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Abstract. This paper continues investigations of [A. A. Borovkov and A. D. Korshunov, Theory
Probab. Appl., 41 (1996), pp. 1–24]. We consider a time-homogeneous and asymptotically space-
homogeneous Markov chain {X(n)} that takes values on the real line and has increments possessing
a finite exponential moment. The asymptotic behavior of the probability P{X(n) � x} is studied
as x → ∞ for fixed or growing values of time n. In particular, we extract the ranges of n within
which this probability is asymptotically equivalent to the tail of a stationary distribution π(x) (the
latter is studied in [A. A. Borovkov and A. D. Korshunov, Theory Probab. Appl., 41 (1996), pp. 1–24]
and is detailed in section 27 of [A. A. Borovkov, Ergodicity and Stability of Stochastic Processes,
Wiley, New York, 1998]).
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1. Introduction. Let

X(n) = X(y, n) ∈ R, n = 0, 1, . . . ,

be a time-homogeneous Markov chain which takes values on the real line R and has
initial value y ≡ X(y, 0). We denote P (y,B) = P{X(y, 1) ∈ B}, where B is a Borel
set in R, the transition probabilities of the chain.

Let ξ(y) be the increment of X in one step at point y ∈ R, that is, ξ(y) =
X(y, 1) − y. In the present paper we study an asymptotically space-homogeneous
chain that is a chain for which the distribution of ξ(y) converges weakly as y → ∞ to
the distribution F of a random variable ξ. We assume everywhere that m = Eξ < 0
(the case m = −∞ is not excluded) and P{ξ > 0} > 0.

The Laplace transform ϕ(λ) ≡ Eeλξ of ξ is a convex function and, therefore, the
set {λ : ϕ(λ) � 1} is an interval of the form [0, β], where β = sup{λ : ϕ(λ) � 1}.
Since P{ξ > 0} > 0, it follows that β is a finite number. The following three cases
are possible:

(a) β > 0, ϕ(β) = 1, called the Cramér case;

(b) β > 0, ϕ(β) < 1, called the intermediate case;

(c) β = 0. This case includes, in particular, the distribution of ξ with regularly
varying tails at infinity.
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In Part 1 (see [5]) we assumed that X was a chain possessing an invariant mea-
sure π, that is, a measure solving

π(·) =
∫
R

π(dy)P (y, ·), π(R) = 1.(1.1)

We have studied in detail the asymptotic behavior of π(x) = π([x,∞)) as x → ∞ in all
cases (a)–(c). The main attention was paid to the case of asymptotically homogeneous
chains.

In this second part we investigate the asymptotic behavior of πn(x) = P{X(n) �
x} as x → ∞ in the Cramér and intermediate cases. We are interested in fixed values
of the time parameter n and unboundedly growing n as well. The case β = 0 will be
considered in the future part 3 of the work.

Let {ξn} be a tuple of independent copies of ξ. Following [5], we call a Markov
chain X in R+ = [0,∞), specified by the relations X(n + 1) = (X(n) + ξn)

+, space
homogeneous.

Put

S0 = 0, Sk = ξ1 + · · ·+ ξk, and Mn = max
0�k�n

Sk.

It is well known (see, for example, [10, Chap. VI, section 9]) that the distribution
of the homogeneous chain X(0, n) coincides with the distribution of Mn, that is, for
any x

P
{
X(0, n) � 0

}
= P{Mn � x}.(1.2)

Following [5] we say that a chain X is N -partially homogeneous in space (or
simply partially homogeneous) if for any Borel set B ⊆ (N,∞) the transition proba-
bility P (y,B) coincides with the probability P{y+ξ ∈ B} when y runs through the set
(N,∞). In other words, the behavior of X in the domain (N,∞) coincides with the
process of summation of independent random variables with common distribution F .
Clearly, a homogeneous chain is 0-partially homogeneous.

In section 2 we give the considerations needed for further refinements of a num-
ber of known theorems on the large-deviation probabilities for sums of independent
identically distributed random variables, provided their exponential moments exist.

In section 3 we formulate and prove a rough theorem on the large-deviation prob-
abilities in the Cramér case for asymptotically homogeneous chains.

In section 4 we still deal with the Cramér case chains but restrict the class of
chains under consideration (in comparison with section 3 and [5]) to the class of
partially homogeneous in space chains meeting the Harris condition. For such chains
it is possible to describe the asymptotic behavior of the probability πn(x) for a large
spectrum of growing values of n. In particular, a domain of values of n is found in
which πn(x) is equivalent to the tail π(x) of the invariant distribution π.

In section 5 asymptotically homogeneous chains are investigated in the inter-
mediate case. We show, under broad conditions on the initial distribution π0, that
πn(x) ∼ π(x)1 for any rate of convergence of n and x to infinity. In addition, an
essential generalization of Theorem 5 from [5] is given about the large-deviation prob-
abilities for the stationary distribution π.

1We write an(x) ∼ bn(x) as n, x → ∞, if limn,x→∞ an(x)/bn(x) = 1.
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2. Large-deviation probabilities for sums of random variables.

2.1. Deviation (or rate) function. In this subsection we recall the notion of
deviation function and some of its properties (see, for example, [2, Chap. 8, section 8]
or [6, section 1, subsection 7]). We need the following notation: m = Eξ, ϕ(λ) = Eeλξ,
λ+ = sup{λ : ϕ(λ) < ∞} (here and throughout we assume that λ+ > 0), and

α+ = lim
λ→λ+

ϕ′(λ)
ϕ(λ)

= lim
λ→λ+

d logϕ(λ)

dλ
.

If ξ is a random variable bounded from above, then λ+ = ∞, and α+ coincides with
the essential supremum of the values of ξ, that is, with sup{x : F (x) < 1}. If ξ is not
bounded from below and λ+ = ∞, then α+ = ∞. If ξ is not bounded from above
and λ+ is finite, then α+ may take a priori any value within the interval (m,∞],
including a negative value.

It is known (see, for example, [10, Chap. XVI, section 7]) that logϕ(λ) is a
strictly convex function. Therefore, for α ∈ [m,α+) the maximum of the difference
αλ − logϕ(λ) with respect to λ is attained at that unique point λ(α), at which the
tangent line to the function logϕ(λ) is parallel to the line αλ, that is, at which
d logϕ(λ)/dλ = α. The function λ(α) is increasing and λ(m) = 0. The function

Λ(α) ≡ sup
λ

{αλ − logϕ(λ)} = αλ(α)− logϕ(λ(α)), α ∈ [m,α+),(2.1)

is called a deviation (or rate) function. Differentiating the previous equality we get
the relation Λ′(α) = λ(α); therefore, Λ is a strictly convex function. We have Λ(m) =
Λ′(m) = 0.

In the case when α+ < ∞ and λ+ < ∞, we define Λ(α) for α � α+ in the linear
way: Λ(α) = Λ(α+ − 0) + (α − α+)λ+, setting additionally λ(α) = λ(α+ − 0) for
α � α+. If α+ < ∞ and λ+ = ∞, that is, if ξ is a random variable bounded from
above (with necessity by α+), we set Λ(α+) = − logP{ξ = α+} and Λ(α) = ∞ for
α > α+ if P{ξ = α+} > 0; Λ(α) = ∞ for α � α+ if P{ξ = α+} = 0. Note that
a formal search for the supremum in (2.1) leads just to these values of the deviation
function for α > α+.

If ξ is not bounded from above, Λ(α) is finite and continuously differentiable for
all α � 0. If ξ is bounded from above (that is, if λ+ = ∞ and α+ < ∞), Λ(α) has a
unique discontinuity at the point α = α+.

2.2. Rough asymptotics for large-deviation probabilities. According to
the large-deviation principle for sums of independent random variables (see, for ex-
ample, [6, section 1, Lemma 7]) for any fixed α � m as n → ∞ we have

n−1 logP

{
Sn
n

� α

}
−→−Λ(α).(2.2)

This principle is still in force in the following stronger form. Let α1 > m be an
arbitrary number such that Λ(α1) < ∞. Then, as n → ∞,

n−1 logP

{
Sn
n

� α

}
= −Λ(α) + o(1)(2.3)

uniformly in α ∈ [m,α1]. The left-hand side in (2.3) equals −∞ if Λ(α) = ∞. The
statement in the uniform form follows from (2.2) in view of the uniform continuity
of Λ(α) on the compact [m,α1] and monotonicity of the left-hand side of (2.3) in α.
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In the next two auxiliary subsections we give two refinements of the central limit
theorem for lattice and nonlattice summands which are uniform with respect to a
parameter.

2.3. Local central limit theorem uniform with respect to a param-
eter (the lattice case). In this subsection ξk are supposed to be lattice with
σ2 = Dξ < ∞. Let b and h be numbers such that P{ξ = b + kh, k ∈ Z} = 1,
and the lattice with step h is the minimal one possessing this property. According to
a local limit theorem for the distribution of sums Sn (see [8, section 43])

P {Sn = nb+ kh} − h√
2πnσ

e−(nb+kh−nm1)
2/2nσ2

= o

(
1√
n

)
as n → ∞ uniformly for all k ∈ Z. In the lemma below we list conditions under
which this statement is valid uniformly in a parameter on which the distribution of ξ

depends. Namely, we consider lattice random variables ξ
[r]
k , the distribution of which

depends on a parameter r from an arbitrary parametric set and for each r is lattice
with minimal lattice {b+ kh, k ∈ Z}.

