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The Key Renewal Theorem for a Transient Markov Chain

Dmitry Korshunov1

We consider a time-homogeneous Markov chain Xn, n ≥ 0, valued in R. Sup-
pose that this chain is transient, that is, Xn generates a σ-finite renewal mea-
sure. We prove the key renewal theorem under condition that this chain has
asymptotically homogeneous at infinity jumps and asymptotically positive drift.

KEY WORDS: transient Markov chain, renewal kernel, renewal measure, key

renewal theorem, Green function.

Let ξ1, ξ2, . . . be independent identically distributed random variables with
a common distribution F on R. Put Sn = ξ1+ · · ·+ξn, S0 = 0, and consider
the renewal measure generated by sums:

U(B) ≡ E

∞
∑

n=0

I{Sn ∈ B} =
∞
∑

n=0

F ∗n(B).

If F is non-lattice then the celebrated key renewal theorem states that, for
every fixed h > 0,

U(x, x + h] →
h

Eξ1
as x → ∞, (1)

provided Eξ1 is finite and positive (see, for example, Feller and Orey [8],
Feller [7, Ch. XI], Woodroofe [25, Appendix]); F is called lattice if it is
concentrated on some lattice {ka, k ∈ Z} with a > 0. If F is lattice the
same is true when h is a multiple of the span a.

It is proved in Wang and Woodroofe [23] and in Borovkov and Foss [5,
Theorem 2.6] that (1) holds uniformly over certain classes of distributions
F . Some extensions of the key renewal theorem to the nonidentically dis-
tributed case are considered by Williamson [24], Maejima [18]. Another
extension is aimed to include random walks perturbed by both a slowly
changing sequence and a stationary one, Zn = Sn + ηn + ζn say; see, for
example, Lai and Siegmund [16, 17], Woodroofe [25], Horváth [11], Zhang
[26], Kim and Woodroofe [13]. All these extensions deal with perturbations
depending on time rather than on state space; in most cases summands are
independent and have finite variance.

Many papers (see, for example, Kesten [12], Athreya, McDonald and
Ney [2], Nummelin [20], Alsmeyer [1], Klüppelberg and Pergamenchtchikov
[14], Fuh [9], and also some of their references) are devoted to a Markov
modulated random walks. Usually a (Harris-) recurrent Markov chain Xn

is considered with an invariant measure, π say. Conditioned on a realisation
{xn, n ≥ 0}, one is given a sequence of independent random variables {ξn},
such that the distribution of ξn depends only on xn. Put Tn = ξ0 + . . .+ ξn
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and assume Tn/n → α with probability 1. Then the typical result states
the convergence

E

∞
∑

n=0

g(Xn, x − Tn) →
1

α

∫

π(dy)

∫ ∞

−∞

g(y, s)ds as x → ∞,

for bounded continuous function g satisfying some conditions. The cor-
responding proofs use probabilistic arguments, notably the construction of
regeneration epochs for {Xn, n ≥ 0} (for example, visit times to some atom).
This approach eventually reduces the problem to Blackwell’s renewal theo-
rem for sums of independent identically distributed random variables.

To the best of our knowledge, the only result related to a random walk
perturbed in state space is due to Heyde [10]. To be more precise, Heyde
discussed the key renewal theorem for maxima Mn ≡ max

0≤k≤n
Sk of partial

sums: provided Eξ1 is finite and positive

E

∞
∑

n=0

I{Mn ∈ (x, x + h]} →
h

Eξ1
as x → ∞. (2)

It is well known (see, for example, [7, Ch. VI, Sec. 9]) that Mn has the same
distribution as the reflected random walk on R+ defined by the recursion

Wn+1 = (Wn + ξn+1)
+, W0 = 0.

So, the renewal function generated by the chain Wn has the same asymptotic
behaviour as described in (2).

Both the random walk Sn and the reflected random walk on the posi-
tive half-line Wn are particular examples of Markov chains on R. In the
present paper we extend the key renewal theorem from these very important
cases onto asymptotically space-homogeneous Markov chains on R with an
asymptotically positive drift. Introduce some relevant definitions.

