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Abstract 

Let S,, n > 1, be the partial sums of i.i.d. random variables with negative mean value. Many 
papers (see, for example, [l, 2,5,6,7,9,11]) give us different theorems on the tail behavior of the 
distribution of sup{&, n > 1). In this paper the final versions of these theorems (with necessary 
and sufficient conditions) are presented. The main attention is paid to the necessity part of these 
theorems. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Let t1,t2, . . . be an independent random variables with common distribution 
function F(x) on (- 00, co); F( + 0) < 1. Denote F(x) = 1 -F(x). Let So = 0, 
s, = 51 + ... + 5,,, n 2 1, and put 

M = sup{&, n > 01. 

We assume hereafter that Emax(0, tl) exists and LI = Et, E [ - co, 0); hence S, drifts to 
-cc and M is finite almost surely. 

The problem is to describe the asymptotic behavior of the probability P{M 2 x} 
for large x. Put q(il) = Ee”‘l and /? = sup{2 2 O:cp(l) < 1). Since P{tl > 0} > 0, 
B < co. Then only three cases can occur: 

(i) /3 = 0, “the power tail (or subexponential) case”; 
(ii) b > 0 and q(p) < 1, “the intermediate case”; 

(iii) /3 > 0 and q(p) = 1, “the Cram& case”. 

It turns out that the asymptotic behavior of P{M 2 x} heavily depends on the case 
which takes place. To state theorems in “subexponential” and “intermediate” cases we 
need the following definitions. 
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Definition 1. The function f(x) > 0 is called to be locally power, if, for each fixed 
t,f(x + t) -f(x) as x + co. 

Definition 2. We say that the distribution G on [0, co) with unbounded support 
belongs to the class Y of subexponential distributions if (G * G)([x, co)) - 2G([x, m)) 
as x + co. Equivalently, P{vl + y/2 2 x} - 2P{q1 2 x}, where the independent ran- 
dom variables q1 and q2 are distributed according to G. 

It is proved in Chistyakov (1964) that if G E 9, then the function G([x, co)) is locally 
power. In particular, if the distribution of the random variable tll{tl > 0} is in Y, 
then p = 0. 

Definition 3. We say that the non-lattice distribution G on [0, 00) belongs to the class 
Y’(y), y > 0, if the function eYXG([x, co)) is locally power, Ji eY’G(dt) coo, and 
(G * G) (1x> a)) - cG([x, 00)) as x -+ co for some CE(O, co). We say that distribution 
G on the lattice {nh, n EZ+ } belongs to the class Y(y), y 2 0, if the previous properties 
hold with x taken as a multiple of lattice step h. 

If y > 0 and GeY(y), then it is known (see, for example, Borovkov, 1976, Section 
22) that 

s m 

G(Ct, a))dt - 
G(Cx> ~0)) X+0, 

x Y ’ 
in the case of non-lattice distribution G and 

nh 
G(Cha))dt- 1 _e-yh , n-co, 

(1) 

c-4 

in the case of lattice distribution G with lattice step h. Note that if the distribution of 
the random variable tll(tl 3 0} belongs to Y(y) and if q(y) 6 1, then p = y. Clearly, 
Y = Y(0). 

Define z = min{n 3 1: S, > 0} and x = S,. Since a < 0, z and x are two defective 
random variables. Put p = P{M > O}. Let i be a random variable with distribution 

P{jEB} =P{XEBlz<m} =p-'P{XEB}. 

It is known (see Feller, 1971, Ch. XII; Borovkov, 1971, Section 22) that the distribu- 
tion tail of the supremum A4 may be calculated by the formula, x > 0, 

P{M 2 x} = (1 - p} f pkP{X”l + ‘.’ + ik > x}, 
k=l 

(3) 

where the random variables ii are the independent copies of i. 

2. The subexponential case 

Define the distribution E on [0, co) by 

g;(B) = J/(t)dt (s,,-, F(r)dt)-I, B c [o, co). 

Since Emax(0, cl) exists, E is well defined. 



D. KorshunovlStochastic Processes and their Applications 72 (1997) 97-103 99 

Theorem 1. (A) Zf a # - 00, then these two assertions are equivalent: 

(i) /I = 0 and th e d istribution i? is subexponential; 
1 m 

(ii) P(M > x} - - 
j 

F(t)dt as x -+ 00. 