Lemma 1. Let {(ξ[r])2} be a family (in r) of random variables uniformly integrable
and such that, for any ε > 0

sup
r

sup
µ∈[ε,2π/h−ε]

|Eeiµξ
[r] | < 1(2.4)

(here i is the imaginary unit). Then uniformly in k and r the following relation holds:

P
{
S[r]
n = nb+ kh

}
− h√

2πnσ[r]
e−(nb+kh−nm[r]

1 )2/2n(σ[r])2 = o

(
1√
n

)
.(2.5)

Remark 1. Since for any r the distribution of ξ[r] is lattice with the minimal step

of the lattice equal to h, for any ε > 0 the estimate |Eeiµξ
[r] | < 1 is valid uniformly

in µ ∈ [ε, 2π/h − ε] and condition (2.4) is an analogue of this relation being uniform
in r.

Proof of Lemma 1. The condition of the uniform integrability of the squares of
the random variables implies that in a vicinity of point µ = 0 the expansion

Eeiµ(ξ
[r]−m[r]

1 ) = 1− (σ[r])2µ2

2
+ o(µ2)

holds uniformly in r. In particular, the characteristic functions Eeiµ(S
[r]
n −nm[r]

1 )/
√
nσ[r]

converge to the characteristic function e−µ
2/2 of the standard normal law uniformly

in µ from any compact and uniformly in r. These facts and condition (2.4) further
allow us to use, literally, the proof of the local theorem in [8, section 43].

Lemma 1 implies the following statement.

Corollary 1. Let {(ξ[r])2} be a family (in r) of random variables that is uni-
formly integrable. Let, in addition, a finite set K ⊂ Z be such that the greatest common
divisor of the numbers from K is equal to one and for any k ∈ K and r the inequality
P{ξ[r] = b+kh} � ε is valid for some ε > 0. Then relation (2.5) holds true uniformly
in k and r.
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2.4. Expansion in the central limit theorem uniform with respect to
a parameter (the nonlattice case). Now let ξk be nonlattice with zero mean
and finite third moment m3 = Eξ3. The following expansion for the distribution of
Sn = ξ1 + · · ·+ ξn is known which refines the central limit theorem (see, for example,
Theorem 1 in [10, Chap. XVI, section 4]): As n → ∞

P

{
Sn√
nDξ1

< u

}
− Φ(u)− m3

6σ3
√

n
(1− u2) Φ′(u) = o

(
1√
n

)
uniformly with respect to all u, where Φ(u) is the distribution function of the stan-
dard normal law. In this auxiliary subsection we formulate a generalization of this
expansion to the case when the distribution of ξ depends on a parameter r from an

arbitrary parametric set. Namely, we consider random variables ξ
[r]
k each of which

has nonlattice distribution with zero mean, unit variance, and finite third moment

m
[r]
3 = E(ξ[r])3.
Lemma 2. Let, for any compact K ⊂ R containing no zero,

sup
r

sup
µ∈K

∣∣∣Eeiµξ
[r]
∣∣∣ < 1(2.6)

(here i is the imaginary unit). Let, in addition, the family (in r) of random vari-

ables {(ξ[r])3} be uniformly integrable. Then the distribution function F
[r]
n (u) of the

random variable S
[r]
n /

√
n satisfies, as n → ∞, the relation

F [r]
n (u)− Φ(u)− m

[r]
3

6
√

n
(1− u2) Φ′(u) = o

(
1√
n

)
uniformly in u ∈ R and r.

Remark 2. Since for any r the distribution of the random variables ξ[r] is a

nonlattice, supµ∈K |Eeiµξ
[r] | < 1 for any compact K ⊂ R containing no zero, and

condition (2.6) is simply the uniform analogue of this relation.
Proof. The proof follows from the arguments of [10, Chap. XVI, section 4] and is

based on the following estimate (4.4) given there: For any ε > 0

∣∣∣F [r]
n (u)−Ψ(u)

∣∣∣ � ∫ a√n
−a√n

∣∣∣∣∣ (Eeiµξ
[r]/

√
n)n − γ(µ)

µ

∣∣∣∣∣ dµ+
ε√
n

,(2.7)

where

Ψ(u) = Φ(u) +
m

[r]
3

6
√

n
(1− u2) Φ′(u)

is a function of bounded variation with Fourier transform

ψ(µ) ≡
∫ ∞

−∞
eiµu dΨ(u) = e−µ

2/2

[
1 +

m
[r]
3

6
√

n
(iµ)3

]
,

and a is a constant such that 24|Ψ′(u)| < εa for all u and r. One can find such an a
since the third moments are uniformly bounded.

We divide the interval of integration in (2.7) into two parts. By (2.6) the maximum

of |Eeiµξ
[r] | over the domain 0 < δ � |µ| � a < ∞ is strictly less than one. As
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mentioned in [10, Chap. XVI, section 4], it follows that the integral over the domain
|µ| ∈ [δ

√
n, a

√
n ] tends to zero more rapidly than any power of 1/n. Further, as the

third moments of the random variables in question are uniformly integrable, the third

derivatives of the functions logEeiµξ
[r]

are continuous in a vicinity of zero uniformly
in r. Therefore, according to [10, Chap. XVI, section 2] there exists δ > 0 such that
the integrand in (2.7) admits the following estimate for |µ| � δ

√
n:∣∣∣∣∣ (Eeiµξ

[r]/
√
n)n − ψ(µ)

µ

∣∣∣∣∣ � e−µ
2/4

(
ε√
n
|µ|+ (m

[r]
3 )2

72n
|µ|5
)

,

and consequently the right-hand side in (2.7) is less than 1000 ε/
√

n for large n.
Recalling that ε > 0 may be selected arbitrarily small completes the proof of the
lemma.

2.5. Exact asymptotics for the large-deviation probabilities of sums.
Definition 1. A distribution Fλ is called the Cramér transform of a distribu-

tion F at point λ if Fλ(du) = eλuF (du)/ϕ(λ), provided the Laplace transform of F
exists at point λ.

The distribution Fλ with λ = λ(α) is called the Cramér transform F (α) with
parameter α over the distribution F . A random variable with distribution F (α) is
denoted by ξ(α). Observe that ξ(α) = ξ if α = m. According to this definition,
Eξ(α) = ϕ′(λ)/ϕ(λ) |λ=λ(α) = α,(

σ(α)
)2

= Dξ(α) =
ϕ′′(λ)
ϕ(λ)

∣∣∣∣
λ=λ(α)

− α2 =
(
logϕ(λ)

)′′ ∣∣
λ=λ(α)

.

Differentiating the identity ϕ′(λ)/ϕ(λ) |λ=λ(α) = α with respect to α and taking into
account the equality Λ′(α) = λ(α) we arrive at the relation(

σ(α)
)2

=
1

Λ′′(α)
.(2.8)

In particular, Λ′′(m) = 1/Dξ.
The following two lemmas generalize Theorem A in [14] and some statements

in [9]. Set γ = σ(α)λ(α)
√

n.
Lemma 3. Let F be a nonlattice distribution, and let α1 and α2 be numbers such

that m � α1 < α2 < α+; if α1 = m, then we additionally assume the finiteness
of E|ξ|3. Then, as n → ∞, the following representation is true uniformly in α ∈
[α1, α2]:

P

{
Sn
n

� α

}
= e−nΛ(α)eγ

2/2
(
1− Φ(γ)

) (
1 + o(1)

)
.

Remark 3. Below, by proving the statement we establish a stronger relation
which refines the order of the remainder o(1) (see (2.10)).

The asymptotic equality described in the lemma is universal in that it contains an
approximation of the distribution of sums both in the domain of normal deviations and
in the domain of large deviations. For example, we know that 1−Φ(γ) ∼ e−γ

2/2/
√
2πγ

as γ → ∞. Hence we deduce the following statement.
Corollary 2. If Eξ < α1, then as n → ∞ we have uniformly in α ∈ [α1, α2]

P

{
Sn
n

� α

}
∼ 1√

2πnσ(α)λ(α)
e−nΛ(α).
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In addition, if E|ξ|3 < ∞ and y(n) → ∞, y(n) = o(
√

n), then the previous
asymptotic representation is valid as n → ∞ uniformly in α ∈ [Eξ + y(n)/

√
n, α2].

On the other hand, the expansion Λ(α) = γ2/2n+O(|α−m|3) is valid in a vicinity
of point α = m which implies the following statement.

Corollary 3. If E|ξ|3 < ∞, then, as n → ∞, the following relation is valid
uniformly in the domain α ∈ [m,m+ o(n−1/3)]:

P

{
Sn
n

� α

}
∼ 1− Φ

(
σ(α) λ(α)

√
n
)
∼ 1− Φ

(
(α −Eξ)

√
n
)
.

