LARGE-DEVIATION PROBABILITIES FOR ONE-DIMENSIONAL MARKOV CHAINS. PART 3: PRESTATIONARY DISTRIBUTIONS IN THE SUBEXPONENTIAL CASE*

A. A. BOROVKOV ${ }^{\dagger}$ AND D. A. KORSHUNOV ${ }^{\dagger}$
(Translated by D. A. Korshunov)

Abstract

This paper continues investigations of A. A. Borovkov and D. A. Korshunov [Theory Probab. Appl., 41 (1996), pp. 1-24 and 45 (2000), pp. 379-405]. We consider a time-homogeneous Markov chain $\{X(n)\}$ that takes values on the real line and has increments which do not possess exponential moments. The asymptotic behavior of the probability $\mathbf{P}\{X(n) \geqq x\}$ is studied as $x \rightarrow \infty$ for fixed values of time n and for unboundedly growing n as well.

Key words. Markov chain, asymptotic behavior of large-deviation probabilities, subexponential distribution, invariant measure, integrated distribution tail

PII. S0040585X9797924X

1. Introduction. Let $X(n)=X(y, n), n=0,1, \ldots$, be a time-homogeneous Markov chain with values on the real line \mathbf{R} and with initial state $y \equiv X(y, 0)$. Denote by $P(y, B)=\mathbf{P}\{X(y, 1) \in B\}$, where B is a Borel set in \mathbf{R}, the transition probability of the chain.

Let $\xi(y)$ be the increment of the chain X in one step at point $y \in \mathbf{R}$, that is, $\xi(y)=X(y, 1)-y$.

One of the main objects under study in the present paper consists of asymptotically homogeneous in space Markov chains, that is, chains for which the distribution of $\xi(y)$ converges weakly as $y \rightarrow \infty$ to the distribution of some random variable ξ; we denote it by $\xi(y) \Rightarrow \xi$. We assume everywhere that $m=\mathbf{E} \xi<0$ and $\mathbf{P}\{\xi>0\}>0$. Also, we extend our analysis to a more general class of chains with asymptotically homogeneous drift, that is, chains which are satisfying only the property $\mathbf{E} \xi(y) \rightarrow m$ as $y \rightarrow \infty$.

In [2], we classified the asymptotically homogeneous-in-space Markov chains with respect to the behavior of the Laplace transform $\varphi(\lambda)=\mathbf{E} e^{\lambda \xi}$. In terms of that classification, in the present paper we investigate the third case (c) which corresponds to the situation $\varphi(\lambda)=\infty$ for any $\lambda>0$. Of course, we assume regular behavior of the tail $\mathbf{P}\{\xi \geqq x\}$ of the distribution ξ as $x \rightarrow \infty$. Let us recall some definitions.

A positive function g is called long-tailed if, for any fixed t, the limit of the ratio $g(u+t) / g(u)$ is equal to 1 as $u \rightarrow \infty$. We say that a distribution G is long-tailed if the tail $G(x) \equiv G([x, \infty))$ of this distribution is long-tailed.

Note that, for any random variable ξ with long-tailed distribution, $\mathbf{E} e^{\lambda \xi}=\infty$ for any $\lambda>0$.

We say [3] that a distribution G on \mathbf{R}^{+}with unbounded support belongs to the class \mathcal{S} (and is called a subexponential distribution) if the convolution $G * G$ satisfies

[^0]the equivalence $G * G(x) \sim 2 G(x)$ as $x \rightarrow \infty$.
It is shown in [3] that any subexponential distribution G is long-tailed with necessity. Sufficient conditions for subexponentiality may be found, for example, in [3], [8]. In particular, the class \mathcal{S} includes distributions with the tail $G(x)=x^{-\alpha} \varepsilon(x)$, where $\alpha>0$ and $\varepsilon(x)$ is a slowly-varying-at-infinity function. Moreover, the class \mathcal{S} also contains the so-called upper power distributions, that is, the long-tailed distributions satisfying the property $\sup _{x} G(x / 2) / G(x)<\infty$.

Let G be an arbitrary distribution on \mathbf{R} with support unbounded from above and with finite mean value. For any $t \in(0, \infty]$, define the distribution G_{t} on \mathbf{R}^{+}with the distribution tail

$$
\begin{equation*}
G_{t}(x) \equiv \min \left(1, \int_{x}^{x+t} G(u) d u\right), \quad x>0 \tag{1.1}
\end{equation*}
$$

Note that any long-tailed distribution G satisfies the following relation, for any fixed $s>0$:

$$
\begin{equation*}
G_{s}(x)=o\left(G_{t}(x)\right) \quad \text { as } \quad t, x \rightarrow \infty \tag{1.2}
\end{equation*}
$$

We say (see [6]) that the subexponential distribution G on \mathbf{R}^{+}is strongly subexponential (and write $G \in \mathcal{S}_{*}$) if the convolution of the distribution G_{t} with itself satisfies the equivalence $G_{t} * G_{t}(x) \sim 2 G_{t}(x)$ as $x \rightarrow \infty$ uniformly in $t \in[1, \infty]$.

Criteria for strong subexponentiality are given in [6]. In particular, the class \mathcal{S}_{*} includes the following distributions:
(i) the upper power distributions and, in particular, all distributions with regularly-varying-at-infinity tails;
(ii) the $\operatorname{lognormal}$ distribution with the density $\exp \left\{-(\log x-\log \alpha)^{2} / 2 \sigma^{2}\right\} / x \sigma \sqrt{2 \pi}$, $x>0$, where $\sigma, \alpha>0$;
(iii) the Weibull distribution with the tail $G([x, \infty))=e^{-x^{\alpha}}, x \geqq 0$, where $\alpha \in(0,1)$.

In Part 1 (see [1]) we assumed that X was a chain possessing an invariant measure π, that is, a measure solving the equation

$$
\begin{equation*}
\pi(\cdot)=\int_{\mathbf{R}} \pi(d u) P(u, \cdot), \quad \pi(\mathbf{R})=1 \tag{1.3}
\end{equation*}
$$

We have proved the following result about the asymptotic behavior of the tail $\pi(x)$ of the invariant measure π.

Theorem 1. Let X be an asymptotically homogeneous-in-space Markov chain such that the family (with respect to u) of jumps $\{\xi(u)\}$ is uniformly integrable. Let $m=\mathbf{E} \xi<0$ and the distribution F of the random variable ξ be such that the distribution $F_{\infty}($ for a definition, see (1.1)) is upper power. If, for some bounded function $c(u)$, the convergence

$$
\frac{\mathbf{P}\{\xi(u) \geqq t\}}{\mathbf{P}\{\xi \geqq t\}} \longrightarrow c(u) \quad \text { as } \quad t \rightarrow \infty
$$

holds uniformly in u, then

$$
\pi(x) \sim \frac{F_{\infty}(x)}{|m|} \int_{\mathbf{R}} c(u) \pi(d u) \quad \text { as } \quad x \rightarrow \infty
$$

Remark 1. Unfortunately, the boundedness condition for the function $c(u)$ was missed in the statement of Theorem 6 in [1].

In this third part we investigate the asymptotic behavior of the tail $\pi_{n}(x)=$ $\mathbf{P}\{X(n) \geqq x\}$ of the distribution π_{n} of the random variable $X(n)$ as $x \rightarrow \infty$ for fixed values of the time parameter n and for unboundedly growing n as well.