Let P (x, B), x ∈ R, B ∈ B(R), be a transition probability kernel on R;
hereinafter B(R) is the Borel σ-algebra on R. Consider a time-homogeneous
Markov chain X = {Xn, n = 0, 1, 2, . . .} on R with transition probabilities
P (·, ·), that is,

P{Xn+1 ∈ B |Xn = x} = P (x, B).

Let ξ(x) be the random variable distributed as the jump of the chain at
state x:

P{x + ξ(x) ∈ B} = P (x, B), B ∈ B(R).

Let µn denote the distribution of Xn; then equalities µn = µn−1P and
µn = µ0P

n hold. Formally, define the renewal (or potential) kernel Q by
the equality

Q(·, ·) =

∞
∑

n=0

Pn(·, ·).
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We assume that the Markov chain X is transient (see Meyn and Tweedie
[19, Ch. 8]), that is, there exists a countable cover of R with uniformly
transient sets {Bk}. In its turn a set B ∈ B(R) is called uniformly transient

if

sup
y∈B

Q(y, B) < ∞. (3)

By the Markov property, this is equivalent to

sup
y∈R

Q(y, B) < ∞. (4)

Indeed, considering the first hitting time of B, we conclude the following
inequality, for each state x ∈ R,

Q(x, B) ≤ sup
y∈B

Q(y, B), (5)

which implies (4).
In the present paper we assume that Xn is transient with respect to the

collection of sets Bk = (k, k + 1], k ∈ Z; that is, for any k ∈ Z,

sup
y∈R

Q(y, (k, k + 1]) < ∞. (6)

Then Q(x, B) < ∞ for all x and bounded set B. Hence the renewal measure
generated by the chain X

U(B) ≡

∞
∑

n=0

P{Xn ∈ B} =

∞
∑

n=0

µn(B) = (µ0Q)(B)

is well defined for every initial distribution µ0 and bounded set B; U is
σ-finite with respect to the collection of sets (k, k + 1], k ∈ Z.

The main goal of our analysis is the local asymptotic behaviour of this
renewal measure. Without further restrictions on the chain Xn, the asymp-
totics of U(x, x + h] as x → ∞ can be very special. We consider a transient
Markov chain Xn as a perturbation in space of the random walk Sn with
positive drift. To get similar renewal behaviour for Xn as for Sn, it is natu-
ral to assume that, being far away from the origin, Xn behaves almost like
Sn.

Thus we restrict our attention to the asymptotically space-homogeneous

Markov chain X , that is, we assume that the distribution of the jump ξ(x)
has a weak limit F as x → ∞. Let ξ be a random variable with distribution
F .

The notion of asymptotically space-homogeneous Markov chain is a nat-
ural generalisation of both (i) the random walk Sn; in this case ξ(x) =d ξ
for all x; (ii) the reflected random walk Wn on the positive half-line; in this
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case ξ(x) =d (x + ξ)+ − x. An asymptotically space-homogeneous Markov
chains appear in different areas; in particular, we are motivated by theory
of queues when the service rate depends on the current waiting time; and by
sequential analysis related to an optimal solutions in a change-point prob-
lem (see Borovkov [4]). Some limit theorems for them were obtained by
Korshunov [15].

So, let the Markov chain Xn be asymptotically space-homogeneous.

Theorem 1. Let ξ(x) ⇒ ξ as x → ∞ and Eξ > 0. Let the family of

random variables {|ξ(x)|, x ∈ R} admit an integrable majorant η, that is,

Eη < ∞ and

|ξ(x)| ≤st η for all x ∈ R. (7)

Assume that

sup
k∈Z

U(k, k + 1] < ∞. (8)

Assume also that there exists a limit

p0 = lim
n→∞

P{Xn > 0}. (9)

If the limit distribution F is non-lattice, then U(x, x + h] → h/Eξ as

x → ∞, for every fixed h > 0.
If the chain Xn is integer valued and Z is the lattice with minimal span

for distribution F , then U{n} → 1/Eξ as n → ∞.

Condition (7) and the dominated convergence theorem imply |ξ| ≤st η,
E|ξ| < ∞ and Eξ(x) → Eξ as x → ∞; in particular, the chain Xn has an
asymptotically space-homogeneous drift.