Proof of Lemma 3. Let {ξ(α)
k } be a tuple of independent copies of the random

variable ξ(α); ζ
(α)
k = (ξ

(α)
k − α)/σ(α). Put

S(α)
n = ξ

(α)
1 + · · ·+ ξ(α)

n , F (α)
n (u) = P

{
ζ
(α)
1 + · · ·+ ζ

(α)
n√

n
< u

}
.(2.9)

The following “inversion formula” is valid (see, for example, [2, Chap. 8, section 8])

P{Sn ∈ du} = ϕn(λ
(
α)
)
e−λ(α)uP{S(α)

n ∈ du}
and, respectively,

P

{
Sn
n

� α

}
= ϕn

(
λ(α)

) ∫ ∞

x

e−λ(α)uP
{
S(α)
n ∈ du

}
= ϕn

(
λ(α)

)
e−λ(α)αn

∫ ∞

0

e−λ(α)σ(α)√nu dF (α)
n (u).

Recalling the definition of Λ and integrating by parts we obtain the equality

P

{
Sn
n

� α

}
= e−nΛ(α)γ

∫ ∞

0

e−γu
(
F (α)
n (u)− F (α)

n (0)
)
du.

The set of random variables {ζ(α)
1 , α1 � α � α2}meets the conditions of Lemma 2.

Applying it to estimate the difference F
(α)
n (u)−F

(α)
n (0) in the last equality we arrive

at the relation

P

{
Sn
n

� α

}
= e−nΛ(α)γ

[ ∫ ∞

0

e−γu
(
Φ(u)− Φ(0)

)
du

+
m

[r]
3

6σ(α)3
√

n

∫ ∞

0

e−γu
(
(1− u2) Φ′(u)− Φ′(0)

)
du

+ o

(
1√
n

) ∫ ∞

0

e−γu du

]
.

Note now that the identity
∫∞
0

e−γue−u
2/2du = eγ

2/2(1−Φ(γ))
√
2π is valid (one

can check it by extracting a perfect trinomial square in the exponent of the exponent).
By differentiating this identity with respect to γ one can find the values of the integrals∫∞
0

uke−γue−u
2/2 du, k = 1, 2, 3. Proceeding in this way we arrive at the equalities∫ ∞

0

e−γu
(
Φ(u)− Φ(0)

)
du =

eγ
2/2(1− Φ(γ))

γ
,∫ ∞

0

e−γu
(
(1− u2) Φ′(u)− Φ′(0)

)
du =

γ√
2π

− γ2eγ
2/2
(
1− Φ(γ)

)− 1

γ
√
2π

.
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Consequently,

P

{
Sn
n

� α

}
= e−nΛ(α)eγ

2/2
(
1− Φ(γ)

)
+

e−nΛ(α)

√
n

(
O

(
1

1 + γ2

)
+ o(1)

)
.(2.10)

The last relation implies the statement of the lemma.
Lemma 4. Let F be a lattice distribution with minimal lattice {b+ kh, k ∈ Z}

and let α1 and α2 be numbers such that m � α1 < α2 < α+; if α1 = m, we additionally
assume the finiteness of Eξ2. Then for x = nb+ kh, n → ∞,

P{Sn = x} ∼ h√
2πnσ(α)

e−nΛ(x/n)

uniformly in x such that α = x/n ∈ [α1, α2].
Proof. The inversion formula in the lattice case has the form

P{Sn = x} = ϕn
(
λ(α)

)
e−λ(α)αnP{S(α)

n = x}.
The family of random variables {ξ(α)

1 , α ∈ [α1, α2]}meets the conditions of Corollary 1.
Therefore, P{S(α)

n = x} ∼ h/
√
2πnσ(α); hence the needed asymptotic representation

follows.
Corollary 4. If α1 > m, then, as n → ∞, we have, uniformly in α ∈ [α1, α2]

such that (α − b)n/h is an integer,

P

{
Sn
n

� α

}
∼ h√

2πnσ(α)(1− eλ(α)h)
e−nΛ(α).

2.6. Asymptotic behavior of taboo probabilities of large deviations of

sums. Set M
(α)
− = mink>0 S

(α)
k , b(v, α) = P{M (α)

− � v}. In what follows we need
the following statement about the asymptotic behavior of the probability:

qn(v, x) ≡ P{Sk � v for all k < n, Sn � x}.
Lemma 5. Let α1 and α2 be arbitrary numbers such that 0 < α1 < α2 and

Λ(α2) < ∞; v0 ∈ R. Then, as x → ∞, the following relation is valid uniformly in v
and n such that v � v0 and x/n ∈ [α1, α2]:

n−1 log qn(v, x) � −Λ
(

x

n

)
+ o(1).

If, in addition, α2 < α+, then the following equivalence takes place:

qn(v, x) ∼ b

(
v,

x

n

)
P{Sn � x}.

Proof. The proof of the second statement is contained, in fact, in [3] and [4]. The
only problem is that in [3] and [4] an additional Cramér condition is imposed on the
characteristic function of distribution F . However, this additional condition is used
to provide correct references to the previous results containing uniform asymptotic
relations for large-deviation probabilities. By our arguments we have obtained the
needed uniform asymptotic representations (Corollary 2 and Lemma 4) with no use
of the Cramér condition on the characteristic function.

The first statement of the lemma can be deduced from the second one by applying
the truncation method in a way that is similar to those used in the proof of Lemma 7
in [6, section 1]. The lemma is proved.
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2.7. Some results related to the sums of probabilities P{Sk � x}. Let
β > 0, ϕ(β) = 1, and ϕ′(β) < ∞; in particular, α+ � ϕ′(β) > 0. Set α0 ≡
ϕ′(β)/ϕ(β) = ϕ′(β). We have α0 ∈ (0, α+], λ(α0) = β, and Λ(α0) = βα0.

As the renewal function is constructed by the sums Sk, the following representa-
tion is valid as x → ∞:

H(x) ≡
∑
k�1

P{Sk � x} = (cH + o(1)
)
e−βx.(2.11)

If ξ is a nonlattice random variable, then cH = 1/βα0. If ξ is lattice with minimal
lattice {kh, k ∈ Z}, then cH = h/(1 − e−βh)α0, and it is necessary to take x as a
multiple of h.

To check (2.11), we consider the renewal function H(α0) constructed by the

sums S
(α0)
k with a positive mean drift. Then the inversion formula

H(x) = e−βx
∫ ∞

x

e−β(u−x) H(α0)(du)

is valid. Applying the local renewal theorem for H(α0) leads to (2.11) (compare also
with [7] where the asymptotic behavior of H(x) is studied in more detail).

Throughout what follows n0 = n0(x) = x/α0. The asymptotic behavior of the
partial sums of the probabilities P{Sk � x} is described by the following lemma.

Lemma 6. Let ϕ(λ) < ∞ for a λ > β, that is, λ+ > β, and let y(x) → ∞ be a
function such that y(x) = o(x1/6) as x → ∞. Then the following relation takes place
uniformly in y � −y(x):∑

k�y√x
P{Sn0+k � x} = (cH + o(1)

)
e−βxΦ

(
yα

3/2
0

σ(α0)

)
as x → ∞;

in the lattice case it is necessary to take x to be a multiple of the lattice step.
Preparatory to proving the lemma we introduce one more function. Denote

V (α) =
Λ(α)

α
.

Since

V ′(α) = α−2
(
λ(α)α − Λ(α)

)
= α−2 logϕ

(
λ(α)

)
,

it follows that V ′(α) < 0 if α ∈ (0, α0); V ′(α) > 0 if α > α0, and V ′(α0) = 0. Thus,
V (α) attains its minimal value on (0,∞) at point α0 and this value is Λ(α0)/α0 = β.
We have V ′′(α0) = 1/α0(σ

(α0))2.
Proof of Lemma 6. By Corollaries 2 and 4 the following asymptotic representa-

tion is valid uniformly in |k| � 2y(x)
√

x = o(x2/3):

P{Sn0+k � x} ∼ α0cH√
2πn0σ(α0)

e−(n0+k)Λ(x/(n0+k))

=
α

3/2
0 cH√

2πxσ(α0)
e−xV (x/(n0+k)).(2.12)

In view of the equalities V (α0) = β and V ′(α0) = 0 we have the expansion

V

(
x

n0 + k

)
= β +

V ′′(θ)
2

(
x

n0 + k
− α0

)2

,
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where θ lies between α0 and x/(n0 + k); in particular, θ → α0. Since

x

n0 + k
− α0 =

α0

1 + k/n0
− α0 = −α2

0k

x

(
1 +O

(
k

x

))
and V ′′(θ) = V ′′(α0) + O(k/x) = 1/α0 (σ

(α0))2(1 + O(k/x)) uniformly in |k| �
2y(x)

√
x, we have for such values of k

e−xV
(

x
n0+k

)
= e−βxe−α

3
0(k/

√
x)2/2(σ(α0))2+o(1).(2.13)

Let ε > 0. Substituting (2.13) in (2.12), we obtain the following equivalence which
is valid uniformly over all y1 and y2 such that y2 − y1 � ε, |y1|, |y2| � 2y(x):

y2
√
x∑

k=y1
√
x

P{Sn0+k � x} ∼ e−βx
α

3/2
0 cH√

2πxσ(α0)

y2
√
x∑

k=y1
√
x

e−α
3
0(k/

√
x)2/2(σ(α0))2

∼ e−βx
α

3/2
0 cH√
2π σ(α0)

∫ y2
y1

e−α
3
0t

2/2(σ(α0))2 dt

= cHe−βx
(
Φ

(
y2

α
3/2
0

σ(α0)

)
− Φ

(
y1

α
3/2
0

σ(α0)

))
.(2.14)

By the exponential Chebyshev inequality we have

P{Sn0+k � x} � e−λxϕn0+k(λ).