(B) If fl = 0, the dtitibition P is subexponential, and a = -00, then 

(4) 

(C) Zf the distribution E has an unbounded support and (4) holds, then /I = 0 and 
a=--co. 

Note that if the distribution of the random variable <lZ{[I 2 0) belongs to 9, then 
P is also subexponential. The converse assertion is not true. Indeed, the tail of the 
distribution F with atoms 3/4k at points 2k, k = 1,2, . . . , is not locally power and 
therefore, by Theorem 2 (Chistyakov, 1964), F$Y. Nevertheless, the corresponding 
distribution fi is subexponential. 

The implication (i) = (ii) for so-called sub-power distributions is proved in Borov- 
kov (1971, Section 22); in the present form it is proved in [Veraverbeke (1977)]. The 
implication (ii) * (i) is proved in Embrechts and Veraverbeke (1982, Corollary 6.1) 
and Pakes (1975, Theorem 1) in the only case when the random variable t1 is the 
difference of two independent random variables <i = q - [, where [ has an exponen- 
tial distribution and 9 >/ 0. 

Proof. (ii) * (i): Since (see Chistyakov, 1964) 

and (see Borovkov, 1971, Section 22, Theorem 10.11) 

l-p O”_ 
P{x” > x} 2 ~ s F(t) dt, -up x 

(5) 

(3) implies the inequality 

P{M > x} 
lizs,p ( - l/a)!: F(t) dt ’ 

l-p. P{M B x} 
p ll~+s~p fyi 2 x> 

7 1 p“k + (1 - p)‘plim sup “${i cxT x} 
k#2 x-+00 , 

= 1 +(l -p)2p limsup P{x”1 + f2 a x> _ 2 

x-m P{f 3 x> . 

It follows from the last inequality and the equivalence (ii) that 

lim sup P{x”1 + x12 2 x> < 2 

x-m P{x”> x} ’ ’ 
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which implies 2~9. In particular (see Theorem 2, Chistyakov, 1964) the function 
P{f 3 x} is locally power. Hence, by Theorem lO.IV in Borovkov (1971, Section 22), 
E([x, 00)) - cP{f > x}. In view of this equivalence and the property in Y, it follows 
from Lemma 2 (Pakes, 1975) that FEY. 

(B) It follows from the implication (i) * (ii) and the standard truncation arguments. 
(C) It follows from (4) and the inequality M 2 [I that 

Hence, for each E > 0, there exists x0 such that 

s m 

F(x) < & F(x) dt 
x 

for every x > x0. Therefore, 

s 

m 
F(t)dt > - E, 

X 

which implies 

s m 

P(t)dt > cemEX 
X 

for some c > 0. Since E > 0 is arbitrary, j = 0. 
Assume that a # -co. Then (5) holds. Substituting inequality (5) into (3) we 

conclude that 

s m 

P{M 2 x} 2 c F(t) dt 
X 

for some c > 0. We arrive at a contradiction. Hence a = - co. The proof of Theorem 1 
is complete. 0 

3. The intermediate case 

Theorem 2. Zf q(p) < 1 and if the function e B”F(x) is locally power, then the following 
assertions are equivalent (in the lattice case x must be taken as a multiple of the lattice 
step): 

(i) the distribution of the random variable g,1{51 2 0} belongs to Y(p); 
(ii) as x + 00, 

P{M 2 x} - 
EePM 

1 - cp(P) 
F(x); (6) 

(iii) P{M 3 x} - G(x) as x + co for some c E (0, co). 
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In view of (1) and (2), the relation (6) implies 

P{M 2 x} - PEeDM m _ 
1 - cp(B) s F(t)dt asx+cc 

x 

in the case of non-lattice distribution of <i and 

(1 - eeph)EepM m 
P{M > nh} - 

1 - CPU9 s 
F(t)dt as II -+ co, 

nh 

in the case when l1 has lattice distribution with lattice step h. The right-hand side term 
of the last relations “continuously transfers” as /? JO to the right-hand side term of the 
relation (ii) in Theorem 1. 

The implication (i) * (ii) of Theorem 2 is proved in Borovkov (1976, Section 22) in 
the case when the function eaxF(x) is sub-power. In the present form the implication 
(i) * (ii) is formulated in Veraverbeke (1977, Theorem 2); it is proved in Bertoin and 
Doney (1996, Theorem 1). 