Let $\left\{\xi_{k}\right\}$ be a tuple of independent copies of ξ. Put $S_{0}=0, S_{k}=\xi_{1}+\cdots+\xi_{k}$, and $M_{n}=\max _{0 \leqq k \leqq n} S_{k}$. It is known (see, for example, [5, Chap. VI, section 9]) that the distribution of the homogeneous-in-space (see [1]) Markov chain $X(n)=$ $\left(X(n+1)+\xi_{n}\right)^{+}$with zero initial state $X(0)=0$ coincides with the distribution of M_{n}, that is,

$$
\begin{equation*}
\mathbf{P}\{X(0, n) \geqq x\}=\mathbf{P}\left\{M_{n} \geqq x\right\} . \tag{1.4}
\end{equation*}
$$

Below we need the following theorem proved in [6].
Theorem 2. Let $m<0$ and let the distribution of the random variable $\xi \mathbf{I}\{\xi \geqq 0\}$ be strongly subexponential. Then

$$
\mathbf{P}\left\{M_{n} \geqq x\right\} \sim \frac{F_{n|m|}(x)}{|m|}
$$

as $x \rightarrow \infty$ uniformly in $n \geqq 1$.
As was mentioned above, one of the main topics in this paper is the investigation of Markov chains with asymptotically homogeneous drift. For such chains we obtain in section 2 the lower bound for the probability $\pi_{n}(x)=\mathbf{P}\{X(n) \geqq x\}$. In section 3 , the upper bounds are given for this probability. Combining these results in section 4 we get the theorem on the large deviation asymptotics for the asymptotically homogeneous-in-space Markov chain X.
2. Lower bound for large deviation probabilities for a prestationary chain. In this section we estimate from below the probability $\pi_{n}(x)$ for large values of n and x. This estimate is asymptotically correct. We start with some auxiliary results.
2.1. SLLN-type statements for a Markov sequence. Consider a nonhomogeneous in time Markov chain $Y=\left\{Y_{n}\right\}$. The initial distribution of this chain is assumed to be arbitrary. Let $\eta_{n+1}(u)$ be a random variable corresponding to the jump of the chain Y at time n from the state u, i.e.,

$$
\mathbf{P}\left\{Y_{n+1} \in \cdot \mid Y_{n}=u\right\}=\mathbf{P}\left\{u+\eta_{n+1}(u) \in \cdot\right\} .
$$

Lemma 1. Let the drift of the Markov chain Y_{n} be bounded from below by \widehat{a} : $\mathbf{E} \eta_{n}(u) \geqq \widehat{a}$ for any time $n \geqq 1$ and any state $u \in \mathbf{R}$. Moreover, let the family of random variables $\left\{\left|\eta_{n}(u)\right|, n \geqq 1, u \in \mathbf{R}\right\}$ admit an integrable majorant, that is, there exists a random variable η with finite mean value such that $\left|\eta_{n}(u)\right| \leqq_{\text {st }} \eta$ for each n and u. Then, for any initial distribution Y_{0},

$$
\liminf _{n \rightarrow \infty} \frac{Y_{n}-Y_{0}}{n} \geqq \widehat{a} \quad \text { a.s. }
$$

Proof. Fix $A>0$. Define a threshold of the jump $\eta_{n}(u)$ at the level $A n$ as follows:

$$
\eta_{n}^{[A n]}(u) \equiv \eta_{n}(u) \mathbf{I}\left\{\left|\eta_{n}(u)\right|<A n\right\} .
$$

Let us consider a nonhomogeneous in time Markov chain $Z_{n}, Z_{0}=Y_{0}$, with jumps $\eta_{n}^{[A n]}(u)$:

$$
\mathbf{P}\left\{Z_{n+1} \in \cdot \mid Z_{n}=u\right\}=\mathbf{P}\left\{u+\eta_{n}^{[A n]}(u) \in \cdot\right\}
$$

By the construction of Z_{n}, we may estimate the probability of the event that the trajectories of Z_{n} and Y_{n} are different in the following way:

$$
\begin{align*}
\mathbf{P}\left\{\sup _{n}\left|Z_{n}-Y_{n}\right| \neq 0\right\} & \leqq \sum_{n=0}^{\infty} \mathbf{P}\left\{\left|Y_{n+1}-Y_{n}\right| \geqq A n\right\} \\
& \leqq \sum_{n=1}^{\infty} \mathbf{P}\{|\eta| \geqq A n\} \leqq \mathbf{E} \frac{|\eta|}{A} . \tag{2.1}
\end{align*}
$$

Put $\Delta_{n}^{0}=\mathbf{E}\left\{Z_{n}-Z_{n-1} \mid Z_{n-1}\right\}$ and $\Delta_{n}^{1}=Z_{n}-Z_{n-1}-\Delta_{n}^{0}$. Then

$$
Z_{n}-Z_{0}=\sum_{k=1}^{n} \Delta_{k}^{0}+\sum_{k=1}^{n} \Delta_{k}^{1} \equiv Z_{n}^{0}+Z_{n}^{1}
$$

For every u we have the following equality and inequality:

$$
\begin{aligned}
\mathbf{E}\left\{\Delta_{n}^{0} \mid Z_{n-1}=u\right\} & =\mathbf{E} \eta_{n}^{[A n]}(u)=\mathbf{E} \eta_{n}(u)-\mathbf{E}\left\{\eta_{n}(u) ;\left|\eta_{n}(u)\right| \geqq A n\right\} \\
& \geqq \widehat{a}-\mathbf{E}\{|\eta| ;|\eta| \geqq A n\}
\end{aligned}
$$

in view of the conditions on the jumps $\eta_{n}(u)$. Therefore,

$$
\frac{1}{n} \sum_{k=1}^{n} \Delta_{k}^{0} \geqq \widehat{a}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{E}\{|\eta| ;|\eta| \geqq A k\}
$$

In view of the existence of $\mathbf{E}|\eta|$, the last inequality implies that uniformly in all elementary events ω,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{Z_{n}^{0}(\omega)}{n} \geqq \widehat{a} \tag{2.2}
\end{equation*}
$$

Since $\mathbf{E}\left\{\Delta_{n}^{1} \mid Z_{n}\right\}=0$, the process Z_{n}^{1} is a martingale with respect to σ-fields $\sigma\left(Z_{0}, \ldots, Z_{n-1}\right)$. Let us prove that the increments of this martingale satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mathbf{E}\left(\Delta_{n}^{1}\right)^{2}}{n^{2}}<\infty \tag{2.3}
\end{equation*}
$$

For every u, by the construction of Δ_{n}^{1} and in view of the lemma conditions, we have

$$
\begin{aligned}
\mathbf{E}\left\{\left(\Delta_{n}^{1}\right)^{2} \mid Z_{n-1}=u\right\} & =\mathbf{E}\left(\eta_{n}^{[A n]}(u)-\mathbf{E} \eta_{n}^{[A n]}(u)\right)^{2} \\
& \leqq \mathbf{E}\left(\eta_{n}^{[A n]}(u)\right)^{2} \leqq \mathbf{E}\left\{\eta^{2} ;|\eta|<A n\right\}
\end{aligned}
$$

Thus,

$$
\sum_{n=1}^{\infty} \frac{\mathbf{E}\left(\Delta_{n}^{1}\right)^{2}}{n^{2}} \leqq \sum_{n=1}^{\infty} \frac{\mathbf{E}\left\{\eta^{2} ;|\eta|<A n\right\}}{n^{2}}
$$

The last series converges for any A, since

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\mathbf{E}\left\{\eta^{2} ;|\eta|<A n\right\}}{n^{2}} & =\sum_{n=1}^{\infty} \frac{A^{2}}{n^{2}} \mathbf{E}\left\{\left(\frac{\eta}{A}\right)^{2} ;\left|\frac{\eta}{A}\right|<n\right\} \\
& \leqq \sum_{n=1}^{\infty} \frac{A^{2}}{n^{2}} \sum_{k=1}^{n} k^{2} \mathbf{P}\left\{k-1 \leqq\left|\frac{\eta}{A}\right|<k\right\} \\
& =A^{2} \sum_{k=1}^{\infty} k^{2} \mathbf{P}\left\{k-1 \leqq\left|\frac{\eta}{A}\right|<k\right\} \sum_{n=k}^{\infty} \frac{1}{n^{2}}<\infty
\end{aligned}
$$

by virtue of the equivalence $\sum_{n=k}^{\infty} 1 / n^{2} \sim 1 / k$ and the existence of $\mathbf{E}|\eta|$.
So, the martingale Z_{n}^{1} really satisfies condition (2.3) and we may apply Corollary 2 from [7, p. 534]. By this corollary, the following SLLN is valid for this martingale:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Z_{n}^{1}}{n}=0 \quad \text { a.s. } \tag{2.4}
\end{equation*}
$$

Relations (2.2) and (2.4) imply the inequality $\liminf _{n \rightarrow \infty}\left(Z_{n}-Z_{0}\right) / n \geqq \widehat{a}$ almost surely. Now the assertion of the lemma follows from (2.1) in view of the arbitrary choice of A.