Summing this inequality over k � −2y(x)√x and letting λ = λ(x/(n0 − 2y(x)
√

x))
we obtain the estimate∑

k�−2y(x)
√
x

P{Sn0+k � x} � n0e
−λxϕn0−2y(x)

√
x(λ) =

x

α0
e−xV (x/(n0−2y(x)

√
x)).

Hence, in view of (2.13),∑
k�−2y(x)

√
x

P{Sn0+k � x} � cxe−βxe−2α3
0y

2(x)/(σ(α0))2

= o
(
e−βxe−α

3
0y

2(x)/2(σ(α0))2
)

.(2.15)

Relations (2.14) and (2.15) imply the statement of the lemma.
Corollary 5. Let λ+ > β, v0 ∈ R, and let y(x) → ∞ be a function such that

y(x) = o(x1/6) as x → ∞. Then, uniformly in y � −y(x) and v � v0 we have as
x → ∞ (the notation qn(v, x) is taken from Lemma 5)

∑
k�y√x

qn0+k(v, x) = b(v, α0)
(
cH + o(1)

)
e−βxΦ

(
yα

3/2
0

σ(α0)

)
;

in the lattice case one should take x to be a multiple of the lattice step.
In particular, if k1(x) and k2(x) are sequences of integers such that k1(x) < k2(x)

and k2(x)− k1(x) = o(
√

x), then the following estimate is valid as x → ∞:∑
k∈[k1(x),k2(x)]

qk(v, x) = o(e−βx).
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Proof. The principle contribution into the sum in Lemma 6 is made by the
summands corresponding to the values of k of the order o(x). For such values of k,
b(v, x/(n0+k)) tends to b(v, α0). For this reason the corollary follows from Lemmas 5
and 6.

3. The Cramér case: Large-deviation principle for an asymptotically
homogeneous chain. In this and the succeeding sections we investigate the Cramér
case when β > 0, ϕ(β) = 1, and α0 = ϕ′(β) < ∞.

3.1. A homogeneous chain with zero initial condition. In this subsection
we describe some properties of the distribution of Mn = max{0, S1, . . . , Sn}. Note
that (2.3) implies

x−1 logP{Sn � x} = −V

(
x

n

)
+ o(1)(3.1)

as x → ∞ uniformly in n such that x/n ∈ (0, α1] where, as before,

V (α) =
Λ(α)

α
.

Here α1 > 0 is an arbitrary number such that Λ(α1) < ∞. Clearly, both parts of (3.1)
are equal to −∞ if Λ(x/n) = ∞.

Introduce continuous functions Ṽ (α) and λ̃(α):

Ṽ (α) ≡ inf
α′�α

V (α′) =
{

β for α � α0,
V (α) for α � α0,

λ̃(α) ≡
{

β for α � α0,
λ(α) for α � α0.

The following lemma contains a large-deviation principle for Mn.
Lemma 7. Let α1 > 0 be such that Λ(α1) < ∞. Then, as x → ∞, we have

x−1 logP{Mn � x} = −Ṽ

(
x

n

)
+ o(1)

uniformly in n such that x/n ∈ (0, α1]; x−1 logP{Mn � x} = −∞ if Λ(x/n) = ∞.
Proof. Let λ ∈ [β, λ+). Then Eeλξ � 1 and the sequence eλSn constitute a

submartingale. Hence, applying the Doob inequality for nonnegative submartingales
we get for any x the estimate

P{Mn � x} = P

{
sup
k�n

eλSk � eλx
}

� e−λxEeλSn .(3.2)

The right-hand side of the last inequality equals

e−λxϕn(λ) = exp

{
− n

(
λx

n
− logϕ(λ)

)}
.

If α ≡ x/n ∈ [α0,∞), then λ(α) � β and, consequently,

P{Mn � x} � e−λ(α)x ϕn
(
λ(α)

)
= e−nΛ(x/n) = e−xV (x/n).(3.3)

In addition, (3.2) with λ = β yields the Cramér estimate

P{Mn � x} � e−βx,(3.4)
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valid for all n and x. Combining the last two estimates we deduce for any n and x
the inequality

P{Mn � x} � e−xṼ (x/n).(3.5)

Using the inequality P{Mn � x} � P{Sm � x}, valid for any m � n, and letting,
in (3.1), m = n in the case x/n � α0 and m = x/α0 otherwise, we obtain the following
estimate from below as x → ∞:

x−1 logP{Mn � x} � −Ṽ

(
x

n

)
+ o(1).(3.6)

Relations (3.5) and (3.6) imply the statement of the lemma.
Observe that one can get estimate (3.5) from above making use of the inequality

P{Mn � x} �
n∑
k=1

P{Sk � x}

and the obvious estimates P{Sk � x} � e−kΛ(x/k) = e−xV (x/k).
The next lemma is a slight generalization of Theorem 10 in [1] in the part dealing

with the range of values of n in which the tails of the distributions Mn and M∞ are
equivalent.

Lemma 8. Let y(x) → ∞ as x → ∞. Then, as x → ∞, the following equivalence
takes place uniformly in n � x/α0 + y(x)

√
x:

P{Mn � x} ∼ P{M∞ � x}.

Proof. We know the Cramér estimate (see, for example, [10, Chap. XII, section 5])
according to which as x → ∞ (if the common distribution of summands is lattice it
is necessary to select x as a multiplier of the lattice step)

P{M∞ � x} ∼ ce−βx, c ∈ (0, 1).(3.7)

Let λ ∈ [0, β]. Then Eeλξ � 1 and the sequence eλSn constitutes a supermartin-
gale. Hence by the Doob inequality for nonnegative supermartingales we have for
any x

P

{
sup
k�n+1

Sk � x

}
= P

{
sup
k�n+1

eλSk � eλx
}

� e−λxEeλSn+1.

Therefore,

P{M∞ � x} −P{Mn � x} � e−λxEeλSn+1 = e−λxϕn+1(λ) � e−n(λx/n−logϕ(λ)).

If α ≡ x/n < α0, then λ(α) < β and, respectively,

P{M∞ � x} −P{Mn � x} � e−nΛ(x/n).

Λ is a strictly convex function and its second derivative on the interval [0, α0] is
separated from below by a number δ > 0; consequently,

Λ(α) � Λ(α0) + Λ′(α0) (α − α0) +
δ(α − α0)

2

2
= βα+

δ(α − α0)
2

2
.
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The range of values of time n under consideration may be characterized by the in-
equality α0−α � y(x)/

√
n (generally speaking, by changing the values of y by a finite

factor). In view of the preceding two inequalities we have in this range

P{M∞ � x} −P{Mn � x} � e−βx e−δy
2(x)/2 = o(e−βx) as x → ∞,

which combined with (3.7) completes the proof.

3.2. The upper bounds for the large-deviation probabilities of an asymp-
totically homogeneous Markov chain. In this subsection we assume that X is a
real-valued asymptotically homogeneous Markov chain.

Lemma 9. Let λ1 ∈ [β, λ+), λ1 < ∞; if λ1 = λ+, then additionally we assume
that ϕ′(λ+) < ∞. Denote by α1 a finite solution of λ(α) = λ1. For any λ ∈ [0, λ1), let
the initial distribution of the chain have the finite exponential moment EeλX(0) < ∞
and let the increments of the chain satisfy the condition

sup
u<0

Eeλ(u+ξ(u)) < ∞, sup
u�0

Eeλξ(u) < ∞.(3.8)

Then, as x → ∞, the relation

x−1 log πn(x) � −Ṽ1

(
x

n

)
+ o(1)(3.9)

is valid uniformly over all values of n such that the ratio x/n is bounded from above.

Here Ṽ1(α) is a continuous function specified by the equality

Ṽ1(α) =



β if α � α0,

Λ(α)

α
if α0 � α � α1,

Λ(α1) + (α − α1)λ1

α
if α � α1.

Remark 4. By definition, Ṽ1(α) coincides with Ṽ (α) on the set α � α1.

If λ+ < ∞, ϕ′(λ+) < ∞, and λ1 = λ+, then α1 = α+ < ∞ and Ṽ1(α) = Ṽ (α)

for all α. In the general case, Ṽ1 � Ṽ .

Proof of Lemma 9. Let λ2 be an arbitrary number less than λ1, let α2 solve
λ(α) = λ2, and let Ṽ2(α) be a function constructed as Ṽ1(α) with replacement of λ1

and α1 by λ2 and α2, respectively.

For any U > 0 we specify a random variable Ξ(U) with distribution

P
{
Ξ(U) � y

}
= max

(
sup
u<U

P
{
u+ ξ(u) � U + y

}
, sup
u�U

P
{
ξ(u) � y

})
.

