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Abstract. This paper continues investigations of A. A. Borovkov and D. A. Korshunov [Theory
Probab. Appl., 41 (1996), pp. 1–24 and 45 (2000), pp. 379–405]. We consider a time-homogeneous
Markov chain {X(n)} that takes values on the real line and has increments which do not possess
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for fixed values of time n and for unboundedly growing n as well.
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1. Introduction. Let X(n) = X(y, n), n = 0, 1, . . . , be a time-homogeneous
Markov chain with values on the real lineR and with initial state y ≡ X(y, 0). Denote
by P (y,B) = P{X(y, 1) ∈ B}, where B is a Borel set in R, the transition probability
of the chain.

Let ξ(y) be the increment of the chain X in one step at point y ∈ R, that is,
ξ(y) = X(y, 1)− y.

One of the main objects under study in the present paper consists of asymptotically
homogeneous in space Markov chains, that is, chains for which the distribution of ξ(y)
converges weakly as y → ∞ to the distribution of some random variable ξ; we denote
it by ξ(y)⇒ ξ. We assume everywhere that m = Eξ < 0 and P{ξ > 0} > 0. Also, we
extend our analysis to a more general class of chains with asymptotically homogeneous
drift, that is, chains which are satisfying only the property E ξ(y)→ m as y → ∞.

In [2], we classified the asymptotically homogeneous-in-space Markov chains with
respect to the behavior of the Laplace transform ϕ(λ) = Eeλ ξ. In terms of that
classification, in the present paper we investigate the third case (c) which corresponds
to the situation ϕ(λ) = ∞ for any λ > 0. Of course, we assume regular behavior of
the tail P{ξ � x} of the distribution ξ as x → ∞. Let us recall some definitions.

A positive function g is called long-tailed if, for any fixed t, the limit of the ratio
g(u + t)/g(u) is equal to 1 as u → ∞. We say that a distribution G is long-tailed if
the tail G(x) ≡ G([x,∞)) of this distribution is long-tailed.

Note that, for any random variable ξ with long-tailed distribution, Eeλξ =∞ for
any λ > 0.

We say [3] that a distribution G on R+ with unbounded support belongs to the
class S (and is called a subexponential distribution) if the convolution G ∗G satisfies
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the equivalence G ∗G(x) ∼ 2G(x) as x → ∞.
It is shown in [3] that any subexponential distribution G is long-tailed with neces-

sity. Sufficient conditions for subexponentiality may be found, for example, in [3], [8].
In particular, the class S includes distributions with the tail G(x) = x−α ε(x), where
α > 0 and ε(x) is a slowly-varying-at-infinity function. Moreover, the class S also
contains the so-called upper power distributions, that is, the long-tailed distributions
satisfying the property supxG(x/2)/G(x) < ∞.

Let G be an arbitrary distribution on R with support unbounded from above and
with finite mean value. For any t ∈ (0,∞], define the distribution Gt on R

+ with the
distribution tail

Gt(x) ≡ min

(
1,

∫ x+t

x

G(u) du

)
, x > 0.(1.1)

Note that any long-tailed distribution G satisfies the following relation, for any fixed
s > 0:

Gs(x) = o
(
Gt(x)

)
as t, x → ∞.(1.2)

We say (see [6]) that the subexponential distribution G onR+ is strongly subexpo-
nential (and write G ∈ S∗) if the convolution of the distribution Gt with itself satisfies
the equivalence Gt ∗Gt(x) ∼ 2Gt(x) as x → ∞ uniformly in t ∈ [1,∞].

Criteria for strong subexponentiality are given in [6]. In particular, the class S∗
includes the following distributions:

(i) the upper power distributions and, in particular, all distributions with regularly-
varying-at-infinity tails;

(ii) the lognormal distribution with the density exp{−(log x−logα)2/2σ2}/xσ√2π,
x > 0, where σ, α > 0;

(iii) the Weibull distribution with the tail G([x,∞)) = e−xα

, x � 0, where
α ∈ (0, 1).

In Part 1 (see [1]) we assumed that X was a chain possessing an invariant mea-
sure π, that is, a measure solving the equation

π(·) =
∫
R

π(du)P (u, ·), π(R) = 1.(1.3)

We have proved the following result about the asymptotic behavior of the tail π(x)
of the invariant measure π.

Theorem 1. Let X be an asymptotically homogeneous-in-space Markov chain
such that the family (with respect to u) of jumps {ξ(u)} is uniformly integrable. Let
m = Eξ < 0 and the distribution F of the random variable ξ be such that the distribu-
tion F∞ (for a definition, see (1.1)) is upper power. If, for some bounded function c(u),
the convergence

P{ξ(u) � t}
P{ξ � t} −→ c(u) as t → ∞

holds uniformly in u, then

π(x) ∼ F∞(x)
|m|

∫
R

c(u)π(du) as x → ∞.
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Remark 1. Unfortunately, the boundedness condition for the function c(u) was
missed in the statement of Theorem 6 in [1].

In this third part we investigate the asymptotic behavior of the tail πn(x) =
P{X(n) � x} of the distribution πn of the random variable X(n) as x → ∞ for fixed
values of the time parameter n and for unboundedly growing n as well.