Lemma 2. Let the drift of the Markov chain Y_{n} above some space level U be bounded below by $\widehat{a}<0$: $\mathbf{E} \eta_{n}(u) \geqq \widehat{a}$ for every $n \geqq 1$ and $u \geqq U$. Moreover, let the family of the random variables $\left\{\left|\eta_{n}(u)\right|, n \geqq 1, u \geqq U\right\}$ admit an integrable majorant; that is, there exists a random variable η with finite mean value such that $\left|\eta_{n}(u)\right| \leqq_{\text {st }} \eta$ for every n and $u \geqq U$. Then, for each $\varepsilon>0$, the following convergence holds:

$$
\mathbf{P}\left\{Y_{k} \geqq u-n(|\widehat{a}|+\varepsilon) \text { for all } k \leqq n \mid Y_{0}=u\right\} \longrightarrow 1
$$

as $n \rightarrow \infty$ uniformly in $u \geqq U+n(|\widehat{a}|+\varepsilon)$.
Proof. It is sufficient to consider a new, also nonhomogeneous in time, Markov chain \widetilde{Y}_{n} with jumps $\widetilde{\eta}_{n}(u)$, where $\widetilde{\eta}_{n}(u)$ coincides with $\eta_{n}(u)$ if $u \geqq U$, and $\widetilde{\eta}_{n}(u)$ is equal to \widehat{a} if $u<U$. Applying Lemma 1 we complete the proof.
2.2. Lower bound for the large deviation probabilities. The initial distribution π_{0} of the chain X is assumed to be arbitrary. Let f be a positive nonincreasing long-tailed function. Let the function $\underline{c}(u) \geqq 0$ be such that, for every $U>0$,

$$
\frac{\mathbf{P}\{\xi(u) \geqq x\}}{f(x)} \geqq \underline{c}(u)+o(1)
$$

as $x \rightarrow \infty$ uniformly in $|u| \leqq U$. Denote

$$
c_{\infty} \equiv \lim _{U \rightarrow \infty} \liminf _{n \rightarrow \infty} \int_{-U}^{U} \underline{c}(u) \pi_{n}(d u) \in[0, \infty]
$$

In particular, if the distribution π_{n} converges in the total variation norm to some (invariant with necessity) measure π, i.e., if the convergence

$$
\begin{equation*}
\sup _{B}\left|\pi_{n}(B)-\pi(B)\right| \longrightarrow 0 \tag{2.5}
\end{equation*}
$$

holds as $n \rightarrow \infty$, where the supremum is taken over all Borel sets on the real line, then $c_{\infty}=\int_{\mathbf{R}} \underline{c}(u) \pi(d u)$. If the function $\underline{c}(u)$ is continuous, the last equality remains true in the case of weak convergence $\pi_{n} \Rightarrow \pi$.

Put

$$
\underline{a} \equiv \liminf _{u \rightarrow \infty} \mathbf{E} \xi(u)
$$

It was established in Lemma 1 in [2] that the existence of the invariant measure together with the condition $\sup _{u} \mathbf{E}|\xi(u)|<\infty$ implies $\underline{a} \leqq 0$. Note that in the present section we do not put any restrictions on the sign of \underline{a}.

The following lemma is valid.
Lemma 3. Put $a=-\underline{a}$ if $\underline{a}<0$, and let a be an arbitrary positive real number otherwise. Let there exist a level U such that the family $\{|\xi(u)|, u \geqq U\}$ admits an integrable majorant. Then the following estimate holds:

$$
\liminf _{n, x \rightarrow \infty} \frac{\pi_{n}(x)}{\int_{x}^{x+n a} f(y) d y} \geqq \frac{c_{\infty}}{a}
$$

Proof. It is sufficient to consider the case $c_{\infty}>0$ only. Let $c^{\prime}<c^{\prime \prime}<c_{\infty}$. The definitions of $\underline{c}(u)$ and c_{∞} imply the existence of $U^{\prime}>0$ such that

$$
\liminf _{n \rightarrow \infty} \int_{-U^{\prime}}^{U^{\prime}} \frac{\mathbf{P}\{\xi(u) \geqq x\}}{f(x)} \pi_{n}(d u) \geqq c^{\prime \prime}
$$

uniformly in all sufficiently large x. Since the function $f(x)$ is long-tailed and nonincreasing, $f(x-u) / f(x) \rightarrow 1$ as $x \rightarrow \infty$ uniformly in $|u| \leqq U^{\prime}$. Therefore, there exist N and x_{0} such that

$$
\begin{equation*}
\int_{-U^{\prime}}^{U^{\prime}} \frac{\mathbf{P}\{u+\xi(u) \geqq x\}}{f(x)} \pi_{n}(d u) \geqq c^{\prime} \tag{2.6}
\end{equation*}
$$

uniformly in $n \geqq N$ and $x \geqq x_{0}$.
Consider the event $A_{i, n} \equiv A_{i, n}(x), i \in[1, n]$, which occurs if $X(i-1)<x$ and $X(j) \geqq x$ for any $j \in[i, n]$. First, the events $A_{i, n}, i \in[1, n]$, are disjoint. Second, $\cup_{i=1}^{n} A_{i, n}=\{X(n) \geqq x\}$. Thus

$$
\begin{equation*}
\pi_{n}(x)=\sum_{i=1}^{n} \mathbf{P}\left\{A_{i, n}\right\} \tag{2.7}
\end{equation*}
$$

For $v \in[x, \infty)$, introduce the probability $p_{i}(v)$ by the equality

$$
p_{i}(v)=\mathbf{P}\{X(v, j) \geqq x \text { for any } j \leqq i\}
$$

Fix $\varepsilon>0$ and put $b=a+\varepsilon$. Since the event $A_{i, n}\left(U^{\prime}\right) \equiv\left\{X(i-1) \in\left[-U^{\prime}, U^{\prime}\right)\right.$, $X(i) \geqq x+(n-i) b$, and $X(j) \geqq x$ for any $j \in[i+1, n]\}$ implies the event $A_{i, n}$, the following inequality holds:

$$
\mathbf{P}\left\{A_{i, n}\right\} \geqq \int_{-U^{\prime}}^{U^{\prime}} \pi_{i-1}(d u) \int_{x+(n-i) b}^{\infty} \mathbf{P}\{u+\xi(u) \in d v\} p_{n-i}(v)
$$

Therefore,

$$
\begin{equation*}
\mathbf{P}\left\{A_{i, n}\right\} \geqq \int_{-U^{\prime}}^{U^{\prime}} \pi_{i-1}(d u) \mathbf{P}\{u+\xi(u) \geqq x+(n-i) b\} \min _{v \geqq x+(n-i) b} p_{n-i}(v) \tag{2.8}
\end{equation*}
$$

By the definition of a and b, we have the inequality $\mathbf{E} \xi(v) \geqq-b+\varepsilon / 2$ for all sufficiently large v. Thus, by virtue of Lemma 2 ,

$$
\min _{v \geqq x+(n-i) b} p_{n-i}(v) \rightarrow 1 \quad \text { as } \quad x \text { and } n-i \rightarrow \infty
$$