Since ξ(u) ⇒ ξ weakly as u → ∞, it follows that Ξ(U) weakly converges to ξ
as U → ∞, and by condition (3.8) the exponential moments converge as well: for
any λ ∈ [0, λ2]

EeλΞ(U) −→Eeλξ as U → ∞.
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Denote ϕ(U, λ) = EeλΞ(U), β(U) = sup{λ : ϕ(U, λ) � 1}, α0(U) = ϕ′(U, β(U)).
Let Λ(U,α) be the deviation function of the random variable Ξ(U), λ(U,α) = Λ′(U,α),
and let α2(U) solve λ(U,α) = λ2 and

Ṽ2(U,α) =


β(U) if α � α0(U),

Λ(U,α)

α
if α0(U) � α � α2(U),

Λ(U,α2(U)) + (α − α2(U))λ2

α
if α � α2(U).

All these quantities are well defined for sufficiently large values of U . The deviation
function Λ(U,α) converges to Λ(α) on the set α � α2 (α2 solves λ(α) = λ2) and,
respectively,

Ṽ2(U,α)−→ Ṽ2(α) as U → ∞.(3.10)

Consider a homogeneous Markov chain Yn(U) = (Yn−1(U) + Ξn(U))+ where
Ξn(U) are independent copies of Ξ(U). By our construction the inequality v+ξ(v) �st

u + Ξ(U) is valid for any initial states v and u subject to the conditions v � u and
u � U . Hence the homogeneous chain U +Yn(U) majorizes in probability the original
chain Xn. In particular,

P
{
X(n) � x

}
� P

{
U + Yn(U) � x

}
.

This inequality and (3.5) yield

P
{
X(n) � x

}
� e−(x−U)Ṽ (U,(x−U)/n).

The statement of the lemma follows now from the inequality Ṽ2(U,α) � Ṽ (U,α),
convergence (3.10), and from the possibility of choosing arbitrary λ2 less than λ1.

In the case when ξ is a random variable bounded from above, we can deduce from
Lemma 9 the following statement by letting λ1 → ∞, (respectively, α1 → α+).

Corollary 6. Let λ+ = ∞ and α+ < ∞; that is, ξ is bounded from above by α+.
For any λ > 0, let condition (3.8) be valid and EeλX(0) be finite. Then for any ε > 0
the following relation is valid as x → ∞:

x−1 log πn(x) � −Ṽ

(
x

n

)
+ o(1)

uniformly in n such that x/n � α+ − ε, and the convergence

x−1 log πn(x) → −∞
is uniform in n such that x/n � α+ + ε.

3.3. Lower bounds for the large-deviation probabilities of an asymp-
totically homogeneous Markov chain. In this subsection we consider an asymp-
totically homogeneous Markov chain X with values in R. The initial distribution of
the chain is assumed to be arbitrary.

Lemma 10. Let α1 be a number exceeding α0 (in the case when ξ is bounded we
additionally assume that α1 < α+). For any level u ∈ R, let there be n0 = n0(u) such
that

P
{
X(n0) � u

}
> 0.(3.11)
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Then, as x → ∞

x−1 log πn(x) � −Ṽ

(
x

n

)
+ o(1)

uniformly in n such that α0 � x/n � α1.
If, in addition, for any u ∈ R there exists n0 such that

inf
n�n0

P
{
X(n) � u

}
> 0,(3.12)

then, as x → ∞, we have

x−1 log πn(x) � −β + o(1)

uniformly in n such that x/n � α0.
Remark 5. In view of the weak convergence ξ(u) ⇒ ξ as u → ∞ and condition

P{ξ > 0} > 0 there exists a level U such that for any u � U the inequality P{ξ(u) �
δ} � δ holds for some δ > 0. Therefore, in order that condition (3.11) be valid it
is necessary and sufficient that the event {X(n) � U} has positive probability for
some n. Respectively, condition (3.12) is equivalent to the fact that the probabilities
of the events {X(n) � U} are separated from zero uniformly in n � N for some N .

Remark 6. A sufficient condition for (3.12) to be valid is the weak convergence of
the distribution of X(n) (ergodicity) to the distribution of a random variable X(∞)
which is not bounded from above.

Proof of Lemma 10. For any u consider a random variable η(u) with distribution
P{η(u) � y} = infv�uP{ξ(v) � y}. By our construction η(u) �st ξ(v) for any u and v

related by the inequality u � v. Since the chain is asymptotically homogeneous, we
have η(u) ⇒ ξ as u → ∞. Denote by Ti(u) = η1(u) + · · · + ηi(u) the sum of i
independent copies of η(u). By construction the following inequality is valid for any
u � v � y and m:

P
{
X(v, k) � v for all k < m, X(v,m) � v + y

}
� P

{
Tk(u) � 0 for all k < m, Tm(u) � y

}
.(3.13)

For any N < n the probability that X(n) exceeds a level x can be evaluated as
follows (U � 0):

πn(x) � P
{
X(N) � U, X(k) � X(N) for N < k < n,X(n)− X(N) � x

}
= P

{
X(N) � U

}
P
{
X(k) � X(N) for N < k < n,

X(n)− X(N) � x | X(N) � U
} ≡ p1p2.(3.14)

Let us estimate p1 and p2 from below. By condition (3.11) for any fixed U there
exists an N such that p1 > 0. Applying (3.13) with y = x and m = n−N , we deduce
the following estimate for p2:

p2 � P
{
Tk(U) � 0 for all k < n − N, Tn−N (U) � x

}
.

Substituting the obtained estimates in (3.14) we arrive at the inequality

πn(x) � p1P
{
Tk(U) � 0 for all k < n − N, Tn−N (U) � x

}
.(3.15)
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Hence by Lemma 5 we derive the following estimate as x → ∞:

x−1 log πn(x) � Ṽη(U)

(
x

n − N

)
+ o(1)(3.16)

uniformly in n such that α0 � x/(n − N) � α1, where Ṽη(U) is the function Ṽ ,
corresponding to the random variable η(U).

We know that the family of random variables η(u) is stochastically nondecreasing

and weakly converges to ξ. Therefore, Ṽη(u)(α) → Ṽ (α) as u → ∞ uniformly in
α ∈ [α0, α1]. Now the first statement of the lemma follows from (3.16), since the
level U is arbitrary.

To prove the second statement of the lemma we put N = n−x/α0 (with the known
agreement that N should be integer). Let U be an arbitrary level. By condition (3.12)
there exists n0 such that for all N � n0 the probability p1 = p1(N) is not less than a
positive number δ. Inequality (3.15) transforms in the following one:

πn(x) � δP

{
Tk(U) � 0 for all k <

x

α0
, Tx/α0

(U) � x

}
.

Evaluating the last probability by Lemma 5 we obtain, as x → ∞, that x−1 log πn(x) �
Ṽη(U)(α0)+ o(1) uniformly over n satisfying x/n � α0. This, as before, completes the
proof.

3.4. Rough (logarithmic) asymptotics of the large-deviation probabili-
ties of an asymptotically homogeneous chain. In this subsection we also assume
that X is an asymptotically homogeneous Markov chain with values in R. The next
theorem follows from Lemmas 9 and 10 and Corollary 6.

Theorem 1. Let λ1 ∈ [β, λ+), λ1 < ∞, and if λ1 = λ+, then we additionally
assume that ϕ′(λ1) < ∞. Denote by α1 the solution of λ(α) = λ1. For any λ ∈ (0, λ1),
let the initial distribution of the chain have finite exponential moment EeλX(0) and let
the increments of the chain meet condition (3.8). Let condition (3.12) be valid. Then,
as x → ∞, the equality

x−1 log πn(x) = −Ṽ

(
x

n

)
+ o(1)(3.17)

is valid uniformly in n such that x/n � α1.
If λ1 = λ+, then equality (3.17) takes place if x → ∞ uniformly in n such that

supx/n < ∞.
Note that the condition on X(0) may be weakened depending on the growth of n

and x.

4. The Cramér case: The exact asymptotics of πn(x) for a partially
homogeneous chain. Let X be a U -partially homogeneous Harris chain with values
in R and 0 < β < λ+. We assume that the sequence of measures πn converges in
the metric of total variation to a measure π (being invariant with necessity) which is
unbounded to the right, that is,

sup
B⊆R

∣∣πn(B)− π(B)
∣∣−→ 0, n → ∞,(4.1)

where the supremum is taken over all Borel sets B. For a countable chain X, the con-
vergence in variation takes place automatically if the chain is irreducible, nonperiodic,
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and admits an invariant distribution (in this case π is the invariant distribution); the
conditions of convergence in variation for real-valued chains can be found, for example,
in [12] and [15].

In this section we assume that the increments of the chain satisfy for some λ1

from the interval (β, λ+) the condition

sup
u<U

∫ ∞

0

eλ1v P (u, dv) < ∞,(4.2)

and that the initial distribution π0 has finite exponential moment of the same order:

Eeλ1X(0) < ∞.(4.3)

Let α1 solve λ(α) = λ1. The following theorem is valid.
Theorem 2. Let F be a nonlattice distribution.
(a) Let y = yn(x) ∈ R be such that n = x/α0 + y

√
x; let z(x) be an arbitrary

function such that z(x) → ∞, z(x) = o(x1/6) as x → ∞. Then the following relation
is valid, as x → ∞, uniformly for all n such that yn(x) � −z(x):

πn(x) =
(
c(α0) + o(1)

)
e−βxΦ

(
yα

3/2
0

σ(α0)

)
,

where Φ(v) is the distribution function of the standard normal law, and c(α0) > 0 is
a constant independent of the initial distribution of the chain X (see (4.10)).