Proof. (iii) + (i): Define a random variable 5 with distribution F such that 5 and 
M are independent variables. It follows from the definition of the supremum that the 
random variables max{O, M + t} and M are equal in distribution. Hence, for x > 0 
and y > 0, 

m P{M ax} = s P(t>x-t}dP{M3t} 
0 

=s X-Y s co 

P(x - t)dP{M < t} - F(x - t)dP{M 3 t} 
0 X-Y 

=s x--Y 

F(x - t)dP{M < t} + P(y)P{M > x - y} 
0 

Y 

+ s P{M 2 x - t> dF(t) 
-cc 

= 11 + 12 + 13. (7) 

Since the function e@“F(x) is locally power, by condition (iii) the function 
eaxP{M b x} is also locally power and there exists a sequence y = y(x) + cc such 
that 

as x + co uniformly in 1 h 1 d y(x). Therefore, 

s Y 

I3 -P{M 2 x} e”‘dF(t) N P{M 2 x}Eebc, x + 00. 
-co 

(8) 

(9) 
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In view of condition (iii), convergence (8), and Chebyshev inequality, we obtain 

Z2 = F(y)P{M 3 x - y} - P{t 3 y}cP{t 3 x} epY 

= o(P{< > x}) = o(P(M > x)). 

Using condition (iii) and substituting (9) and (10) into (7) imply that 

(10) 

P{M>x}=1 x-YP{A4~~-t)@{hf<t) 
C s 0 

+ P(M > x> (Eeas + o(1)) (11) 
as x + co. Since 

s 

Go 

s 

X-Y 

P{M>x-t}dP{M<t}= P{M>x-t}dP{M<t} 
0 0 

+P{MBy)P{M>x-y) 

s 

Y 

+ P{M>x-t)dP{M<t}. 
--m 

almost the same as above calculations show us that 

s 

m X-Y 

P(M>x-tt)dP{M<t}= P{M3x-t}dP{M<t} 
0 s 0 

+ P{M 3 x> (EepM + o(l)) 

as x + co. It follows from relations (11) and (12) that 

(12) 

s 

co 
P{M 3 x - t} dP{M < t} = P{M 2 x} (EePM + c - cEePM + o(1)) 

0 

= (2 + o(l))P{M 3 x}. 

So, the distribution of the random variable M is in Y(p). Hence, by condition (iii) and 
Theorem 2.7 (Embrechts and Veraverbeke, 1982) the distribution of the random 
variable tll{[r > O> also belongs to Y’(p). Theorem 2 is proved. 0 

4. The Cram& case 

Theorem 3. If the random variable tI has a non-lattice distribution, 
statements are equivalent: 

(i) P > 0, cp(P) = 1, and cp’(B) < 00; 
(ii) P{M > x} - ((1 - p)//?a”)e-BX as x + co, where ii = E{XePX; t 

(iii) P{M 3 x} - ceCAX as x+cofor some c,I,E(O, co). 

then the following 

< 4; 
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If the random variable &jl has a lattice distribution with lattice step h, then the 
statements (i)-(iii) remain equivalent if x is taken as a multiple of h and the constant 
(1 - ~)//?a” in (ii) is replaced by h(l - p)/(l - eeBh)a”. 

The implication (i) * (ii) is known as Cram&r’s estimate and may be found in 
Cramer (1955) and Feller (1971, Ch. XII, Section 61. The result similar to the implication 
(iii) * (i) is proved in Stadje (1995) in the only case of lattice distribution F. 

Proof. (iii) * (i): Since (I < M and i > 0, fl > 0. 

Assume that cp(B) < 1. Then, for every E > 0, cp(/? + E) = cc and Ee’P+E)M 2 
cp(fl + E) = co. Therefore, by the equivalence (iii), we have 1 Z A. In particular, 
EefiM = co. On the other hand, the hypothesis cp(b) < 1 and the inequality 
esM < C,“=Oe gsm imply that EeSM 9 (1 - cp(/?))-’ < co. We arrive at a contradiction. 
Hence, fi > 0 and cp(/3) = 1. 

Assume that cp’(p) = co. Then (see Feller, 1978, Ch. XII) P{ M 2 x} = o(e -Bx). Since 
(iii), /? < y and Ee (B+E)M < co for some E > 0. The condition cp’(/?) = cg implies as well 
that cp(b + E) =co. Thus, Ee v+‘)~ = co and we arrive at a contradiction. So, 
cp’(/3) < co and the proof is complete. 0 
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