Substituting this convergence into (2.8), we obtain the inequality

$$
\liminf _{n-i, x \rightarrow \infty} \frac{\mathbf{P}\left\{A_{i, n}\right\}}{f(x+(n-i) b)} \geqq \liminf _{n-i, x \rightarrow \infty} \int_{-U^{\prime}}^{U^{\prime}} \frac{\mathbf{P}\{u+\xi(u) \geqq x+(n-i) b\}}{f(x+(n-i) b)} \pi_{i-1}(d u) \geqq c^{\prime}
$$

in view of (2.6). Using the last inequality, we derive from (2.7) the estimate

$$
\pi_{n}(x) \geqq\left(c^{\prime}-\varepsilon\right) \sum_{i=N}^{n-I} f(x+(n-i) b)
$$

which is valid for arbitrary slow growing I and for all sufficiently large x. Since the function f is long-tailed and nonincreasing, for every fixed I,

$$
\sum_{i=N}^{n-I} f(x+(n-i) b) \sim \frac{1}{b} \int_{x}^{x+n b} f(y) d y \quad \text { as } \quad x \rightarrow \infty
$$

Therefore,

$$
\liminf _{n, x \rightarrow \infty} \frac{\pi_{n}(x)}{\int_{x}^{x+n b} f(y) d y} \geqq \frac{c^{\prime}-\varepsilon}{b}
$$

Since $b=a+\varepsilon, c^{\prime}<c_{\infty}$, and $\varepsilon>0$ were chosen arbitrarily, the lemma proof is complete.

3. Upper bounds for the tails of prestationary and stationary distribu-

 tions.3.1. Upper bound with a "nonexact" multiple constant. The following lemma generalizes Lemma 2 from [1] in the part which is related to subexponential distributions.

Lemma 4. Let ζ be an unbounded-from-above random variable with distribution G and with negative mean $\mathbf{E} \zeta<0$. Let there exist a level U such that, for each $t \geqq U$,

$$
\begin{align*}
\xi(u) \leqq{ }_{\mathrm{st}} \zeta & \text { if } \quad u \geqq U \tag{3.1}\\
\mathbf{P}\{u+\xi(u) \geqq t\} \leqq G(t) & \text { if } \quad u<U \tag{3.2}
\end{align*}
$$

Then the following assertions are true:
(i) If the distribution G_{∞} (for a definition, see (1.1)) is subexponential and the chain X admits (not unique, in general) an invariant measure π, then the following estimate holds:

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{\pi(x)}{G_{\infty}(x)} \leqq \frac{1}{|\mathbf{E} \zeta|} \tag{3.3}
\end{equation*}
$$

(ii) if the distribution G is strongly subexponential and the initial distribution $X(0)$ is bounded from above, then the following estimate holds:

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \sup _{n \geqq 1} \frac{\pi_{n}(x)}{G_{n|\mathbf{E} \zeta|}(x)} \leqq \frac{1}{|\mathbf{E} \zeta|} \tag{3.4}
\end{equation*}
$$

Proof. Without loss of generality we assume that $X(0) \leqq 0$ and $U=0$. Consider the homogeneous-in-space Markov chain $\left\{Y_{n}\right\}$ with nonnegative values defined by the equalities $Y_{n+1}=\left(Y_{n}+\zeta_{n+1}\right)^{+}$, where ζ_{n} are independent copies of ζ. By virtue of conditions (3.1) and (3.2), the Markov chain Y_{n} dominates the chain $X(n)$ and, therefore,

$$
\begin{equation*}
\pi(x) \leqq \pi^{Y}(x) \tag{3.5}
\end{equation*}
$$

where π^{Y} is the invariant measure of the chain Y.
Since the distribution G_{∞} is subexponential, it follows from Theorem 2(B) in [9] that

$$
\pi^{Y}(x) \sim \frac{G_{\infty}(x)}{|\mathbf{E} \zeta|} \quad \text { as } \quad x \rightarrow \infty
$$

Combined with (3.5) this implies (3.3).
Inequality (3.4) also follows from the majorization of the chain $X(n)$ by the chain Y_{n}. By majorization, for every n and x we have the estimate $\pi_{n}(x) \leqq \pi_{n}^{Y}(x)=$ $\mathbf{P}\left\{Y_{n} \geqq x\right\}$. It remains to apply Theorem 2. The lemma is proved.
3.2. Some auxiliary results. Let $\zeta_{1}, \zeta_{2}, \ldots$ be i.i.d. random variables.

Lemma 5. Let $\mathbf{E} \zeta_{1}<0$. Then the series

$$
\sum_{n=1}^{\infty} \mathbf{P}\left\{\zeta_{1}+\cdots+\zeta_{k} \geqq 0 \text { for all } k \leqq n\right\}
$$

converges.
Proof. Consider the homogeneous-in-space Markov chain defined by the equalities $Y_{n+1}=\left(Y_{n}+\zeta_{n+1}\right)^{+}$with the initial value $Y_{0}=1$. We have the inequality and the equality $\mathbf{P}\left\{\zeta_{1}+\cdots+\zeta_{k} \geqq 0\right.$ for all $\left.k \leqq n\right\} \leqq \mathbf{P}\left\{Y_{k}>0\right.$ for all $\left.k \leqq n \mid Y_{0}=1\right\}=$ $\mathbf{P}\{\eta>n\}$, where η is the first hitting time of the state 0 by the chain $\left\{Y_{n}\right\}$. Since $\mathbf{E} \zeta_{1}<0$, the chain $\left\{Y_{n}\right\}$ is positive recurrent, that is, $\mathbf{E} \eta<\infty$. Thus, the series $\sum_{n=1}^{\infty} \mathbf{P}\{\eta>n\}$ converges and the lemma is proved.

In the following theorem, the local behavior of the function is studied which is dominated by the long-tailed function. Let a positive nonincreasing integrable function $f(x)$ be long-tailed. Since the function f does not increase, it is long-tailed if and only if there exists a sequence $\Delta(x) \rightarrow \infty$ such that

$$
\frac{f(x)}{f(x-\Delta(x))} \longrightarrow 1 \quad \text { as } \quad x \rightarrow \infty
$$

Let c be an arbitrary positive constant. Put

$$
f_{n}(x)=\int_{x}^{x+c n} f(y) d y
$$

We have the equivalence

$$
\begin{equation*}
f_{n}(x-\Delta(x)) \sim f_{n}(x) \tag{3.6}
\end{equation*}
$$

as $x \rightarrow \infty$ uniformly in all n. Let a nonnegative function $h_{n}(x)$ be such that, for each n, it is nonincreasing in x.

LEMMA 6. Let $h_{n}(x) \leqq f_{n}(x)$ for any n and x. Then there exists a sequence of intervals $\left[x_{n}^{-}, x_{n}^{+}\right] \subseteq[x-\Delta(x), x]$ such that $x_{n}^{+}-x_{n}^{-} \rightarrow \infty$ and $h_{n}\left(x_{n}^{-}\right)-h_{n}\left(x_{n}^{+}\right)=$ $o\left(f_{n}(x)\right)$ as $n, x \rightarrow \infty$.

Proof. Choose a sequence $u(x) \rightarrow \infty$ such that $u(x)=o(\Delta(x))$ as $x \rightarrow \infty$ and $l(x)=\Delta(x) / u(x)$ is a natural number. By the choice of $u(x)$ we have the convergence $l(x) \rightarrow \infty$ as $x \rightarrow \infty$.