Only conditions (8) and (9) of Theorem 1 are not formulated in local
terms, i.e., in terms of one-step transition probabilities. Below, in Theorem
2, we give some simple conditions sufficient for (8). Note that the value of p0

in condition (9) may be very sensitive with respect to the local probabilities.
It can be illustrated by the following example. Let Xn be a chain valued on
Z with the following transition probabilities:

pi,i+1 = 3/4, pi,i−1 = 1/4 for i ≥ 1,

pi,i+1 = 1/4, pi,i−1 = 3/4 for i ≤ −1,

p0,1 = p, p0,−1 = 1 − p,

where p ∈ [0, 1]. Given X0 = 0, then p0 = p0(p) = p is increasing from 0 to
1 simultaneously with p.

Since the chain is transient, by (4) the convergence µn(K) ≡ P{Xn ∈
K} → 0 holds as n → ∞ for any compact K. Hence, condition (9) is
equivalent to the convergence, for every fixed x0,

P{Xn > x0} → p0 as n → ∞. (10)
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P r o o f of Theorem 1 follows some ideas of the operator approach pro-
posed by Feller [7, Ch. XI]. First of all, condition (8) allows us to apply
Helly’s Selection Theorem to the family of measures {U(k + ·), k ∈ Z+}
(see, for example, Theorem 2 in [7, Ch. VIII, Sec. 6]). Hence, there
exists a sequence of points tn → ∞ such that the sequence of measures
Un(·) ≡ U(tn + ·) converges weakly to some measure λ as n → ∞. The
following two lemmas describe properties of λ.

Lemma 1. A weak limit λ of the sequence of measures U(tn+·) satisfies

the identity λ = λ ∗ F .

P r o o f. The measure λ is non-negative and σ-finite with necessity. Fix
any smooth function f(x) with a bounded support; let A > 0 be such that
f(x) = 0 for x /∈ [−A, A]. The weak convergence of measures means the
convergence of integrals

∫ ∞

−∞

f(x)U(tn + dx) ≡

∫ A

−A

f(x)U(tn + dx) →

∫ A

−A

f(x)λ(dx) (11)

as n → ∞. On the other hand, due to the equality U = µ0 + UP we have
the following representation for the left side of (11):
∫ A

−A

f(x)µ0(tn + dx) +

∫ A

−A

f(x)

∫ ∞

−∞

P (tn + y, tn + dx)U(tn + dy). (12)

Since f is bounded and µ0 is finite,
∫ A

−A

f(x)µ0(tn + dx) ≤ ||f ||Cµ0[tn − A, tn + A] → 0 (13)

as n → ∞. The second term in (12) is equal to
∫ ∞

−∞

U(tn + dy)

∫ A

−A

f(x)P (tn + y, tn + dx). (14)

The weak convergence P (t, t + ·) ⇒ F (·) as t → ∞ implies the convergence
of the inner integral in (14):

∫ A

−A

f(x)P (tn + y, tn + dx) →

∫ A

−A

f(x)F (dx − y);

here the rate of convergence can be estimated in the following way:

∆(n, y) ≡

∣

∣

∣

∣

∣

∫ A

−A

f(x)(P (tn + y, tn + dx) − F (dx − y))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ A

−A

f ′(x)(P{ξ(tn + y) ≤ x − y} − F (x − y))dx

∣

∣

∣

∣

∣

≤ ||f ′||C

∫ A−y

−A−y

|P{ξ(tn + y) ≤ x} − F (x)|dx.
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Thus, the asymptotic homogenuity of the chain yields for every fixed C > 0
the uniform convergence

sup
y∈[−C,C]

∆(n, y) → 0 as n → ∞. (15)

In addition, by majorisation condition (7), for all x regardless positive or
negative,

|P{ξ(tn + y) ≤ x} − F (x)| ≤ 2P{η > |x|}.

Hence, for all y,

∆(n, y) ≤ 2||f ′||C

∫ A−y

−A−y

P{η > |x|}dx

≤ 4A||f ′||CP{η > |y| − A}. (16)

We have the estimate

∆n ≡

∣

∣

∣

∣

∣

∫ ∞

−∞

U(tn + dy)

(

∫ ∞

−∞

f(x)P (tn+y, tn+dx) −

∫ ∞

−∞

f(x)F (dx−y)

)
∣

∣

∣

∣

∣

≤

∫ ∞

−∞

∆(y, n)U(tn + dy).