Let {ξk} be a tuple of independent copies of ξ. Put S0 = 0, Sk = ξ1 + · · · + ξk,
and Mn = max0�k�n Sk. It is known (see, for example, [5, Chap. VI, section 9])

that the distribution of the homogeneous-in-space (see [1]) Markov chain X(n) =
(X(n + 1) + ξn)

+ with zero initial state X(0) = 0 coincides with the distribution
of Mn, that is,

P
{
X(0, n) � x

}
= P{Mn � x}.(1.4)

Below we need the following theorem proved in [6].
Theorem 2. Let m < 0 and let the distribution of the random variable ξ I{ξ � 0}

be strongly subexponential. Then

P{Mn � x} ∼ Fn|m|(x)
|m|

as x → ∞ uniformly in n � 1.
As was mentioned above, one of the main topics in this paper is the investigation

of Markov chains with asymptotically homogeneous drift. For such chains we obtain
in section 2 the lower bound for the probability πn(x) = P{X(n) � x}. In section 3,
the upper bounds are given for this probability. Combining these results in sec-
tion 4 we get the theorem on the large deviation asymptotics for the asymptotically
homogeneous-in-space Markov chain X.

2. Lower bound for large deviation probabilities for a prestationary
chain. In this section we estimate from below the probability πn(x) for large values
of n and x. This estimate is asymptotically correct. We start with some auxiliary
results.

2.1. SLLN-type statements for a Markov sequence. Consider a nonho-
mogeneous in time Markov chain Y = {Yn}. The initial distribution of this chain
is assumed to be arbitrary. Let ηn+1(u) be a random variable corresponding to the
jump of the chain Y at time n from the state u, i.e.,

P{Yn+1 ∈ · | Yn = u} = P
{
u+ ηn+1(u) ∈ ·}.

Lemma 1. Let the drift of the Markov chain Yn be bounded from below by â:
Eηn(u) � â for any time n � 1 and any state u ∈ R. Moreover, let the family of
random variables {|ηn(u)|, n � 1, u ∈ R} admit an integrable majorant, that is, there
exists a random variable η with finite mean value such that |ηn(u)| �st η for each n
and u. Then, for any initial distribution Y0,

lim inf
n→∞

Yn − Y0

n
� â a.s.

Proof. Fix A > 0. Define a threshold of the jump ηn(u) at the level An as follows:

η[An]
n (u) ≡ ηn(u) I

{|ηn(u)| < An
}
.
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Let us consider a nonhomogeneous in time Markov chain Zn, Z0 = Y0, with

jumps η
[An]
n (u):

P{Zn+1 ∈ · | Zn = u} = P
{
u+ η[An]

n (u) ∈ ·
}
.

By the construction of Zn, we may estimate the probability of the event that the
trajectories of Zn and Yn are different in the following way:

P
{
sup
n

|Zn − Yn| �= 0
}

�
∞∑

n=0

P
{|Yn+1 − Yn| � An

}

�
∞∑

n=1

P
{|η| � An

}
� E

|η|
A
.(2.1)

Put ∆0
n = E{Zn − Zn−1|Zn−1} and ∆1

n = Zn − Zn−1 −∆0
n. Then

Zn − Z0 =

n∑
k=1

∆0
k +

n∑
k=1

∆1
k ≡ Z0

n + Z1
n.

For every u we have the following equality and inequality:

E
{
∆0

n | Zn−1 = u
}
= Eη[An]

n (u) = Eηn(u)−E
{
ηn(u);

∣∣ηn(u)∣∣ � An
}

� â−E
{|η|; |η| � An

}
,

in view of the conditions on the jumps ηn(u). Therefore,

1

n

n∑
k=1

∆0
k � â− 1

n

n∑
k=1

E
{|η|; |η| � Ak

}
.

In view of the existence of E|η|, the last inequality implies that uniformly in all
elementary events ω,

lim inf
n→∞

Z0
n(ω)

n
� â.(2.2)

Since E{∆1
n|Zn} = 0, the process Z1

n is a martingale with respect to σ-fields
σ(Z0, . . . , Zn−1). Let us prove that the increments of this martingale satisfy the
condition

∞∑
n=1

E(∆1
n)

2

n2
< ∞.(2.3)

For every u, by the construction of ∆1
n and in view of the lemma conditions, we have

E
{
(∆1

n)
2 | Zn−1 = u

}
= E

(
η[An]
n (u)−Eη[An]

n (u)
)2

� E
(
η[An]
n (u)

)2

� E
{
η2; |η| < An

}
.

Thus,

∞∑
n=1

E(∆1
n)

2

n2
�

∞∑
n=1

E{η2; |η| < An}
n2

.
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The last series converges for any A, since

∞∑
n=1

E{η2; |η| < An}
n2

=

∞∑
n=1

A2

n2
E

{(
η

A

)2

;

∣∣∣∣ ηA
∣∣∣∣ < n

}

�
∞∑

n=1

A2

n2

n∑
k=1

k2P

{
k − 1 �

∣∣∣∣ ηA
∣∣∣∣ < k

}

= A2
∞∑
k=1

k2P

{
k − 1 �

∣∣∣∣ ηA
∣∣∣∣ < k

} ∞∑
n=k

1

n2
< ∞,

by virtue of the equivalence
∑∞

n=k 1/n
2 ∼ 1/k and the existence of E|η|.