By virtue of (3.6), it is sufficient to prove that, for any n and x, there exists a point $x_{n}^{-} \in[x-\Delta(x), x-u(x)]$ such that $h_{n}\left(x_{n}^{-}\right)-h_{n}\left(x_{n}^{-}+u(x)\right)=o\left(f_{n}\left(x_{n}^{-}\right)\right)$as $n, x \rightarrow \infty$ (and put $\left.x_{n}^{+}=x_{n}^{-}+u(x)\right)$. We argue by the rule of contraries and assume that the last relation does not hold. Then there exist a number $\varepsilon>0$, subsequences $n_{k} \rightarrow \infty$, $k \rightarrow \infty$, and $x_{k} \rightarrow \infty, k \rightarrow \infty$, such that, for any $y \in\left[x_{k}-\Delta\left(x_{k}\right), x_{k}-u\left(x_{k}\right)\right]$, the following inequality holds:

$$
\begin{equation*}
h_{n_{k}}(y)-h_{n_{k}}\left(y+u\left(x_{k}\right)\right) \geqq \varepsilon f_{n_{k}}(y) \tag{3.7}
\end{equation*}
$$

In particular, in view of the inequality $h_{n_{k}} \leqq f_{n_{k}}$,

$$
h_{n_{k}}\left(y+u\left(x_{k}\right)\right) \leqq h_{n_{k}}(y)-\varepsilon f_{n_{k}}(y) \leqq(1-\varepsilon) h_{n_{k}}(y)
$$

Therefore,

$$
\begin{aligned}
h_{n_{k}}\left(x_{k}-u\left(x_{k}\right)\right) & \leqq(1-\varepsilon)^{l\left(x_{k}\right)-1} h_{n_{k}}\left(x_{k}-\Delta\left(x_{k}\right)\right) \\
& \leqq(1-\varepsilon)^{l\left(x_{k}\right)-1} f_{n_{k}}\left(x_{k}-\Delta\left(x_{k}\right)\right)=o\left(f_{n_{k}}\left(x_{k}-u\left(x_{k}\right)\right)\right)
\end{aligned}
$$

as $k \rightarrow \infty$ by virtue of $l\left(x_{k}\right) \rightarrow \infty$ and (3.6). It contradicts (3.7) with $y=x_{k}-u\left(x_{k}\right)$. This contradiction proves the lemma.
3.3. Upper bound with an "exact" multiple constant. Here we assume that the initial distribution π_{0} is concentrated on the set bounded from above.

Lemma 7. Let an unbounded-from-above random variable ζ with distribution G be such that the distribution of the random variable $\zeta \mathbf{I}\{\zeta \geqq 0\}$ is strongly subexponential and $\mathbf{E} \zeta<0$. Let there exist a level U such that (3.1) holds. Moreover, let, for some function $c(v) \leqq 1$, the inequality

$$
\begin{equation*}
\mathbf{P}\{\xi(u) \geqq t\} \leqq c(u) G(t) \tag{3.8}
\end{equation*}
$$

hold for $u \geqq U, t \geqq U$ and

$$
\begin{equation*}
\mathbf{P}\{u+\xi(u) \geqq t\} \leqq c(u) G(t) \tag{3.9}
\end{equation*}
$$

for $u<U, t \geqq U$. If, in addition, convergence in total variation (2.5) holds, then

$$
\begin{equation*}
\pi_{n}(x) \leqq(1+o(1)) \sum_{k=1}^{n} c_{k-1} G(x+(n-k)|\mathbf{E} \zeta|) \tag{3.10}
\end{equation*}
$$

as $x \rightarrow \infty$ uniformly in all $n \geqq 1$, where $c_{k} \equiv \int_{\mathbf{R}} c(u) \pi_{k}(d u) \geqq 0$. In particular,

$$
\begin{equation*}
\limsup _{n, x \rightarrow \infty} \frac{\pi_{n}(x)}{G_{n|\mathbf{E} \zeta|}(x)} \leqq \frac{c_{\infty}}{|\mathbf{E} \zeta|}, \tag{3.11}
\end{equation*}
$$

where $c_{\infty} \equiv \lim _{k \rightarrow \infty} c_{k}=\int_{\mathbf{R}} c(u) \pi(d u) \geqq 0$.

Proof. Since the time parameter n takes its values in the countable set, the distribution G is long-tailed, and $c_{n} \rightarrow c_{\infty}$, it is sufficient to check the following two relations: For any fixed n,

$$
\begin{equation*}
\pi_{n}(x) \leqq(1+o(1)) G(x) \sum_{k=1}^{n} c_{k-1} \quad \text { as } \quad x \rightarrow \infty \tag{3.12}
\end{equation*}
$$

and (3.11). Let us prove the first relation by induction. For every $U^{\prime} \in(U, x)$ we have the equality

$$
\pi_{n+1}(x)=\left(\int_{-\infty}^{U^{\prime}}+\int_{U^{\prime}}^{x-U^{\prime}}+\int_{x-U^{\prime}}^{\infty}\right) \mathbf{P}\{u+\xi(u) \geqq x\} \pi_{n}(d u) \equiv I_{1}+I_{2}+I_{3}
$$

In view of conditions (3.8) and (3.9), for any fixed U^{\prime}, we have the estimate

$$
\limsup _{x \rightarrow \infty} \frac{I_{1}}{G(x)} \leqq \int_{-\infty}^{U^{\prime}} c(u) \pi_{n}(d u) \leqq c_{n}
$$

In view of $c(v) \leqq 1$ and condition (3.8), the second term I_{2} admits the following estimate:

$$
I_{2} \leqq \int_{U^{\prime}}^{x-U^{\prime}} G(x-u) \pi_{n}(d u)
$$

Integrating by parts, we arrive at the inequality

$$
\begin{aligned}
I_{2} & \leqq-\left.G(x-u) \pi_{n}(u)\right|_{U^{\prime}} ^{x-U^{\prime}}+\int_{U^{\prime}}^{x-U^{\prime}} \pi_{n}(x-u) G(d u) \\
& \leqq G\left(x-U^{\prime}\right) \pi_{n}\left(U^{\prime}\right)+\int_{U^{\prime}}^{x-U^{\prime}} \pi_{n}(x-u) G(d u)
\end{aligned}
$$

Using the inductive hypothesis, we get the estimate

$$
\limsup _{x \rightarrow \infty} \frac{I_{2}}{G(x)} \leqq c G\left(U^{\prime}\right)+c \limsup _{x \rightarrow \infty} \int_{U^{\prime}}^{x-U^{\prime}} \frac{G(x-u)}{G(x)} G(d u)
$$

Since the distribution G is subexponential, it follows from relation (2) in [4] that the value of limsup on the right-hand side of the last inequality may be made arbitrarily small by the appropriate choice of U^{\prime}. Thus, $\lim _{U^{\prime} \rightarrow \infty} \lim _{\sup _{x \rightarrow \infty}} I_{2} / G(x)=0$.

The third term I_{3} does not exceed $\pi_{n}\left(x-U^{\prime}\right)$. Thus, by the induction assumption and by the fact that the distribution G is long-tailed, the estimate

$$
\limsup _{x \rightarrow \infty} \frac{I_{3}}{G(x)} \leqq \sum_{k=1}^{n} c_{k-1}
$$

is valid for any fixed U^{\prime}. Combining the estimates for I_{1}, I_{2}, and I_{3}, we deduce the induction step $n \rightarrow n+1$.

Now let us prove relation (3.11). Without loss of generality, assume $X(0) \leqq U$. Choose the sequence of points $x_{k}, k=1,2, \ldots$, such that $x_{k+1}-x_{k} \rightarrow \infty$ and
$G\left(x_{k+1}\right) \sim G\left(x_{k}\right)$ as $k \rightarrow \infty$. In particular, $G_{n|\mathbf{E} \zeta|}\left(x_{k+1}\right) \sim G_{n|\mathbf{E} \zeta|}\left(x_{k}\right)$ as $k \rightarrow \infty$ uniformly in all n. So, relation (3.11) is equivalent to the relation

$$
\begin{equation*}
\limsup _{n, k \rightarrow \infty} \frac{\pi_{n}\left(x_{k}\right)}{G_{n|\mathbf{E} \zeta|}\left(x_{k}\right)} \leqq \frac{c_{\infty}}{|\mathbf{E} \zeta|} \tag{3.13}
\end{equation*}
$$