For any fixed C > 0, uniform convergence (15) implies

∫ C

−C

∆(y, n)U(tn + dy) ≤ sup
y∈[−C,C]

∆(y, n) · sup
n

U [tn − C, tn + C]

→ 0 as n → ∞.

The remaining part of the integral can be estimated by (16):

lim sup
n→∞

∫

|y|≥C

∆(y, n)U(tn + dy)

≤ 4A||f ′||C lim sup
n→∞

∫

|y|≥C

P{η > |y| − A}U(tn + dy).

Since η has a finite mean, property (8) of the renewal measure U allows us
to choose a sufficiently large C in order to make the ‘lim sup’ as small as we
please. Therefore, ∆n → 0 as n → ∞. Hence, (14) has the same limit as
the sequence of integrals

∫ ∞

−∞

U(tn + dy)

∫ A

−A

f(x)F (dx − y).
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Now the weak convergence to λ implies that (14) has the limit
∫ ∞

−∞

λ(dy)

∫ ∞

−∞

f(x)F (dx − y) =

∫ ∞

−∞

f(x)

∫ ∞

−∞

F (dx − y)λ(dy)

=

∫ ∞

−∞

f(x)(F ∗ λ)(dx). (17)

By (11)–(13) and (17), we conclude the identity
∫ ∞

−∞

f(x)λ(dx) =

∫ ∞

−∞

f(x)(F ∗ λ)(dx).

Since this identity holds for every smooth function f with a bounded sup-
port, the measures λ and F ∗ λ coincide. The proof is complete.

Further we use the following statement which was proved in [6] (see also
[21] or [22, Sec. 5.1]):

Lemma 2. Let F be a distribution not concentrated at 0. Let λ be a

nonnegative measure satisfying the equality λ = F ∗ λ and the property

sup
n∈Z

λ[n, n + 1] < ∞.

If F is non-lattice, then λ is proportional to Lebesgue measure.

If F is lattice with minimal span 1 and λ(Z) = 1, then λ is proportional

to the counting measure.

The concluding part of the proof of Theorem 1 will be carried out for
the non-lattice case. Choose any sequence of points tn → ∞ such that the
measure U(tn + ·) converges weakly to some measure λ as n → ∞. It follows
from Lemmas 1 and 2 that then λ(dx) = α · dx with some α, i.e.,

U(tn + dx) ⇒ α · dx as n → ∞.

Now it suffices to prove that α = p0/Eξ.
Fix some k ∈ N. Put Uk ≡ UP k =

∑∞
j=k µj . Then

Uk(tn + dx) ⇒ α · dx as n → ∞. (18)

Consider the measure Uk − Uk+1 = Uk(I − P ); by the definition of the
renewal measure it is equal to µk, that is, for any bounded Borel set B,
Uk(B) − Uk+1(B) = µk(B) (the equality may fail for unbounded sets, say,
for (−∞, x]). In particular,

(Uk − Uk+1)(0, x] = µk(0, x] → µk(0,∞) as x → ∞. (19)

On the other hand,

(Uk − Uk+1)(0, x] =

∫ ∞

−∞

(I − P )(y, (0, x])Uk(dy)

= −

∫ 0

−∞

P (y, (0, x])Uk(dy) +

∫ x

0

P (y, (−∞, 0])Uk(dy)

+

∫ x

0

P (y, (x,∞))Uk(dy) −

∫ ∞

x

P (y, (0, x])Uk(dy). (20)
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The asymptotic homogeneity of the chain and weak convergence (18) imply
the following convergences of the integrals, for any fixed A > 0:

∫ tn

tn−A

P (y, (tn,∞))Uk(dy) → α

∫ A

0

P{ξ > z}dz (21)

as n → ∞, and

∫ tn+A

tn

P (y, (0, tn])Uk(dy) → α

∫ A

0

P{ξ ≤ −z}dz. (22)

Majorisation condition (7) allows us to estimate the tails of the integrals:

∫ tn−A

0

P (y, (tn,∞))Uk(dy) ≤ −

∫ ∞

A

P{η > z}U(tn − dz) (23)

and
∫ ∞

tn+A

P (y, (0, tn])Uk(dy) ≤

∫ ∞

A

P{η ≥ z}U(tn + dz). (24)

Since the majorant η is integrable, condition (8) guarantees that the right
sides of inequalities (23) and (24) can be made as small as we please by the
choice of sufficiently large A. By these reasons we conclude from (20)–(22)
that, as n → ∞,

(Uk − Uk+1)(0, tn]

→ −

∫ 0

−∞

P (y, (0,∞))Uk(dy) +

∫ ∞

0

P (y, (−∞, 0])Uk(dy)

+α

∫ ∞

0

P{ξ > z}dz − α

∫ ∞

0

P{ξ ≤ −z}dz.