So, the martingale Z1
n really satisfies condition (2.3) and we may apply Corollary 2

from [7, p. 534]. By this corollary, the following SLLN is valid for this martingale:

lim
n→∞

Z1
n

n
= 0 a.s.(2.4)

Relations (2.2) and (2.4) imply the inequality lim infn→∞(Zn − Z0)/n � â almost
surely. Now the assertion of the lemma follows from (2.1) in view of the arbitrary
choice of A.

Lemma 2. Let the drift of the Markov chain Yn above some space level U be
bounded below by â < 0: Eηn(u) � â for every n � 1 and u � U . Moreover, let the
family of the random variables {|ηn(u)|, n � 1, u � U} admit an integrable majorant;
that is, there exists a random variable η with finite mean value such that |ηn(u)| �st η
for every n and u � U . Then, for each ε > 0, the following convergence holds:

P
{
Yk � u− n

(|â|+ ε
)
for all k � n | Y0 = u

}
−→ 1

as n → ∞ uniformly in u � U + n(|â|+ ε).
Proof. It is sufficient to consider a new, also nonhomogeneous in time, Markov

chain Ỹn with jumps η̃n(u), where η̃n(u) coincides with ηn(u) if u � U , and η̃n(u) is
equal to â if u < U . Applying Lemma 1 we complete the proof.

2.2. Lower bound for the large deviation probabilities. The initial distri-
bution π0 of the chain X is assumed to be arbitrary. Let f be a positive nonincreasing
long-tailed function. Let the function c(u) � 0 be such that, for every U > 0,

P{ξ(u) � x}
f(x)

� c(u) + o(1)

as x → ∞ uniformly in |u| � U . Denote

c∞ ≡ lim
U→∞

lim inf
n→∞

∫ U

−U

c(u)πn(du) ∈ [0,∞].

In particular, if the distribution πn converges in the total variation norm to some
(invariant with necessity) measure π, i.e., if the convergence

sup
B

∣∣πn(B)− π(B)
∣∣−→ 0(2.5)

holds as n → ∞, where the supremum is taken over all Borel sets on the real line,
then c∞ =

∫
R
c(u)π(du). If the function c(u) is continuous, the last equality remains

true in the case of weak convergence πn ⇒ π.
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Put

a ≡ lim inf
u→∞ E ξ(u).

It was established in Lemma 1 in [2] that the existence of the invariant measure
together with the condition supuE|ξ(u)| < ∞ implies a � 0. Note that in the present
section we do not put any restrictions on the sign of a.

The following lemma is valid.
Lemma 3. Put a = −a if a < 0, and let a be an arbitrary positive real number

otherwise. Let there exist a level U such that the family {|ξ(u)|, u � U} admits an
integrable majorant. Then the following estimate holds:

lim inf
n,x→∞

πn(x)∫ x+na

x
f(y) dy

� c∞
a
.

Proof. It is sufficient to consider the case c∞ > 0 only. Let c′ < c′′ < c∞. The
definitions of c(u) and c∞ imply the existence of U ′ > 0 such that

lim inf
n→∞

∫ U ′

−U ′

P{ξ(u) � x}
f(x)

πn(du) � c′′

uniformly in all sufficiently large x. Since the function f(x) is long-tailed and non-
increasing, f(x − u)/f(x) → 1 as x → ∞ uniformly in |u| � U ′. Therefore, there
exist N and x0 such that∫ U ′

−U ′

P{u+ ξ(u) � x}
f(x)

πn(du) � c′(2.6)

uniformly in n � N and x � x0.
Consider the event Ai,n ≡ Ai,n(x), i ∈ [1, n], which occurs if X(i − 1) < x and

X(j) � x for any j ∈ [i, n]. First, the events Ai,n, i ∈ [1, n], are disjoint. Second,
∪n
i=1Ai,n = {X(n) � x}. Thus

πn(x) =

n∑
i=1

P{Ai,n}.(2.7)

For v ∈ [x,∞), introduce the probability pi(v) by the equality
pi(v) = P

{
X(v, j) � x for any j � i

}
.

Fix ε > 0 and put b = a + ε. Since the event Ai,n(U
′) ≡ {X(i − 1) ∈ [−U ′, U ′),

X(i) � x+ (n− i) b, and X(j) � x for any j ∈ [i+ 1, n]} implies the event Ai,n, the
following inequality holds:

P{Ai,n} �
∫ U ′

−U ′
πi−1(du)

∫ ∞

x+(n−i)b

P
{
u+ ξ(u) ∈ dv

}
pn−i(v).

Therefore,

P{Ai,n} �
∫ U ′

−U ′
πi−1(du)P

{
u+ ξ(u) � x+ (n− i) b

}
min

v�x+(n−i)b
pn−i(v).(2.8)
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By the definition of a and b, we have the inequality Eξ(v) � −b + ε/2 for all
sufficiently large v. Thus, by virtue of Lemma 2,

min
v�x+(n−i)b

pn−i(v)→ 1 as x and n− i → ∞.