In particular, if ŷ(x) → ∞, then the following asymptotics takes place, as x → ∞,
uniformly in n � x/α0 + ŷ(x)

√
x:

πn(x) ∼ c(α0) e
−βx.

(b) If x/n → α ∈ (α0, α1), then as x → ∞
πn(x) ∼ c(α)n−1/2e−xV (x/n),

where c(α) is a continuous function in α depending on the initial distribution of the
chain X and specifying by formula (4.14) for α ∈ (α0, α1).

Proof. To simplify notation we use the symbol πn to denote the distribution
of X(n):

πn(B) = P
{
X(n) ∈ B

}
.

Thus, πn(x) ≡ πn([x,∞)). This agreement leads to no confusion. The basis for our
subsequent arguments is the total probability formula with respect to the last entry
of the chain into the set (−∞, U ]:

πn(x) =

∫ ∞

U

π0(dv) qn(U − v, x − v)

+
n−1∑
k=0

∫ U
−∞

πk(du)

∫ ∞

U

P (u, dv) qn−k−1(U − v, x − v),(4.4)

where

qk(U − v, x − v) ≡ P
{
X(v, l) � U, l = 1, . . . , k − 1; X(v, k) � x

}
= P{Sl � U − v, l = 1, . . . , k − 1; Sk � x − v},
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since the chain is U -partially homogeneous.
∫∞
U

in (4.4) is understood as
∫∞
U+0

. The
notation qk(v, x) has been introduced in Lemma 5.

Splitting the integration domain in the integrals with respect to the variable v
into two parts (U,U1] and (U1,∞), we obtain the inequality∣∣∣∣∣πn(x)−

∫ U1

U

π0(dv) qn(U − v, x − v)

−
n−1∑
k=0

∫ U
−∞

πk(du)

∫ U1

U

P (u, dv)qn−k−1(U − v, x − v)

∣∣∣∣∣
�
∫ ∞

U1

π0(dv) qn(U − v, x − v)

+
n−1∑
k=0

sup
u<U

∫ ∞

U1

P (u, dv)qn−k−1 (U − v, x − v).(4.5)

Our immediate goal is to select a level U1 = U1(x), growing sufficiently slowly and
in such a way that the estimate in the right-hand side would be infinitesimal with
respect to the claimed asymptotics of πn(x) in the whole spectrum of deviations.

Since qk(U − v, x− v) � P{Sk � x− v}, it follows by the exponential Chebyshev
inequality that for any λ � β, the estimate

n−1∑
k=0

qn−k−1(U − v, x − v) � e−(x−v)λ
n−1∑
k=0

ϕn−k−1(λ) � nevλe−xλϕn(λ)

is valid in view of ϕ(λ) � 1. If x/n � α0, then letting λ = λ(x/n) here we obtain for
such n the inequality

n−1∑
k=0

qn−k−1(U − v, x − v) � nevλ(x/n)e−xV (x/n) � c1xevλ(x/n)e−xV (x/n).

If x/n � α0, we apply inequality (2.11), according to which

n−1∑
k=0

qn−k−1(U − v, x − v) � c2e
vβe−βx.

Thus, for any n the right-hand side in (4.5) does not exceed

c3x e−xṼ (x/n)

(∫ ∞

U1

π0(dv) + sup
u<U

∫ ∞

U1

P (u, dv)

)
e−vλ̃(x/n)

� c4x e−xṼ (x/n) e−U1(λ1−λ̃(x/n))

in view of conditions (4.2) and (4.3).

In each of the cases (a) and (b) there exists an ε > 0 such that λ1− λ̃(x/n) > ε for
all sufficiently large x. Put U1 = 2ε−1 log x. Then the right-hand side of the previous

estimate does not exceed c4e
−xṼ (x/n)/x. Taking this fact into account in (4.5), we

obtain, as x → ∞, the relation

πn(x) =

∫ U1

U

π0(dv) qn(U − v, x − v)

+
n−1∑
k=0

∫ U
−∞

πk(du)

∫ U1

U

P (u, dv) qn−k−1(U − v, x − v) + o

(
e−xṼ (x/n)

√
n

)
.(4.6)
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The remaining calculations differ essentially for cases (a) and (b) of the theorem.
Case (a). Splitting the sum in equality (4.6) into two and taking into account

the inequality Ṽ (x/n) � β, we obtain

πn(x) =

∫ U1

U

π0(dv)qn(U − v, x − v) +

log x∑
k=0

+

n−1∑
k=log x


×
∫ U
−∞

πk(du)

∫ U1

U

P (u, dv) qn−k−1(U − v, x − v) + o(e−xβ)

≡ I0 +Σ1 +Σ2 + o(e−xβ).(4.7)

The second sum gives the principal contribution to the asymptotics of the probabil-
ity πn(x), whereas the contribution of the remaining summands is negligible. Let us
check this fact. Convergence in variation πk to π as x → ∞ takes place uniformly
in k > log x. Therefore, the equivalence

Σ2 ∼
∫ U
−∞

π(du)

∫ U1

U

P (u, dv)

n−1∑
k=log x

qn−k−1(U − v, x − v)

∼
∫ U
−∞

π(du)

∫ U1

U

P (u, dv) b(U − v, α0) cHe−β(x−v)Φ
(

yα
3/2
0

σ(α0)

)
(4.8)

takes place in view of Corollary 5 where, as before, b(U − v, α) = P{M (α)
− � U − v}.

Let us show the relative smallness of the integral I0 and the sum Σ1. Using
sequentially the second statement of Corollary 5 and conditions (4.3) and (4.2), we
arrive at the relations

I0 +Σ1 = o(e−βx)
(∫ U1

U

π0(dv) eβv + sup
u<U

∫ U1

U

P (u, dv)

)
eβv = o(e−βx).(4.9)

Substituting (4.9) and (4.8) in (4.7) we obtain case (a) of the theorem with
constant

c(α0) =
1

βα0

∫ U
−∞

π(du)

∫ ∞

U

b(U − v, α0) e
βvP (u, dv).(4.10)

Case (b). We split the sum in equality (4.6) into two:

πn(x) =

∫ U1

U

π0(dv) qn(U − v, x − v)

+

n1/7∑
k=0

+

n−1∑
k=n1/7

∫ U
−∞

πk(du)

∫ U1

U

P (u, dv) qn−k−1(U − v, x − v)

+ o

(
e−xV (x/n)

√
n

)
≡ I0 +Σ1 +Σ2 + o

(
e−xV (x/n)

√
n

)
.(4.11)

Since x/n → α ∈ (α0, α1), Lemma 5 shows that, as x → ∞, the following relation
takes place uniformly in k = o(n) and v = o(x):

qn−k(U − v, x − v) = P{Sn−k � x − v} (b(U − v, α) + o(1)
)
.(4.12)
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In addition, by Corollary 2 we have for k = o(n) and uniformly in v ∈ [U,U1) (respec-
tively, v2/n � U2

1 /n−→ 0)

P{Sn−k � x − v} = ĉ(α) + o(1)√
n − k

e−(n−k)Λ((x−v)/(n−k))

=
(
ĉ(α) + o(1)

)
n−1/2e−(n−k)Λ(x/(n−k))+vλ(x/(n−k))+o(1)

∼ ĉ(α)n−1/2e−xV (x/(n−k))+vλ(α)+o(v),

where ĉ(α) = 1/
√
2πσ(α)λ(α) is a function continuous in α. Continuing our calcula-

tions, we deduce the relation

P{Sn−k � x − v} ∼ (ĉ(α) + o(1)
)
n−1/2e−xV (x/n)−α2kV ′(x/n)+vλ(α)+o(v),

valid uniformly in k � n1/7 and v � U1 = O(log n). As was mentioned in section 2.7,
V ′(α) = α−2 logϕ(λ(α)). Hence, taking into account (4.12), we have the asymptotics

I0 +Σ1 ∼ c(α)n−1/2e−xV (x/n),(4.13)

where

c(α) =
1√

2πσ(α)λ(α)

(∫ ∞

U

π0(dv) +

∞∑
k=0

1

ϕk(λ(α))

∫ U
−∞

πk(du)

∫ ∞

U

P (u, dv)

)
× b(U − v, α) eλ(α)v.(4.14)

We show that the sum Σ2 in (4.11) is negligible in comparison with Σ1. For
k � n1/7 and v � U1 = O(log n) the inequality (x − v)/(n − k) � x/n + n1/8/x
holds for sufficiently large n. Since x/n → α > α0, it follows, in particular, that
(x− v)/(n− k) > α0. In view of this fact, the exponential Chebyshev inequality, and
the inequality, V ((x − v)/(n − k)) � V (x/n) + V ′(x/n)n1/8/x (valid in view of the
convexity of V ), we have for k � n1/7 and v � U1 the estimates

P{Sn−k � x − v} � evλ((x−v)/(n−k))e−xV ((x−v)/(n−k)) � evλ1 e−xV (x/n) e−n
1/9

.