By virtue of Theorem 4, for any fixed i, the function $h_{n}(x) \equiv \pi_{n-i}(x)$ satisfies the conditions of Lemma 6 with $f(x) \equiv$ const $\cdot G(x)$ and $c=|\mathbf{E} \zeta|$. Hence, there exist sequences $x_{k n}^{-}$and $x_{k n}^{+}$such that $\left[x_{k n}^{-}, x_{k n}^{+}\right] \subseteq\left[x_{k}, x_{k+1}\right], x_{k n}^{+}-x_{k n}^{-} \rightarrow \infty$, and $\pi_{n-i}\left(x_{k n}^{-}\right)-\pi_{n-i}\left(x_{k n}^{+}\right)=o\left(G_{n|\mathbf{E} \zeta|}\left(x_{k+1}\right)\right)$ as $n, k \rightarrow \infty$. Therefore, without loss of generality, for convenience, we may assume that there exists (for any fixed i) the function x_{n}^{-}such that $x_{n}^{-} \in[0, x], x-x_{n}^{-} \rightarrow \infty$, and

$$
\begin{equation*}
\pi_{n-i}\left(\left[x_{n}^{-}, x_{n}^{+}\right)\right)=\pi_{n-i}\left(x_{n}^{-}\right)-\pi_{n-i}(x)=o\left(G_{n|\mathbf{E} \zeta|}(x)\right), \quad n, x \rightarrow \infty \tag{3.14}
\end{equation*}
$$

Condition (3.9) implies (3.2). Consider the homogeneous Markov chain $\left\{Y_{n}\right\}$ with nonzero states defined in the proof of Lemma 4. Since the chain $\left\{U+Y_{n}\right\}$ dominates the chain $\{X(n)\}$, given $X(0) \leqq U+Y_{0}$, the chains $\{X(n)\}$ and $\left\{U+Y_{n}\right\}$ can be constructed on the same probability space in such a way that

$$
\begin{equation*}
X(n) \leqq U+Y_{n} \tag{3.15}
\end{equation*}
$$

for any n with probability 1 . All characteristics of the chain $\{X(n)\}$ will be completed by an upper index X and the characteristics of the chain $\left\{U+Y_{n}\right\}$ by an upper index Y.

The events $A_{i, n}$ and the probabilities $p_{i}(v)$ were defined in the proof of Lemma 3. Let us turn again to equality (2.7). For any fixed i, estimates (3.4) and (1.2) imply the following relations:

$$
\mathbf{P}\left\{A_{i, n}^{X}\right\} \leqq \mathbf{P}\{X(i) \geqq x\}=\pi_{i}(x)=O\left(G_{i|\mathbf{E} \zeta|}(x)\right)=o\left(G_{n|\mathbf{E} \zeta|}(x)\right)
$$

as $n, x \rightarrow \infty$. Therefore, there exists an unboundedly growing sequence $I=I(n, x)$ such that

$$
\begin{equation*}
\pi_{n}(x)=\sum_{i=I}^{n} \mathbf{P}\left\{A_{i, n}^{X}\right\}+o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \quad \text { as } \quad n, x \rightarrow \infty \tag{3.16}
\end{equation*}
$$

It turns out that any finite number of the last summands in this sum has order $o\left(G_{n|\mathbf{E} \zeta|}(x)\right)$. This more delicate observation will be checked at the end of the proof.

For the probability of the event $A_{i, n}^{X}$, we have the equality

$$
\mathbf{P}\left\{A_{i, n}^{X}\right\}=\int_{-\infty}^{x} \pi_{i-1}^{X}(d u) \int_{x}^{\infty} P^{X}(u, d v) p_{n-i}^{X}(v)
$$

Using (3.15) with $X(0)=U+Y_{0}=v$, we obtain $p_{n-i}^{X}(v) \leqq p_{n-i}^{Y}(v)$. Hence,

$$
\begin{equation*}
\mathbf{P}\left\{A_{i, n}^{X}\right\} \leqq \int_{-\infty}^{x} \pi_{i-1}^{X}(d u) \int_{x}^{\infty} P^{X}(u, d v) p_{n-i}^{Y}(v) \tag{3.17}
\end{equation*}
$$

Being space homogeneous, the chain $U+Y_{n}$ is stochastically increasing. Thus, the function $p_{n-i}^{Y}(v)$ does not decrease in v and, therefore, is a function of bounded variation. Integrating by parts, we may rewrite the internal integral in the following way:

$$
\int_{x}^{\infty} P^{X}(u, d v) p_{n-i}^{Y}(v)=P^{X}(u,[x, \infty)) p_{n-i}^{Y}(x)+\int_{x}^{\infty} P^{X}(u,[v, \infty)) d p_{n-i}^{Y}(v)
$$

Estimating $P^{X}(u,[v, \infty))$ on the right-hand side of the last inequality via condition (3.9) and integrating back by parts, we obtain recursively the estimate and the equality, for any $u \in(-\infty, U)$,

$$
\begin{align*}
\int_{x}^{\infty} P^{X}(u, d v) p_{n-i}^{Y}(v) & \leqq c(u)\left(G(x) p_{n-i}^{Y}(x)+\int_{x}^{\infty} G(v) d p_{n-i}^{Y}(v)\right) \\
& =c(u) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v) \tag{3.18}
\end{align*}
$$

In the same manner, in view of condition (3.8) and inequality $c(u) \leqq 1$ we obtain, for any $u \in[U, x)$,

$$
\begin{align*}
\int_{x}^{\infty} P^{X}(u, d v) p_{n-i}^{Y}(v) & \leqq c(u) \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v) \tag{3.19}\\
& \leqq \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v) \tag{3.20}
\end{align*}
$$

Since the function $G(t)$ is long-tailed, there exists an unboundedly growing (as $x \rightarrow \infty$) level V such that $G(v-u) \sim G(v)$ as $u \in[U, V)$ and $v \geqq x$. Then inequality (3.19), for $u \in[U, V)$, can be rewritten as

$$
\begin{equation*}
\int_{x}^{\infty} P^{X}(u, d v) p_{n-i}^{Y}(v) \leqq(c(u)+o(1)) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v), \quad x \rightarrow \infty \tag{3.21}
\end{equation*}
$$

Substituting (3.18), (3.20), and (3.21) into (3.17), we arrive at the inequality

$$
\begin{aligned}
\mathbf{P}\left\{A_{i, n}^{X}\right\} \leqq & (1+o(1)) \int_{-\infty}^{V} \pi_{i-1}^{X}(d u) c(u) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v) \\
& +\int_{V}^{x} \pi_{i-1}^{X}(d u) \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v)
\end{aligned}
$$

Recalling the definition of the constants c_{i}, we obtain

$$
\mathbf{P}\left\{A_{i, n}^{X}\right\} \leqq\left(c_{i-1}+o(1)\right) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v)+\int_{V}^{x} \pi_{i-1}^{X}(d u) \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v)
$$

as $x \rightarrow \infty$ uniformly in $i \in[1, n]$. Summing up these inequalities with respect to i from $I(n, x)$ to n and taking into account the convergence $c_{i} \rightarrow c_{\infty}$ as $i \rightarrow \infty$, we deduce from (3.16) the relation, as $n, x \rightarrow \infty$,

$$
\begin{align*}
\pi_{n}^{X}(x) \leqq & \left(c_{\infty}+o(1)\right) \int_{x}^{\infty} G(d v) \sum_{i=1}^{n} p_{n-i}^{Y}(v) \\
& +\sum_{i=I}^{n} \int_{V}^{x} \pi_{i-1}^{X}(d u) \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v)+o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \tag{3.22}
\end{align*}
$$

For the homogeneous-in-space Markov chain $U+Y$, we have the inequality

$$
\begin{aligned}
\mathbf{P}\left\{A_{i, n}^{Y}\right\} & \geqq \int_{U}^{V} \pi_{i-1}^{Y}(d u) \int_{x}^{\infty} P^{Y}(u, d v) p_{n-i}^{Y}(v) \\
& =\int_{U}^{V} \pi_{i-1}^{Y}(d u) \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v) .
\end{aligned}
$$