Substituting this convergence into (2.8), we obtain the inequality

lim inf
n−i,x→∞

P{Ai,n}
f(x+ (n− i)b)

� lim inf
n−i,x→∞

∫ U ′

−U ′

P{u+ ξ(u) � x+ (n− i)b}
f(x+ (n− i)b)

πi−1(du) � c′

in view of (2.6). Using the last inequality, we derive from (2.7) the estimate

πn(x) � (c′ − ε)

n−I∑
i=N

f
(
x+ (n− i) b

)
,

which is valid for arbitrary slow growing I and for all sufficiently large x. Since the
function f is long-tailed and nonincreasing, for every fixed I,

n−I∑
i=N

f
(
x+ (n− i) b

) ∼ 1

b

∫ x+nb

x

f(y) dy as x → ∞.

Therefore,

lim inf
n,x→∞

πn(x)∫ x+nb

x
f(y) dy

� c′ − ε

b
.

Since b = a + ε, c′ < c∞, and ε > 0 were chosen arbitrarily, the lemma proof is
complete.

3. Upper bounds for the tails of prestationary and stationary distribu-
tions.

3.1. Upper bound with a “nonexact” multiple constant. The following
lemma generalizes Lemma 2 from [1] in the part which is related to subexponential
distributions.

Lemma 4. Let ζ be an unbounded-from-above random variable with distribution G
and with negative mean Eζ < 0. Let there exist a level U such that, for each t � U ,

ξ(u) � stζ if u � U,(3.1)

P
{
u+ ξ(u) � t

}
� G(t) if u < U.(3.2)

Then the following assertions are true:
(i) If the distribution G∞ (for a definition, see (1.1)) is subexponential and the

chain X admits (not unique, in general) an invariant measure π, then the following
estimate holds:

lim sup
x→∞

π(x)

G∞(x)
� 1

|Eζ| ;(3.3)

(ii) if the distribution G is strongly subexponential and the initial distribution X(0)
is bounded from above, then the following estimate holds:

lim sup
x→∞

sup
n�1

πn(x)

Gn|Eζ|(x)
� 1

|Eζ| .(3.4)
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Proof. Without loss of generality we assume that X(0) � 0 and U = 0. Consider
the homogeneous-in-space Markov chain {Yn} with nonnegative values defined by the
equalities Yn+1 = (Yn + ζn+1)

+, where ζn are independent copies of ζ. By virtue
of conditions (3.1) and (3.2), the Markov chain Yn dominates the chain X(n) and,
therefore,

π(x) � πY (x),(3.5)

where πY is the invariant measure of the chain Y .
Since the distribution G∞ is subexponential, it follows from Theorem 2(B) in [9]

that

πY (x) ∼ G∞(x)
|Eζ| as x → ∞.

Combined with (3.5) this implies (3.3).
Inequality (3.4) also follows from the majorization of the chain X(n) by the

chain Yn. By majorization, for every n and x we have the estimate πn(x) � πY
n (x) =

P{Yn � x}. It remains to apply Theorem 2. The lemma is proved.

3.2. Some auxiliary results. Let ζ1, ζ2, . . . be i.i.d. random variables.
Lemma 5. Let Eζ1 < 0. Then the series

∞∑
n=1

P{ζ1 + · · ·+ ζk � 0 for all k � n}

converges.
Proof. Consider the homogeneous-in-space Markov chain defined by the equalities

Yn+1 = (Yn + ζn+1)
+ with the initial value Y0 = 1. We have the inequality and the

equality P{ζ1 + · · · + ζk � 0 for all k � n} � P{Yk > 0 for all k � n|Y0 = 1} =
P{η > n}, where η is the first hitting time of the state 0 by the chain {Yn}. Since
Eζ1 < 0, the chain {Yn} is positive recurrent, that is, Eη < ∞. Thus, the series∑∞

n=1P{η > n} converges and the lemma is proved.
In the following theorem, the local behavior of the function is studied which

is dominated by the long-tailed function. Let a positive nonincreasing integrable
function f(x) be long-tailed. Since the function f does not increase, it is long-tailed
if and only if there exists a sequence ∆(x)→ ∞ such that

f(x)

f(x−∆(x)) −→ 1 as x → ∞.

Let c be an arbitrary positive constant. Put

fn(x) =

∫ x+cn

x

f(y) dy.

We have the equivalence

fn
(
x−∆(x)) ∼ fn(x)(3.6)

as x → ∞ uniformly in all n. Let a nonnegative function hn(x) be such that, for
each n, it is nonincreasing in x.
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Lemma 6. Let hn(x) � fn(x) for any n and x. Then there exists a sequence of
intervals [x−n , x

+
n ] ⊆ [x − ∆(x), x] such that x+

n − x−n → ∞ and hn(x
−
n ) − hn(x

+
n ) =

o(fn(x)) as n, x → ∞.
Proof. Choose a sequence u(x) → ∞ such that u(x) = o(∆(x)) as x → ∞ and

l(x) = ∆(x)/u(x) is a natural number. By the choice of u(x) we have the convergence
l(x)→ ∞ as x → ∞.