This and condition (4.2) imply that Σ2 = o(e−xV (x/n)/
√

n). Substituting this esti-
mate and asymptotics (4.13) in (4.11) we obtain statement (b) of the theorem.

Let F be a lattice distribution with minimal lattice {kh, k ∈ Z}, and let X
be a chain taking only the values from this lattice in the domain [U,∞). Then
the statements of the theorem for the probabilities πn(x) remain valid if we restrict
ourselves to the values x from this lattice and multiply the constants c(α0) and c(α)
by βh/(1− e−βh) and λ(α)h/(1− e−λ(α)h), respectively.

5. The intermediate case: Exact asymptotics of πn(x) for an asymp-
totically homogeneous chain. In this section we investigate an asymptotically
homogeneous Markov chain in the intermediate case. Here the picture is abso-
lutely different in comparison with the Cramér case, and the asymptotic behavior
of the large-deviation probabilities is found in an explicit form for all values of time
variable n.

In comparison with the preceding sections we consider here a more general situ-
ation. Namely, we assume in this section that there exists a random variable η with
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distribution G and Laplace transform ψ(λ) = E eλη such that, for some V ∈ R, we
have

v + ξ(v) �st V + η for v < V, ξ(v) �st η for v � V.(5.1)

The principal conditions are imposed on η: Eη < 0 and ψ(β) < 1, where β =
sup{λ : ψ(λ) � 1}. Note that now parameter β, playing an important role every-
where, is attributed to the distribution G of the majorant η rather than to the distri-
bution F of ξ.

Let us recall the definitions of certain classes of functions and distributions playing
an important role in studying the large-deviation probabilities in the intermediate
case.

Following [5], we say that a positive function g behaves like a local power function
if, for any fixed t, the limit of the ratio g(u+ t)/g(u) is equal to 1 as u → ∞. Similar
to the agreements above we set for brevity G(x) = G([x,∞)), π(x) = π([x,∞)).

Definition 2. We say that a nonlattice distribution G in R belongs to the
class S(γ), γ � 0, if

(a) eγuG(u) is a local power function;
(b) ψ(γ) ≡ ∫

R
eγuG(du) < ∞;

(c) the convolution of the distribution G with itself satisfies the condition of asymp-
totic equivalence G ∗ G(u) ∼ 2ψ(γ)G(u) as u → ∞.

We say that a distribution G in Z belongs to the class S(γ), γ � 0, if properties
(a)–(c) hold for u ∈ Z.

Class S(γ) includes, in particular, the distributions with the tails of type e−γug(u),
where g(u) is an integrable function regularly varying at infinity. Note that if the
distribution of a random variable η belongs to class S(γ) and ψ(γ) � 1, then β = γ.

5.1. Upper bounds for the tails of the prestationary and stationary
distributions of a chain. This subsection contains a generalization of Lemma 2
in [5] related to an upper bound of the tail of the distribution of a chain with values
in R in the intermediate case.

Lemma 11. Let the distribution G of a random variable η belong to class S(β).
Then if X is a chain having an invariant measure π (generally speaking, nonunique),
then

sup
x

π(x)

G(x)
< ∞.(5.2)

If the initial distribution π0 of the chain is such that π0(x) � c′G(x) for some c′, then

sup
n,x

πn(x)

G(x)
< ∞.(5.3)

Proof. Consider a space homogeneous chain Y = {Y (n)} with nonnegative values
specified by the equality Y (n+ 1) = (Y (n) + ηn+1)

+, where ηn are random variables
which are independent copies of η. By (5.1) the Markov chain V + Y (n) majorizes
the chain X(n) and, therefore,

π(x) � πY (x − V ),(5.4)

where πY is an invariant measure of Y . Since Eeβη < 1 and the distribution of the
random variable η belongs to the class S(β), it follows by Theorem 1 in [11] that
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πY (x) ∼ c1P{η � x} as x → ∞ for some c1. The function eβtG(t) being local power,
πY (x − V ) ∼ c1e

βVG(x). Substituting the derived equivalence in (5.4) we arrive at
estimate (5.2).

We prove (5.3). Let Y (0) = 0 and, therefore, Y (1) = η+
1 . In view of the condition

π0(x) � c′G(x) and the fact that eβxG(x) is a local power function, there exists a
sufficiently large level V ′ such that X(0) �st V ′+Y (1). From this and condition (5.1)
we conclude that X(n) �st V ′ + Y (n+ 1) for any n and, respectively,

πn(x) � P
{
Y (n+ 1) � x − V ′}.

The last inequality implies (5.3), since, as we know, the homogeneous chain Y (n) with
zero initial condition does not decrease in distribution and, therefore, P{Y (n + 1) �
x − V ′} � πY (x − V ′) for any n. The lemma is proved.

5.2. Exact asymptotics of the prestationary distributions.
Theorem 3. Let the distribution G of a random variable η be a nonlattice and

belong to the class S(β). Let condition (5.1) be valid and, for any u ∈ R, there
exist c(u) such that

P{ξ(u) � t}
G(t)

−→ c(u)(5.5)

as t → ∞ uniformly in u from any compact. In addition, we assume that conver-
gence (4.1) takes place. Then

(i) if the initial distribution π0 is such that π0(x)/G(x)−→ c0 � 0 then, uniformly
in n � 0, the relation

πn(x) =
(
cn + o(1)

)
G(x) as x → ∞(5.6)

is valid, where cn is specified for n � 1 by the recurrence cn = αn−1 + ϕ(β)cn−1,

αn−1 =

∫
R

c(u) eβu πn−1(du) � 0;

(ii) if π0(x) � c′G(x), then as n, x → ∞

πn(x) =
(
c∞ + o(1)

)
G(x),(5.7)

where

c∞ = lim
n→∞ cn =

α∞
1− ϕ(β)

, α∞ = lim
n→∞αn =

∫
R

c(u) eβu π(du) � 0.

Remark 7. Let G be a distribution concentrated on the lattice of integer numbers
and let this lattice be minimal. Then the statements of the theorem remain in force if
the values of the chain X above some level and the values of the parameters t and x
in (5.5), (5.6), and (5.7) are integer.

Remark 8. Since ϕ(β) � ψ(β) < 1 and c(u) � c, all constants αn are finite by
Lemma 11 and, moreover, the sequences {αn} and {cn} are uniformly bounded.

Point (ii) of the theorem implies that the asymptotics of the probability πn(x)
coincides, as n, x → ∞, with the asymptotics of the tail of the invariant measure:
πn(x) = (1 + o(1))π(x).
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Let ξn be independent random variables having the same distribution as ξ,
ϕ(β) < 1 and let the distribution of ξ belong to the class S(β). Let X be a
homogeneous chain in R+, that is, X(n + 1) = (X(n) + ξn+1)

+. Applying The-
orem 3 for this particular case we obtain that, for homogeneous chains, πn(x) =
(cn + o(1))F (x), F (x) = F ([x,∞)) as x → ∞ uniformly in n � 1, where cn =∑n−1
k=0 ϕk(β)EeβX(n−1−k).
In view of (1.2) the results of this section for homogeneous chains related to the

case of fixed n repeat the results of [16]; however, we give another expression for the
coefficients cn. In addition, we prove that

P

{
sup
k�n

Sk � x

}
∼ P

{
sup
k

Sk � x

}
∼ c∞F (x) as n, x → ∞.

Proof. Proof of Theorem 3 is given for the nonlattice case only (to handle the
lattice case it is necessary to make only minor changes related to the fact that some
parameters involved should be integer). Since the time parameter n takes on only a
countable number of values, to prove the theorem it suffices to check that

(a) equation (5.6) holds as x → ∞ for any fixed n;
(b) condition (5.7) fulfills.
We fix U > V . For any x > 2U , we have the equality

πn+1(x)

G(x)
=

(∫ −U

−∞
+

∫ U
−U

+

∫ x−U
U

+

∫ ∞

x−U

)
P{u+ ξ(u) � x}

G(x)
πn(du)

≡ I1(U, n, x) + · · ·+ I4(U, n, x).(5.8)

Consider separately each of these four summands.
Since eβxP{η � x} is a local power function, condition (5.5) provides the conver-

gence

P{ξ(u) � x − u}
G(x)

−→ c(u) eβu as x → ∞(5.9)

uniformly in |u| � U . Therefore, uniformly in n

I2(U, n, x)−→
∫ U
−U

c(u) eβuπn(du) as x → ∞.(5.10)

Let us show that the summands I1(U, n, x) and I3(U, n, x) are, in a sense, negli-
gibly small. By condition (5.1), I1(U, n, x) admits the estimate

I1(U, n, x) � G(x − V )

G(x)

(
1− πn(−U)

)
.