By virtue of the choice of the level V, we have

$$
\mathbf{P}\left\{A_{i, n}^{Y}\right\} \geqq \int_{U}^{V} \pi_{i-1}^{Y}(d u) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v)=\pi_{i-1}^{Y}([U, V)) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v) .
$$

Since $V \rightarrow \infty$,

$$
\mathbf{P}\left\{A_{i, n}^{Y}\right\} \geqq(1+o(1)) \int_{x}^{\infty} G(d v) p_{n-i}^{Y}(v)
$$

as $x \rightarrow \infty$ uniformly in $i \in[1, n]$. Summing up these inequalities with respect to i from 1 to n, we deduce from (2.7) the relation

$$
\pi_{n}^{Y}(x)=\sum_{i=1}^{n} \mathbf{P}\left\{A_{i, n}^{Y}\right\} \geqq(1+o(1)) \int_{x}^{\infty} G(d v) \sum_{i=1}^{n} p_{n-i}^{Y}(v)
$$

It follows from (1.4) and Theorem 2 that, as $x \rightarrow \infty$ uniformly in $n \geqq 1$,

$$
\pi_{n}^{Y}(x) \leqq \frac{1+o(1)}{|\mathbf{E} \zeta|} G_{n|\mathbf{E} \zeta|}(x)
$$

The last two inequalities imply the estimate

$$
\int_{x}^{\infty} G(d v) \sum_{i=1}^{n} p_{n-i}^{Y}(v) \leqq \frac{1+o(1)}{|\mathbf{E} \zeta|} G_{n|\mathbf{E} \zeta|}(x) \quad \text { as } \quad x \rightarrow \infty
$$

Substituting it into (3.22), we arrive at the relation

$$
\begin{equation*}
\pi_{n}^{X}(x) \leqq \frac{c_{\infty}+o(1)}{|\mathbf{E} \zeta|} G_{n|\mathbf{E} \zeta|}(x)+\sum_{i=I}^{n} \int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u) \tag{3.23}
\end{equation*}
$$

as $n, x \rightarrow \infty$, where $q_{n-i}(u)=\int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v)$.
The previous considerations also imply the following estimate for the chain $U+Y$, which is valid as $x \rightarrow \infty$ uniformly in $n \geqq 1$:

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{V}^{x} \pi_{i-1}^{Y}(d u) \int_{x}^{\infty} G(d v-u) p_{n-i}^{Y}(v)=o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \tag{3.24}
\end{equation*}
$$

It remains to estimate the general term of the sum in (3.23). Integration by parts implies the equality

$$
\int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u)=-\left.\pi_{i-1}^{X}(u) q_{n-i}(u)\right|_{V} ^{x}+\int_{V}^{x} \pi_{i-1}^{X}(u) d q_{n-i}(u)
$$

In view of Lemma 4 and Theorem 2, $\pi_{i-1}^{X}(u) \leqq c \pi_{i-1}^{Y}(u)$ for some $c<\infty$ and for all u and i. Hence,

$$
\int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u) \leqq c \pi_{i-1}^{Y}(V) q_{n-i}(V)+c \int_{V}^{x} \pi_{i-1}^{Y}(u) d q_{n-i}(u)
$$

Again integrating by parts, we obtain

$$
\begin{align*}
& \int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u) \\
& \quad \leqq c \pi_{i-1}^{Y}(V) q_{n-i}(V)+\left.c \pi_{i-1}^{Y}(u) q_{n-i}(u)\right|_{V} ^{x}+c \int_{V}^{x} \pi_{i-1}^{Y}(d u) q_{n-i}(u) \\
& \quad \leqq c \pi_{i-1}^{Y}(x) q_{n-i}(x)+c \int_{V}^{x} \pi_{i-1}^{Y}(d u) q_{n-i}(u) . \tag{3.25}
\end{align*}
$$

In the same way, we obtain the estimate

$$
\begin{align*}
\int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u)= & \left(\int_{V}^{x_{n}^{-}}+\int_{x_{n}^{-}}^{x}\right) \pi_{i-1}^{X}(d u) q_{n-i}(u) \leqq c \pi_{i-1}^{Y}\left(x_{n}^{-}\right) q_{n-i}\left(x_{n}^{-}\right) \\
& +c \int_{V}^{x_{n}^{-}} \pi_{i-1}^{Y}(d u) q_{n-i}(u)+\pi_{i-1}^{X}\left(\left[x_{n}^{-}, x\right)\right) . \tag{3.26}
\end{align*}
$$

Fix a natural number J. Applying estimate (3.25) if $i \in[I, n-J]$ and estimate (3.26) if $i \in[n-J+1, n]$, we deduce the inequality

$$
\begin{aligned}
\sum_{i=I}^{n} \int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u) \leqq & c \sum_{i=I}^{n-J} \pi_{i-1}^{Y}(x) q_{n-i}(x)+c \sum_{i=n-J+1}^{n} \pi_{i-1}^{Y}\left(x_{n}^{-}\right) q_{n-i}\left(x_{n}^{-}\right) \\
& +c \sum_{i=I}^{n} \int_{V}^{x} \pi_{i-1}^{Y}(d u) q_{n-i}(u)+\sum_{i=n-J+1}^{n} \pi_{i-1}^{X}\left(\left[x_{n}^{-}, x\right)\right)
\end{aligned}
$$

By virtue of (3.24), the third sum on the right-hand side of the estimate is of the order $o\left(G_{n|\mathbf{E} \zeta|}(x)\right)$; the fourth sum is of the same order, for any fixed J, in view of (3.14). Therefore, for sufficiently slow-growing level $J \equiv J_{n}(x) \rightarrow \infty$, the following estimate holds:

$$
\begin{align*}
& \sum_{i=I}^{n} \int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u) \\
& \quad \leqq c \sum_{i=I}^{n-J} \pi_{i-1}^{Y}(x) q_{n-i}(x)+c \sum_{i=n-J+1}^{n} \pi_{i-1}^{Y}\left(x_{n}^{-}\right) q_{n-i}\left(x_{n}^{-}\right)+o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \\
& \equiv c \Sigma_{1}+c \Sigma_{2}+o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \quad \text { as } \quad n, x \rightarrow \infty \tag{3.27}
\end{align*}
$$

Since

$$
\begin{aligned}
q_{n-i}(x) & =\int_{x}^{\infty} G(d v-x) p_{n-i}^{Y}(v) \\
& =\int_{x}^{\infty} G(d v-x) \mathbf{P}\left\{Y_{k} \geqq x \text { for all } k \in[2, n-i+1] \mid Y_{1}=v\right\} \\
& =\mathbf{P}\left\{Y_{k} \geqq x \text { for all } k \in[1, n-i+1] \mid Y_{0}=x\right\}
\end{aligned}
$$

then

$$
\begin{aligned}
\Sigma_{1} & =\sum_{i=I}^{n-J} \pi_{i-1}^{Y}(x) \mathbf{P}\left\{\zeta_{1}+\cdots+\zeta_{k} \geqq 0 \text { for all } k \leqq n-i+1\right\} \\
& =O\left(G_{n|\mathbf{E} \zeta|}(x)\right) \sum_{i=I}^{n-J} \mathbf{P}\left\{\zeta_{1}+\cdots+\zeta_{k} \geqq 0 \text { for all } k \leqq n-i+1\right\}
\end{aligned}
$$

Since $J \rightarrow \infty$, it follows from Lemma 5 that $\sum_{i=I}^{n-J} \mathbf{P}\left\{\zeta_{1}+\cdots+\zeta_{k} \geqq 0\right.$ for all $k \leqq n-i+1\} \longrightarrow 0$. Therefore,

$$
\begin{equation*}
\Sigma_{1}=o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \quad \text { as } \quad n, x \rightarrow \infty \tag{3.28}
\end{equation*}
$$

Now prove that

$$
\begin{equation*}
\Sigma_{2}=o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \quad \text { as } \quad n, x \rightarrow \infty \tag{3.29}
\end{equation*}
$$