Together with (19) it implies the following equality, for any fixed k:

µk(0,∞) = −

∫ 0

−∞

P (y, (0,∞))Uk(dy) +

∫ ∞

0

P (y, (−∞, 0])Uk(dy) + αEξ.

(25)

Now let k → ∞, then both integrals go to zero. For example, the first
integral can be estimated in the following way, for every A > 0:

∫ 0

−∞

P (y, (0,∞))Uk(dy) ≤

∫ −A

−∞

P{η > −y}U(dy) + Uk(−A, 0].

Here, for any fixed A, Uk(−A, 0] → 0 as k → ∞ by (4). Therefore, it follows
from (25) and (9) that p0 = αEξ. The proof of Theorem 1 is complete.

In the next theorem we provide some simple conditions sufficient for
condition (8), that is, for local compactness of the renewal measure. Denote
a ∧ b = min{a, b}.
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Theorem 2. Suppose that there exists A > 0 such that

ε ≡ inf
x∈R

E(ξ(x) ∧ A) > 0. (26)

In addition, let

δ ≡ inf
x∈R

P{Xn > x for all n ≥ 1|X0 = x} > 0. (27)

Then U(x, x + h] ≤ (A + h)/εδ for all x ∈ R and h > 0; in particular, (8)
holds.

P r o o f. Inequality (5) implies

U(x, x + h] =

∫

R

Q(y, (x, x + h])µ0(dy)

≤ sup
y∈(x,x+h]

Q(y, (x, x + h]).

Therefore, it suffices to prove that

Q(y, (x, x + h]) ≤ (A + h)/εδ (28)

for all y ∈ (x, x + h]. Given X0 ∈ (x, x + h], consider the stopping time

τ = min{n ≥ 1 : Xn > x + h}.

Since Xτ ∧ (x + h + A) − X0 ≤ A + h with probability 1,

A + h ≥ E(Xτ ∧ (x + h + A) − X0)

=
∞
∑

n=1

E[Xn ∧ (x + h + A) − Xn−1 ∧ (x + h + A)]I{τ ≥ n}.

Hence, the definition of τ implies

A + h ≥

∞
∑

n=1

E{Xn ∧ (x + h + A) − Xn−1 ∧ (x + h + A); τ ≥ n}

=

∞
∑

n=1

E{Xn ∧ (x + h + A) − Xn−1|τ ≥ n}P{τ ≥ n}.

The Markov property and condition (26) yield

E{Xn ∧ (x + h + A) − Xn−1|τ ≥ n} ≥ E(ξ(Xn−1) ∧ A) ≥ ε

for all n. Therefore,

A + h ≥ ε

∞
∑

n=1

P{τ ≥ n} = εEτ.
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So, the expected number of visits to the interval (x, x + h] till the first exit
from (−∞, x + h] does not exceed (A + h)/ε, independently of the initial
state X0 ∈ (x, x + h]. By condition (27), after exit from (−∞, x + h] the
chain is above the level Xτ forever with probability at least δ; in particular,
it does not visit the interval (x, x + h] any more. With probability at most
1− δ the chain visits this interval again, and so on. Concluding, we get that
the expected number of visits to the interval (x, x + h] cannot exceed the
value

A + h

ε

∞
∑

n=0

(1 − δ)n =
A + h

εδ
,

and (28) is proved. The proof of Theorem 2 is complete.
The latter theorem yields the following

Corollary 1. Let the family of jumps {ξ(x), x ∈ R} possess an inte-

grable minorant with a positive mean, that is, there exist a random variable

ζ such that Eζ > 0 and ξ(x) ≥st ζ for any x ∈ R. Then

U(x, x + h] ≤ (A + h)A/ε2

for any A > 0 such that ε ≡ E(ζ ∧ A) > 0; in particular, (8) holds.