Since eβxG(x) is a local power function and the family of distributions {πn} is weakly
compact, it follows from the last estimate that

lim sup
x→∞

(
sup
n

I1(U, n, x)

)
� eβV sup

n

(
1− πn(−U)

) ≡ I1(U),

lim
U→∞

I1(U) = 0.
(5.11)
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We evaluate I3(U, n, x). Using condition (5.1) and integrating by parts we obtain

I3(U, n, x) �
∫ x−U
U

G(x − u)

G(x)
πn(du) = − πn(u)G(x − u)

G(x)

∣∣∣∣x−U
U

+

∫ x−U
U

πn(u) duG(x − u)

G(x)
� πn(U)G(x − U)

G(x)

+

∫ x−U
U

πn(x − v)G(dv)

G(x)
≡ I31(U, n, x) + I32(U, n, x).(5.12)

For any fixed U

lim sup
x→∞

(
sup
n

I31(U, n, x)

)
� sup

n
πn(U) eβU ,

and, therefore, by Lemma 11

lim sup
x→∞

(
sup
n

I31(U, n, x)

)
� ĉ G(U) eβU = I31(U),

lim
U→∞

I31(U) = 0.
(5.13)

Using Lemma 11 once again we evaluate I32:

I32(U, n, x) � ĉ

∫ x−U
U

G(x − v)G(dv)

G(x)
.

Consequently, as follows from [13, relation (2)],

lim
U→∞

lim sup
x→∞

(
sup
n

I32(U, n, x)

)
= 0.(5.14)

Substituting (5.13) and (5.14) in (5.12), we arrive at the relations

lim sup
x→∞

(
sup
n

I3(U, n, x)

)
� I3(U), lim

U→∞
I3(U) = 0.(5.15)

Let us estimate I4(U, n, x). Denote

cn = lim sup
x→∞

πn(x)

G(x)
.

According to Lemma 11, cn < ∞ for any n. Since the condition of weak convergence
of the distributions of increments is equivalent to convergence in the Lévy–Prokhorov
metric, for any ε > 0 there exists a u0 = u0(ε) such that

F (v + ε)− ε � P
{
ξ(u) � v

}
� F (v − ε) + ε(5.16)

for any u � u0 and v. Therefore, I4(U, n, x) in (5.8) admits the following estimate for
u � u0 + U :

I4(U, n, x) �
∫ ∞

x−U

(
F (x − u − ε) + ε

) πn(du)

G(x)

=

∫ U−ε

−∞
F (v)

dvπn(x − ε − v)

G(x)
+ ε

πn(x − U)

G(x)

≡ I41(U, n, x) + I42(U, n, x).(5.17)
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Integrating by parts we evaluate I41(U, n, x):

I41(U, n, x) =

∫ U−ε

−∞

πn(x − ε − v)

G(x)
dF (v) +

F (U − ε)πn(x − U)

G(x)
.

Combining this fact with (5.17) and recalling the definition of cn we have

lim sup
x→∞

I4(U, n, x) � cn eβε
∫ U
−∞

eβv F (dv) +O
(
F (U − ε) eβU + ε

)
.(5.18)

Substituting (5.11), (5.10), (5.15), and (5.18) in (5.8), we arrive at the relation

c(n+ 1) �
∫ U
−U

c(u) eβu πn(du) + cn eβε
∫ U
−∞

eβv F (dv)

+O
(
I1(U) + I3(U) + F (U − ε) eβU + ε

)
.

Hence, recalling that ε > 0 is arbitrary, we derive the inequality

c(n+1) �
∫ U
−U

c(u) eβu πn(du)+ cn

∫ U
−∞

eβv F (dv)+O
(
I1(U) + I3(U) + F (U) eβU

)
.

Letting U go to infinity and using (5.10), (5.11), and (5.15), deduce the estimate
c(n+1) � αn+cnϕ(β). Hence, by induction we conclude that the lim sup of the ratio
πn+1(x)/G(x), as x → ∞, does not exceed cn+1.

In the same way, one can establish that the lim inf of the same ratio is not less
than cn+1. This proves point (a).

To prove point (b) we set

c = lim sup
n,x→∞

πn(x)

G(x)
;

c < ∞ by Lemma 11. Instead of (5.18), we derive as before the estimate

lim sup
n,x→∞

I4(U, n, x) � ceβε
∫ U
−∞

eβv F (dv) +O
(
F (U − ε) eβU + ε

)
.(5.19)

Substituting (5.11), (5.10), (5.15), and (5.19) in (5.8), recalling that ε > 0 is arbitrary,
and letting U → ∞ we arrive at the relation c � lim supn→∞ αn + c ϕ(β) = α∞ +
c ϕ(β). Therefore, the lim sup as n, x → ∞ of the ratio πn+1(x)/G(x) does not exceed
α∞/(1− ϕ(β)). By the same arguments one can show that the lim inf of the ratio is
not less than α∞/(1− ϕ(β)). Point (b) and, therefore, Theorem 3 are proved.

5.3. Exact asymptotics of stationary distributions. In this subsection we
assume that X is a chain admitting an invariant measure π. The following refine-
ment of Theorem 5 in [5] is valid for the large-deviation probabilities of a stationary
distribution.

Theorem 4. Let the conditions of Theorem 3 (except (4.1)) be valid. Then

π(x) =
α∞ + o(1)

1− ϕ(β)
G(x)

as x → ∞, where α∞ ≡ ∫
R

c(u) eβu π(du) � 0.
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Remark 9. The formulated theorem generalizes Theorem 5 in [5] in that the class
of the distributions of ξ is extended from the class of superexponential distributions
to the class S(β) and, which is no less important, in the following. Theorem 5 in [5]
uses the condition ∣∣∣P{ξ(u) � t

}−P{ξ � t}
∣∣∣ � δ(u)P{ξ � t},

where δ(u) ↓ 0 as u → ∞ which implies convergence of the distributions of ξ(u) and ξ
in the uniform metric. If X is a chain taking on values on a lattice, convergence
in the uniform metric is equivalent to weak convergence ξ(u) ⇒ ξ. In the general
case, when X is a real-valued chain, convergence in the uniform metric is essentially
stronger, generally speaking, than the weak convergence ξ(u) ⇒ ξ, suggested by us.

Proof of Theorem 4. By Lemma 1 there exists a ĉ such that π(x) � ĉ G(x) for
any x. It remains to make use of Theorem 3 for π0 = π.

Remarks on the first part of the paper. 1. As was noted by B. A. Rogozin,
it is not correct to use the Lebesgue theorem in formula (7.7) in the proof of Lemma 5
in [5, section 7] while studying the distributions of convolutions of measures, since µ2

is a signed measure.
Thus, the conditions of Lemma 5 in [5] need to be strengthened to allow us to

apply the Lebesgue theorem. We do not give here the required modification of the
statement of this lemma, since Lemma 5 is given in [5] to prove Theorem 5 in [5] only.
However, Theorem 3 of this paper generalizes Theorem 5 in [5] and is supplied with
an independent and more adequate proof.

2. To evaluate the second term of the asymptotics π(x) in the Cramér case we used
in [5, section 9] the estimates of the renewal function given in Stone’s works. Stone
uses a Cramér condition on the characteristic function of a particular summand. This
condition was missed in the statement of Theorem 11 in [5, section 9]. It is necessary

to complete the mentioned statement by the condition lim sup|λ|→∞ |E eiλξ̃| < 1.

REFERENCES

[1] A. A. Borovkov, New limit theorems in boundary problems for sums of independent terms,
Select. Trans. Math. Stat. Probab., 5 (1965), pp. 315–372.

[2] A. A. Borovkov, Probability Theory, Gordon and Breach, Amsterdam, 1998.
[3] A. A. Borovkov, The Cramér transform, large deviations in boundary problems, and the

conditional invariance principle, Siberian Math. J., 36 (1995), pp. 417–434.
[4] A. A. Borovkov, On conditional distributions associated with large deviations, Siberian Math.

J., 37 (1996), pp. 635–646.
[5] A. A. Borovkov and A. D. Korshunov, Large-deviation probabilities for one-dimensional

Markov chains, Part 1: Stationary distributions, Theory Probab. Appl., 41 (1996), pp. 1–
24.

[6] A. A. Borovkov and A. A. Mogulskii, Large deviations and testing statistical hypotheses, I.
Large deviations of sums of random vectors, Siberian Adv. Math., 2 (1992), pp. 52–120.

[7] A. A. Borovkov and A. A. Mogulskii, The second function of deviations and asymptotic
problems of the reconstruction and attainment of a boundary for multi-dimensional random
walks, Siberian Math. J., 37 (1996), pp. 647–682.

[8] B. V. Gnedenko, The Theory of Probability, 4th ed., Chelsea Publishing Company, New York,
1984.

[9] V. V. Petrov, On the probabilities of large deviations for sums of independent random vari-
ables, Theory Probab. in Appl., 10 (1965), pp. 287–298.

[10] V. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., Wiley,
New York, 1971.

[11] J. Bertoin and R. A. Doney, Some asymptotic results for transient random walks, Adv. Appl.
Probab., 28 (1996), pp. 207–226.



PROBABILITIES FOR ONE-DIMENSIONAL MARKOV CHAINS 405

[12] A. A. Borovkov, Ergodicity and Stability of Stochastic Processes, Wiley, New York, 1998.
[13] P. Embrechts and C. M. Goldie, On convolution tails, Stochastic Process. Appl., 13 (1982),

pp. 263–278.
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