By virtue of (3.6), it is sufficient to prove that, for any n and x, there exists a point
x−n ∈ [x−∆(x), x−u(x)] such that hn(x

−
n )−hn(x

−
n +u(x)) = o(fn(x

−
n )) as n, x → ∞

(and put x+
n = x−n + u(x)). We argue by the rule of contraries and assume that the

last relation does not hold. Then there exist a number ε > 0, subsequences nk → ∞,
k → ∞, and xk → ∞, k → ∞, such that, for any y ∈ [xk −∆(xk), xk − u(xk)], the
following inequality holds:

hnk
(y)− hnk

(
y + u(xk)

)
� εfnk

(y).(3.7)

In particular, in view of the inequality hnk
� fnk

,

hnk

(
y + u(xk)

)
� hnk

(y)− εfnk
(y) � (1− ε)hnk

(y).

Therefore,

hnk

(
xk − u(xk)

)
� (1− ε)l(xk)−1hnk

(
xk −∆(xk)

)
� (1− ε)l(xk)−1fnk

(
xk −∆(xk)

)
= o

(
fnk

(
xk − u(xk)

))
as k → ∞ by virtue of l(xk)→ ∞ and (3.6). It contradicts (3.7) with y = xk −u(xk).
This contradiction proves the lemma.

3.3. Upper bound with an “exact” multiple constant. Here we assume
that the initial distribution π0 is concentrated on the set bounded from above.

Lemma 7. Let an unbounded-from-above random variable ζ with distribution G be
such that the distribution of the random variable ζI{ζ � 0} is strongly subexponential
and Eζ < 0. Let there exist a level U such that (3.1) holds. Moreover, let, for some
function c(v) � 1, the inequality

P
{
ξ(u) � t

}
� c(u)G(t)(3.8)

hold for u � U , t � U and

P
{
u+ ξ(u) � t

}
� c(u)G(t)(3.9)

for u < U , t � U . If, in addition, convergence in total variation (2.5) holds, then

πn(x) �
(
1 + o(1)

) n∑
k=1

ck−1G
(
x+ (n− k) |Eζ|),(3.10)

as x → ∞ uniformly in all n � 1, where ck ≡ ∫
R
c(u)πk(du) � 0. In particular,

lim sup
n,x→∞

πn(x)

Gn|Eζ|(x)
� c∞

|Eζ| ,(3.11)

where c∞ ≡ limk→∞ ck =
∫
R
c(u)π(du) � 0.
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Proof. Since the time parameter n takes its values in the countable set, the
distribution G is long-tailed, and cn → c∞, it is sufficient to check the following two
relations: For any fixed n,

πn(x) �
(
1 + o(1)

)
G(x)

n∑
k=1

ck−1 as x → ∞(3.12)

and (3.11). Let us prove the first relation by induction. For every U ′ ∈ (U, x) we have
the equality

πn+1(x) =

(∫ U ′

−∞
+

∫ x−U ′

U ′
+

∫ ∞

x−U ′

)
P{u+ ξ(u) � x}πn(du) ≡ I1 + I2 + I3.

In view of conditions (3.8) and (3.9), for any fixed U ′, we have the estimate

lim sup
x→∞

I1
G(x)

�
∫ U ′

−∞
c(u)πn(du) � cn.

In view of c(v) � 1 and condition (3.8), the second term I2 admits the following
estimate:

I2 �
∫ x−U ′

U ′
G(x− u)πn(du).

Integrating by parts, we arrive at the inequality

I2 � −G(x− u)πn(u)
∣∣ x−U ′
U ′ +

∫ x−U ′

U ′
πn(x− u)G(du)

� G(x− U ′)πn(U ′) +
∫ x−U ′

U ′
πn(x− u)G(du).

Using the inductive hypothesis, we get the estimate

lim sup
x→∞

I2
G(x)

� cG(U ′) + c lim sup
x→∞

∫ x−U ′

U ′

G(x− u)

G(x)
G(du).

Since the distribution G is subexponential, it follows from relation (2) in [4] that the
value of lim sup on the right-hand side of the last inequality may be made arbitrarily
small by the appropriate choice of U ′. Thus, limU ′→∞ lim supx→∞ I2/G(x) = 0.

The third term I3 does not exceed πn(x−U ′). Thus, by the induction assumption
and by the fact that the distribution G is long-tailed, the estimate

lim sup
x→∞

I3
G(x)

�
n∑

k=1

ck−1

is valid for any fixed U ′. Combining the estimates for I1, I2, and I3, we deduce the
induction step n → n+ 1.

