can be determined using a version of the Laplace
asymptotic method (see, for example, [3]). Define

where the last equality follows from the homogeneity
of g. Since g is continuous, we have c2 > 0. To apply the
Laplace method, we consider the set

which lies on a sphere of radius c. Assume that this set
is a smooth finitely connected manifold of dimension
r and the structure of the function g near this manifold
is typical of the Laplace method. Define g(ϕ) :=
g(u/|u|), where ϕ = (ϕ1, ϕ2, …, ϕd – 1) ∈ Π := [0, π)d – 2 ×
[0, 2π) are the spherical coordinates of the vector u/|u|
on the unit sphere Sd – 1. The manifold on the parallel�
epiped Π that corresponds to � is denoted by �ϕ. The
Jacobian of the transition to spherical coordinates in
�d is designated as J(r, ϕ). Let g''(ϕ) denote the Hes�
sian of a function g(ϕ), and let λ(A) stand for the
smallest (in absolute value) nonzero eigenvalue of a
symmetric matrix A.

Theorem 1. Let g: �d → � be a continuous homoge�
neous function of order α > 0, and let dim�ϕ = r ∈
[0, d – 1]. If the corresponding function g(ϕ): Π → �
is three times differentiable and

(the Hessian is uniformly nonsingular on �ϕ), then

(2)
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where dVϕ is the volume element of the manifold �ϕ ⊂ Π
and det (ϕ) is any nonzero minor of the Hessian
g''(ϕ) of order d – 1 – r. Relation (2) can be differenti�
ated, which gives asymptotics of the distribution density
of the Gaussian chaos g(η).

Note that, as in the classical case of the Laplace
method [3], assuming that g has higher smoothness,
we can obtain asymptotic expansions of the consid�
ered probability and density in powers of x. In the case
r = 0, i.e., when � = {t1, t2, …, tk}, where ti are isolated
absolute minimizers of g in the integration domain, the
theorem is proved by directly applying Theorem 4.2 from
[3]. The integral in the expression for � becomes
a sum over the points ϕi ∈ Π corresponding to the
points ti. In the general case, we apply a version of the
Laplace method for parameter�dependent functions,
which are used to prove the possibility of integration.
On each map of an atlas with sufficiently small maps
on the manifold �ϕ, we construct a coordinate system
with the first r coordinates being parameters. When
they are fixed, the minimum of the amplitude (of the
argument of the exponential) is reached at a unique
point of a neighborhood of the map. Next, the stan�
dard Laplace method is applied and the maps of the
atlas are integrated with respect to these parameters on
all neighborhoods in Π.

By Theorem 1, the Gaussian chaos is a subexpo�
nential random variable if α > 2. The subexponential�
ity of random variables is an important concept in var�
ious applications (see, for example, [4]). The Gauss�
ian chaos is subexponential under rather weak
constraints on the function h. For example, let h be
nonnegative. The d�dimensional centered Gaussian
vector η with a unit covariance matrix can be repre�

sented as the product η  χμ of independent values χ

and μ, where χ2 =  has a chi�square distribution

χ2 with d degrees of freedom, while μ has a uniform
distribution on the unit sphere Sd – 1 ⊂ �d. The Gaus�

sian random vector ξ =  = χ  has the covari�
ance matrix B. Therefore, since h is homogeneous for
any x > 0, we have

(3)

If h( ) is a positive bounded random variable,
then, according to [2, Corollary 2.5], the random vari�
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able h(ξ) is subexponential for α > 2, because the dis�
tribution χα then has a Weibull type density

with 2/α < 1, which means subexponentiality.
It follows from (3) that, if h is bounded on the unit

sphere Sd – 1, i.e., h* := max{h(u): |u| = 1} < ∞, then
estimates

This explicit upper bound improves the one obtained
in [10, Corollary 1]. In our conditions, it is better than
the bound that can be derived from [1, Theorem 4.3].

Theorem 1 underlies a unified approach to differ�
ent problems. Below are some examples.

Example 1. (Product of independent N(0, 1) ran�
dom variables) Let η = (η1, η2, …, ηd) be a standard
Gaussian vector and g(u) = u1u2…ud. We have α = d,
c2 = d, and � = {(±1, …, ±1) with an even number of
negative coordinates} consists of 2d – 1 points. Apply�
ing Theorem 1 yields the asymptotics

This asymptotic relation can be intuitively interpreted
as follows (see, e.g., [13]): the product takes the most
probable large value when all the multipliers are roughly
identical; therefore, (x) asymptotically resem�

bles the product of d densities at the same point x1/d.
For the product of the coordinates of an arbitrary

Gaussian vector ξ with a covariance matrix B, we have
a similar formula based on the representation ξ =

, but the computation of the constants encoun�
ters certain difficulties.

Example 2. (Quadratic forms of independent N(0, 1)

random variables.) Let g(η) = , where the

constants ai ∈ � are such that a1 ≤ a2 ≤ … ≤ ad – r <
ad – r + 1 = … = ad = a, a > 0.

Since

and ai < a for i ≤ d – r, the minimum of |u|2 on the set

g(u) = 1 is reached at points u satisfying  + … +

 =  and u1 = u2 = … = ud – r = 0, so that c2 = . If

1
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r = 1, the set �ϕ consists of two points , …, , 

and , …, , . By using Theorem 1, we can find

that

as x → ∞, which agrees (up to the first�order asymp�
totics) with the results of [6] (see also [11, 12] or [7,
Theorem 1]). This also supplements the upper bounds
obtained in [5, 9].

Example 3. (Scalar product) The quadratic forms
in Example 2 are closely related to g(η, η*) =

, where ηi and , i ≤ d, are independent

N(0, 1) random variables and ai ∈ �+. Indeed, since

 coincides in distribution with

we have the distribution equality

and, to the quadratic form on the right, we can apply
the result of Example 2, with the dimension replaced
by 2d and with the parameter r replaced by the number
of maximal ai. Some results for scalar products can be
found in [8].
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