P r o o f. Consider the partial sums Zn = ζ1 + . . . + ζn of an independent
copies of ζ. Denote the first ascending ladder epoch by χ = min{n ≥ 1 :
Zn > 0}. It is well known (see, for example, Theorem 2.3(c) in [3, Ch.
VIII]) that

P{Zn > 0 for all n ≥ 1} = 1/Eχ.

Since

P{Xn > x for all n ≥ 1|X0 = x} ≥ P{Zn > 0 for all n ≥ 1}

by the minorisation condition, the δ in Theorem 2 is at least 1/Eχ. Taking
into account the inequality Eχ ≤ A/ε, we get δ ≥ ε/A, which implies the
corollary conclusion.

If the chain X has a non-negative jumps ξ(x) ≥ 0, then the minorisation
condition is equivalent to the existence of a positive A such that

γ ≡ inf
x∈R

P{ξ(x) > A} > 0. (29)

In that case one can choose ζ taking values 0 and A with probabilities 1−γ
and γ respectively; then ε ≥ γA and U(x, x + h] ≤ (A + h)/γ2A.

We conclude with a counterexample demonstrating that condition (7)
in Theorem 1 is essential; the existence of integrable majorant cannot be
relaxed to the condition of the uniform integrability of jumps. We consider
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an integer valued chain X . For any state k ∈ Z+, define the transition
probabilities in the following way: given 2n − 1 ≤ k ≤ 2n+1 − 2,

pk,k = 1/2,

pk,k+1 = 1/2 − pk,2n+1 ,

pk,2n+1 =
1

(2n+1 − k) ln(n + e2)
≤

1

2
.

The corresponding jumps ξ(k) converge weakly as k → ∞ to the Bernoulli
distribution; they are uniformly integrable. But we can observe a concen-
tration of relatively large masses at points 2n+1; the renewal measure at
point 2n+1 is not less than, up to a positive constant,

2n+1−2
∑

k=2n−1

1

(2n+1 − k) ln(n + e2)
=

1

ln(n + e2)

2n+1
∑

k=2

1

k
∼

n ln 2

lnn
.

Hence, there is no convergence U{k} → 1/Eξ = 2 and the key renewal
theorem does not hold for the chain constructed.

This paper was mostly written while the author was visiting the Boole
Centre for Research in Informatics, University College Cork, thanks to the
hospitality of Neil O’Connell and financial support of Science Foundation
Ireland, grant no. SFI 04/RP1/I512. Also this work was partially supported
by Russian Science Support Foundation.

REFERENCES

1. Alsmeyer, G. (1994) On the Markov renewal theorem. Stoch. Process.

Appl. 50, 37–56.

2. Athreya, K. B., McDonald, D., and Ney, P. (1978). Limit theorems for semi-
Markov processes and renewal theorem for Markov chains. Ann. Probab.

6, 788–797.

3. Asmussen, S. (2003). Applied Probability and Queues, Springer, New York.

4. Borovkov, A. A. (1999). Asymptotically optimal solutions in a change-point
problem. Theory Probab. Appl. 43, 539–561.

5. Borovkov, A. A., and Foss, S. G. (1999). Estimates for overshooting an ar-
bitrary boundary by a random walk and their applications. Theory Probab.

Appl. 44, 231–253.

6. Choquet, G., and Deny, J. (1960). Sur l’équation de convolution µ = µ ∗ σ.
C. R. Acad. Sci. Paris Série A 250, 799–801.

7. Feller, W. (1971). An Introduction to Probability Theory and Its Applica-

tions, Vol II, 2nd ed., John Wiley, New York.

8. Feller, W., and Orey, S. (1961). A renewal theorem. J. Math. Mech. 10,
619–624.



12 Korshunov

9. Fuh, C.-D. (2004). Uniform markov renewal theory and ruin probabilities
in Markov random walks. Ann. Appl. Probab. 14, 1202–1241.

10. Heyde, C. C. (1967). Asymptotic renewal results for a natural generalization
of classical renewal theory. J. Roy. Statist. Soc. Ser. B 29, 141–150.
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