Now let us prove relation (3.11). Without loss of generality, assume X(0) � U .
Choose the sequence of points xk, k = 1, 2, . . . , such that xk+1 − xk → ∞ and
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G(xk+1) ∼ G(xk) as k → ∞. In particular, Gn|Eζ|(xk+1) ∼ Gn|Eζ|(xk) as k → ∞
uniformly in all n. So, relation (3.11) is equivalent to the relation

lim sup
n,k→∞

πn(xk)

Gn|Eζ|(xk)
� c∞

|Eζ| .(3.13)

By virtue of Theorem 4, for any fixed i, the function hn(x) ≡ πn−i(x) satisfies the
conditions of Lemma 6 with f(x) ≡ const ·G(x) and c = |Eζ|. Hence, there ex-
ist sequences x−kn and x+

kn such that [x
−
kn, x

+
kn] ⊆ [xk, xk+1], x

+
kn − x−kn → ∞, and

πn−i(x
−
kn) − πn−i(x

+
kn) = o(Gn|Eζ|(xk+1)) as n, k → ∞. Therefore, without loss of

generality, for convenience, we may assume that there exists (for any fixed i) the
function x−n such that x−n ∈ [0, x], x− x−n → ∞, and

πn−i

(
[x−n , x

+
n )

)
= πn−i(x

−
n )− πn−i(x) = o

(
Gn|Eζ|(x)

)
, n, x → ∞.(3.14)

Condition (3.9) implies (3.2). Consider the homogeneous Markov chain {Yn} with
nonzero states defined in the proof of Lemma 4. Since the chain {U + Yn} dominates
the chain {X(n)}, given X(0) � U + Y0, the chains {X(n)} and {U + Yn} can be
constructed on the same probability space in such a way that

X(n) � U + Yn(3.15)

for any n with probability 1. All characteristics of the chain {X(n)} will be completed
by an upper indexX and the characteristics of the chain {U+Yn} by an upper index Y .

The events Ai,n and the probabilities pi(v) were defined in the proof of Lemma 3.
Let us turn again to equality (2.7). For any fixed i, estimates (3.4) and (1.2) imply
the following relations:

P{AX
i,n} � P

{
X(i) � x

}
= πi(x) = O

(
Gi|Eζ|(x)

)
= o

(
Gn|Eζ|(x)

)
as n, x → ∞. Therefore, there exists an unboundedly growing sequence I = I(n, x)
such that

πn(x) =

n∑
i=I

P{AX
i,n}+ o

(
Gn|Eζ|(x)

)
as n, x → ∞.(3.16)

It turns out that any finite number of the last summands in this sum has order
o(Gn|Eζ|(x)). This more delicate observation will be checked at the end of the proof.

For the probability of the event AX
i,n, we have the equality

P{AX
i,n} =

∫ x

−∞
πX
i−1(du)

∫ ∞

x

PX(u, dv) pXn−i(v).

Using (3.15) with X(0) = U + Y0 = v, we obtain pXn−i(v) � pYn−i(v). Hence,

P{AX
i,n} �

∫ x

−∞
πX
i−1(du)

∫ ∞

x

PX(u, dv) pYn−i(v).(3.17)

Being space homogeneous, the chain U + Yn is stochastically increasing. Thus,
the function pYn−i(v) does not decrease in v and, therefore, is a function of bounded
variation. Integrating by parts, we may rewrite the internal integral in the following
way:∫ ∞

x

PX(u, dv) pYn−i(v) = PX
(
u, [x,∞)) pYn−i(x) +

∫ ∞

x

PX
(
u, [v,∞)) dpYn−i(v).
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Estimating PX(u, [v,∞)) on the right-hand side of the last inequality via condi-
tion (3.9) and integrating back by parts, we obtain recursively the estimate and the
equality, for any u ∈ (−∞, U),∫ ∞

x

PX(u, dv) pYn−i(v) � c(u)

(
G(x) pYn−i(x) +

∫ ∞

x

G(v) dpYn−i(v)

)

= c(u)

∫ ∞

x

G(dv) pYn−i(v).(3.18)

In the same manner, in view of condition (3.8) and inequality c(u) � 1 we obtain, for
any u ∈ [U, x), ∫ ∞

x

PX(u, dv) pYn−i(v) � c(u)

∫ ∞

x

G(dv − u) pYn−i(v)(3.19)

�
∫ ∞

x

G(dv − u) pYn−i(v).(3.20)

Since the function G(t) is long-tailed, there exists an unboundedly growing (as x→∞)
level V such that G(v − u) ∼ G(v) as u ∈ [U, V ) and v � x. Then inequality (3.19),
for u ∈ [U, V ), can be rewritten as∫ ∞

x

PX(u, dv) pYn−i(v) �
(
c(u) + o(1)

) ∫ ∞

x

G(dv) pYn−i(v), x → ∞.(3.21)

Substituting (3.18), (3.20), and (3.21) into (3.17), we arrive at the inequality

P{AX
i,n} �

(
1 + o(1)

) ∫ V

−∞
πX
i−1(du) c(u)

∫ ∞

x

G(dv) pYn−i(v)

+

∫ x

V

πX
i−1(du)

∫ ∞

x

G(dv − u) pYn−i(v).