Since the sequence $J_{n}(x)$ may increase as slowly as possible, it is sufficient to check that, for any fixed $i, \pi_{n-i}^{Y}\left(x_{n}^{-}\right) q_{i-1}\left(x_{n}^{-}\right)=o\left(G_{n|\mathbf{E} \zeta|}(x)\right)$ holds as $n, x \rightarrow \infty$. In view of (3.14) and Lemma 4, we have $\pi_{n-i}^{Y}\left(x_{n}^{-}\right)=\pi_{n-i}^{Y}(x)+o\left(G_{n|\mathbf{E} \zeta|}(x)\right)=O\left(G_{n|\mathbf{E} \zeta|}(x)\right)$. Hence,

$$
\begin{aligned}
\pi_{n-i}^{Y}\left(x_{n}^{-}\right) q_{i-1}\left(x_{n}^{-}\right) & =O\left(G_{n|\mathbf{E} \zeta|}(x)\right) q_{i-1}\left(x_{n}^{-}\right) \leqq O\left(G_{n|\mathbf{E} \zeta|}(x)\right) P\left(x_{n}^{-},[x, \infty)\right) \\
& =o\left(G_{n|\mathbf{E} \zeta|}(x)\right)
\end{aligned}
$$

since $x-x_{n}^{-} \rightarrow \infty$ and $P\left(x_{n}^{-},[x, \infty)\right) \rightarrow 0$. So, relation (3.29) is proved.
Substituting (3.28) and (3.29) into (3.27), we arrive at the following relation:

$$
\sum_{i=I}^{n} \int_{V}^{x} \pi_{i-1}^{X}(d u) q_{n-i}(u)=o\left(G_{n|\mathbf{E} \zeta|}(x)\right) \quad \text { as } \quad n, x \rightarrow \infty
$$

Taking into account the last relation and (3.23), we arrive at estimate (3.11) and, simultaneously, at the conclusion of the lemma.
4. Uniform-in-time theorem on large deviation probabilities. Now we consider the asymptotically homogeneous-in-space Markov chain, that is, we assume the weak convergence $\xi(u) \Rightarrow \xi$ as $u \rightarrow \infty$. Let $\mathbf{E} \xi<0$. In the present section we also assume that the support of the initial distribution π_{0} is bounded from above and that convergence in total variation (2.5) holds.

Let ζ be an unbounded-from-above random variable with distribution G and negative mean value. Assume that the distribution of the random variable $\zeta \mathbf{I}\{\zeta \geqq 0\}$ is strongly subexponential.

Theorem 3. Let there exist a level U such that the family of random variables $\{|\xi(u)|, u \geqq U\}$ admits an integrable majorant. Let condition

$$
\mathbf{P}\{u+\xi(u) \geqq t\} \leqq G(t) \quad \text { if } \quad u<U, \quad \xi(u) \leqq \leqq_{\text {st }} \zeta \quad \text { if } \quad u \geqq U
$$

hold for $t \geqq U$. Suppose that, for some function $c(u) \leqq 1$, the uniform-in-u convergence $\mathbf{P}\{\xi(u) \geqq t\} / G(t) \rightarrow c(u)$ holds as $t \rightarrow \infty$. Then relation

$$
\pi_{n}(x)=(1+o(1)) \sum_{k=1}^{n} c_{k-1} G(x+(n-k)|\mathbf{E} \xi|)
$$

holds as $x \rightarrow \infty$ uniformly in $n \geqq 1$, where the constants c_{k} are defined by the equalities $c_{k}=\int_{\mathbf{R}} c(u) \pi_{k}(d u)$. In particular,

$$
\pi_{n}(x)=\left(\frac{c_{\infty}}{|\mathbf{E} \xi|}+o(1)\right) G_{n|\mathbf{E} \xi|}(x) \quad \text { as } \quad n, x \rightarrow \infty
$$

where $c_{\infty} \equiv \lim _{k \rightarrow \infty} c_{k}=\int_{\mathbf{R}} c(u) \pi(d u)$.

Remark 2. If the distribution tail of G is regularly varying at infinity and $c_{\infty}>0$, then the last theorem implies the asymptotics $\pi_{n}(x) \sim c_{\infty} G_{\infty}(x) /|\mathbf{E} \xi|$ as $n / x \rightarrow \infty$. In particular, in the region $n / x \rightarrow \infty$ the asymptotical behavior of the probability $\pi_{n}(x)$ coincides with that of the invariant measure tail: $\pi_{n}(x) \sim \pi(x)$.

Proof of Theorem 3. By virtue of the theorem conditions, for any $\varepsilon>0$, there exist a random variable ζ_{ε} with a distribution G_{ε} and level U_{ε} such that $\mathbf{E} \zeta_{\varepsilon} \leqq \mathbf{E} \xi+\varepsilon$, $\mathbf{P}\left\{\zeta_{\varepsilon} \geqq t\right\}=\mathbf{P}\{\zeta \geqq t\}$ for all sufficiently large t, and, for $t \geqq U_{\varepsilon}$,

$$
\mathbf{P}\{u+\xi(u) \geqq t\} \leqq G_{\varepsilon}(t) \quad \text { if } \quad u<U_{\varepsilon}, \quad \xi(u) \leqq \leqq_{\text {st }} \zeta_{\varepsilon} \quad \text { if } \quad u \geqq U_{\varepsilon}
$$

It follows from Lemma 7 that

$$
\pi_{n}(x) \leqq(1+o(1)) \sum_{k=1}^{n} c_{k-1} G(x+(n-k)(|\mathbf{E} \xi|-\varepsilon))
$$

as $x \rightarrow \infty$ uniformly in $n \geqq 1$. Since the function $G(y)$ is long-tailed, it implies, by the arbitrary choice of $\varepsilon>0$, the following upper estimate:

$$
\pi_{n}(x) \leqq(1+o(1)) \sum_{k=1}^{n} c_{k-1} G(x+(n-k)|\mathbf{E} \xi|) .
$$

Since the time parameter n takes only a countable number of values, the corresponding lower estimate follows from Lemma 3 and from the following relation: For any fixed $n, \pi_{n}(x) \geqq(1+o(1)) G(x) \sum_{k=1}^{n} c_{k-1}$ as $x \rightarrow \infty$. The latter relation may be verified by induction in the same way as relation (3.12). The proof of the theorem is complete.

REFERENCES

[1] A. A. Borovkov and D. A. Korshunov, Large-deviation probabilities for one-dimensional Markov chains. Part 1: Stationary distributions, Theory Probab. Appl., 41 (1996), pp. 1-24.
[2] A. A. Borovkov and D. A. Korshunov, Large-deviation probabilities for one-dimensional Markov chains. Part 2: Prestationary distributions in the exponential case, Theory Probab. Appl., 45 (2000), pp. 379-405.
[3] V. P. Chistyakov, A theorem on sums of independent positive random variables and its applications to branching random processes, Theory Probab. Appl., 9 (1964), pp. 640-648.
[4] P. Embrechts and C. M. Goldie, On convolution tails, Stochastic Process. Appl., 13 (1982), pp. 263-278.
[5] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., Wiley, New York, 1971.
[6] D. A. Korshunov, Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory Probab. Appl., 46 (2001), pp. 355-365.
[7] A. N. Shiryaev, Probability, Springer-Verlag, Berlin, New York, 1984.
[8] J. L. Teugels, The class of subexponential distributions, Ann. Probab., 3 (1975), pp. 10001011.
[9] N. Veraverbeke, Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Process. Appl., 5 (1977), pp. 27-37.

[^0]: *Received by the editors August 23, 1999. This work was partially supported by Russian Foundation for Basic Research grant 96-01-01939 and CRDF Cooperative Grants Program Award RM1-226. http://www.siam.org/journals/tvp/46-4/97924.html
 ${ }^{\dagger}$ Sobolev Institute of Mathematics of the Siberian Section RAS, Academician Koptyug Pr. 4, 630090 Novosibirsk, Russia (borovkov@math.nsc.ru, korshunov@math.nsc.ru).