Recalling the definition of the constants ci, we obtain

P{AX
i,n} �

(
ci−1 + o(1)

) ∫ ∞

x

G(dv) pYn−i(v) +

∫ x

V

πX
i−1(du)

∫ ∞

x

G(dv − u) pYn−i(v)

as x → ∞ uniformly in i ∈ [1, n]. Summing up these inequalities with respect to i
from I(n, x) to n and taking into account the convergence ci → c∞ as i → ∞, we
deduce from (3.16) the relation, as n, x → ∞,

πX
n (x) �

(
c∞ + o(1)

) ∫ ∞

x

G(dv)

n∑
i=1

pYn−i(v)

+

n∑
i=I

∫ x

V

πX
i−1(du)

∫ ∞

x

G(dv − u) pYn−i(v) + o
(
Gn|Eζ|(x)

)
.(3.22)

For the homogeneous-in-space Markov chain U + Y , we have the inequality

P{AY
i,n} �

∫ V

U

πY
i−1(du)

∫ ∞

x

PY (u, dv) pYn−i(v)

=

∫ V

U

πY
i−1(du)

∫ ∞

x

G(dv − u) pYn−i(v).
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By virtue of the choice of the level V , we have

P{AY
i,n} �

∫ V

U

πY
i−1(du)

∫ ∞

x

G(dv) pYn−i(v) = πY
i−1([U, V ))

∫ ∞

x

G(dv) pYn−i(v).

Since V → ∞,

P{AY
i,n} �

(
1 + o(1)

) ∫ ∞

x

G(dv) pYn−i(v)

as x → ∞ uniformly in i ∈ [1, n]. Summing up these inequalities with respect to i
from 1 to n, we deduce from (2.7) the relation

πY
n (x) =

n∑
i=1

P{AY
i,n} �

(
1 + o(1)

) ∫ ∞

x

G(dv)

n∑
i=1

pYn−i(v).

It follows from (1.4) and Theorem 2 that, as x → ∞ uniformly in n � 1,

πY
n (x) � 1 + o(1)

|Eζ| Gn|Eζ|(x).

The last two inequalities imply the estimate

∫ ∞

x

G(dv)

n∑
i=1

pYn−i(v) � 1 + o(1)

|Eζ| Gn|Eζ|(x) as x → ∞.

Substituting it into (3.22), we arrive at the relation

πX
n (x) � c∞ + o(1)

|Eζ| Gn|Eζ|(x) +
n∑

i=I

∫ x

V

πX
i−1(du) qn−i(u)(3.23)

as n, x → ∞, where qn−i(u) =
∫∞
x

G(dv − u) pYn−i(v).

The previous considerations also imply the following estimate for the chain U+Y ,
which is valid as x → ∞ uniformly in n � 1:

n∑
i=1

∫ x

V

πY
i−1(du)

∫ ∞

x

G(dv − u) pYn−i(v) = o(Gn|Eζ|(x)).(3.24)

It remains to estimate the general term of the sum in (3.23). Integration by parts
implies the equality∫ x

V

πX
i−1(du) qn−i(u) = −πX

i−1(u) qn−i(u)
∣∣x
V
+

∫ x

V

πX
i−1(u) dqn−i(u).

In view of Lemma 4 and Theorem 2, πX
i−1(u) � cπY

i−1(u) for some c < ∞ and for all u
and i. Hence,∫ x

V

πX
i−1(du) qn−i(u) � cπY

i−1(V ) qn−i(V ) + c

∫ x

V

πY
i−1(u) dqn−i(u).
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Again integrating by parts, we obtain∫ x

V

πX
i−1(du) qn−i(u)

� cπY
i−1(V ) qn−i(V ) + cπY

i−1(u) qn−i(u)
∣∣∣x
V
+ c

∫ x

V

πY
i−1(du) qn−i(u)

� cπY
i−1(x) qn−i(x) + c

∫ x

V

πY
i−1(du) qn−i(u).(3.25)

In the same way, we obtain the estimate∫ x

V

πX
i−1(du) qn−i(u) =

(∫ x−
n

V

+

∫ x

x−
n

)
πX
i−1(du) qn−i(u) � cπY

i−1(x
−
n ) qn−i(x

−
n )

+ c

∫ x−
n

V

πY
i−1(du) qn−i(u) + πX

i−1

(
[x−n , x)

)
.(3.26)

Fix a natural number J . Applying estimate (3.25) if i ∈ [I, n− J ] and estimate (3.26)
if i ∈ [n− J + 1, n], we deduce the inequality

n∑
i=I

∫ x

V

πX
i−1(du) qn−i(u) � c

n−J∑
i=I

πY
i−1(x) qn−i(x) + c

n∑
i=n−J+1

πY
i−1(x

−
n ) qn−i(x

−
n )

+ c
n∑

i=I

∫ x

V

πY
i−1(du) qn−i(u) +

n∑
i=n−J+1

πX
i−1

(
[x−n , x)

)
.

By virtue of (3.24), the third sum on the right-hand side of the estimate is of the
order o(Gn|Eζ|(x)); the fourth sum is of the same order, for any fixed J , in view
of (3.14). Therefore, for sufficiently slow-growing level J ≡ Jn(x)→ ∞, the following
estimate holds:

n∑
i=I

∫ x

V

πX
i−1(du) qn−i(u)

� c
n−J∑
i=I

πY
i−1(x) qn−i(x) + c

n∑
i=n−J+1

πY
i−1(x

−
n ) qn−i(x

−
n ) + o

(
Gn|Eζ|(x)

)
≡ cΣ1 + cΣ2 + o

(
Gn|Eζ|(x)

)
as n, x → ∞.(3.27)

Since

qn−i(x) =

∫ ∞

x

G(dv − x) pYn−i(v)

=

∫ ∞

x

G(dv − x)P
{
Yk � x for all k ∈ [2, n− i+ 1] | Y1 = v

}
= P

{
Yk � x for all k ∈ [1, n− i+ 1] | Y0 = x

}
,

then

Σ1 =

n−J∑
i=I

πY
i−1(x)P{ζ1 + · · ·+ ζk � 0 for all k � n− i+ 1}

= O
(
Gn|Eζ|(x)

) n−J∑
i=I

P{ζ1 + · · ·+ ζk � 0 for all k � n− i+ 1}.
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Since J → ∞, it follows from Lemma 5 that
∑n−J

i=I P{ζ1 + · · · + ζk � 0 for all
k � n− i+ 1}−→ 0. Therefore,

Σ1 = o
(
Gn|Eζ|(x)

)
as n, x → ∞.(3.28)

Now prove that

Σ2 = o
(
Gn|Eζ|(x)

)
as n, x → ∞.(3.29)

Since the sequence Jn(x) may increase as slowly as possible, it is sufficient to check
that, for any fixed i, πY

n−i(x
−
n ) qi−1(x

−
n ) = o(Gn|Eζ|(x)) holds as n, x → ∞. In view

of (3.14) and Lemma 4, we have πY
n−i(x

−
n ) = πY

n−i(x) + o(Gn|Eζ|(x)) = O(Gn|Eζ|(x)).
Hence,

πY
n−i(x

−
n ) qi−1(x

−
n ) = O

(
Gn|Eζ|(x)

)
qi−1(x

−
n ) � O

(
Gn|Eζ|(x)

)
P
(
x−n , [x, ∞)

)
= o

(
Gn|Eζ|(x)

)
,

since x− x−n → ∞ and P (x−n , [x,∞))→ 0. So, relation (3.29) is proved.
Substituting (3.28) and (3.29) into (3.27), we arrive at the following relation:

n∑
i=I

∫ x

V

πX
i−1(du) qn−i(u) = o

(
Gn|Eζ|(x)

)
as n, x → ∞.

Taking into account the last relation and (3.23), we arrive at estimate (3.11) and,
simultaneously, at the conclusion of the lemma.

4. Uniform-in-time theorem on large deviation probabilities. Now we
consider the asymptotically homogeneous-in-space Markov chain, that is, we assume
the weak convergence ξ(u) ⇒ ξ as u → ∞. Let Eξ < 0. In the present section we
also assume that the support of the initial distribution π0 is bounded from above and
that convergence in total variation (2.5) holds.

Let ζ be an unbounded-from-above random variable with distribution G and
negative mean value. Assume that the distribution of the random variable ζI{ζ � 0}
is strongly subexponential.

Theorem 3. Let there exist a level U such that the family of random variables
{|ξ(u)|, u � U} admits an integrable majorant. Let condition

P
{
u+ ξ(u) � t

}
� G(t) if u < U, ξ(u) �st ζ if u � U

hold for t � U . Suppose that, for some function c(u) � 1, the uniform-in-u conver-
gence P{ξ(u) � t}/G(t)→ c(u) holds as t → ∞. Then relation

πn(x) =
(
1 + o(1)

) n∑
k=1

ck−1G
(
x+ (n− k) |Eξ|)

holds as x → ∞ uniformly in n � 1, where the constants ck are defined by the equalities
ck =

∫
R
c(u)πk(du). In particular,

πn(x) =

(
c∞
|Eξ| + o(1)

)
Gn|Eξ|(x) as n, x → ∞,

where c∞ ≡ limk→∞ ck =
∫
R
c(u)π(du).
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Remark 2. If the distribution tail of G is regularly varying at infinity and
c∞ > 0, then the last theorem implies the asymptotics πn(x) ∼ c∞G∞(x)/|Eξ| as
n/x → ∞. In particular, in the region n/x → ∞ the asymptotical behavior of the
probability πn(x) coincides with that of the invariant measure tail: πn(x) ∼ π(x).

Proof of Theorem 3. By virtue of the theorem conditions, for any ε > 0, there
exist a random variable ζε with a distribution Gε and level Uε such that Eζε � Eξ+ε,
P{ζε � t} = P{ζ � t} for all sufficiently large t, and, for t � Uε,

P{u+ ξ(u) � t} � Gε(t) if u < Uε, ξ(u) �st ζε if u � Uε.

It follows from Lemma 7 that

πn(x) �
(
1 + o(1)

) n∑
k=1

ck−1G
(
x+ (n− k)

(|Eξ| − ε
))

as x → ∞ uniformly in n � 1. Since the function G(y) is long-tailed, it implies, by
the arbitrary choice of ε > 0, the following upper estimate:

πn(x) �
(
1 + o(1)

) n∑
k=1

ck−1G
(
x+ (n− k) |Eξ|).

Since the time parameter n takes only a countable number of values, the corre-
sponding lower estimate follows from Lemma 3 and from the following relation: For
any fixed n, πn(x) � (1 + o(1))G(x)

∑n
k=1 ck−1 as x → ∞. The latter relation may

be verified by induction in the same way as relation (3.12). The proof of the theorem
is complete.
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