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A Markov polling system with infinitely many stations is studied. The topic is the er-
godicity of the infinite-dimensional process of queue lengths. For the infinite-dimensional
process, the usual type of ergodicity cannot prevail in genera and we introduce a mod-
ified concept of ergodicity, namely, weak ergodicity. It means the convergence of finite-
dimensiona distributions of the process. We give necessary and sufficient conditions for
weak ergodicity. Also, the“usua” ergodicity of the system is studied, aswell as convergence
of functionals which are continuous in some norm.
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1. Introduction and results

In this paper we study a polling system with infinitely many stations, numbered
1,2,.... At dation ¢ groups of customers arrive from outside the system at the
instants of a Poisson process with rate u;, ¢ = 1,2,.... The size of a group is drawn
from a station specific distribution; it is greater than or equal to 1 and such that
E[&(D)] = A < oo, where &(t) is the number of customers arriving at station 7 in
[0, t], and where \; is a given parameter. At each station the customers wait until they
have received service. Thereafter they depart from the system.

A single server is polling the stations in Markovian fashion: given the server has
been polling station 7 the next one to be polled is station j, with probability p;;. Let S =
S(n), n =0,1,..., be the corresponding Markov chain, i.e., let S(n) dencte the nth
station polled by the server. We assume that the chain .S isirreducible and ergodic with
stationary distribution {7;}. Given a switch from station 4 to j, the server will spend
afinite time to walk from i to j, distributed as a random variable W;; with arbitrary
distribution on the positive real numbers and with positive finite expectation w;;.
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When the server arrives at station 4 for the mth time there will be a number
of consecutive services, distributed as min(z;, D;(m)), where x; is the number of
customers present at station ¢ at the moment of server’s arrival and the D;(m) are
independent integer valued random variables distributed as D;, ED;=d; € (0, c0).
The service times in station ¢ are drawn independently from an arbitrary distribution
on the non-negative real numbers with finite mean b;. The corresponding random
variable shall be denoted by B,;.

Arrival streams, routing, walking, and services are mutualy independent. Let
X;(n), n = 0,1,..., denote the number of customers present at station i at the
moment the server finishes the walk from the (n — 1)st to the nth station polled.
If the system encompasses only finitely many sations, say N, then the process
(S; X) ={(S(n); X1(n),..., Xn(n))} isan irreducible Markov chain, for which nec-
essary and sufficient conditions for ergodicity were given in [2,4] (for anon-Markovian
case, see [5]). The polling models with cyclic routing were studied in [7]. The topic
of the present paper is aso ergodicity.

Put X = (Z7)>~, where Z+ = {0,1,2,...}. For every vector x € X let
x; be its ith coordinate and let 0 = (0,0,...). The process ¥ = (5;X) =
{(S(n); X1(n), Xo(n),...)} isvaued in Y =N x X, N={1,2,...}.

Leti € N, B C (Z1)’, and let

CBE{:BEX: (:cl,...,:ci)eB} (1.2

be the finite-dimensional cylinder with base B. Denote by o(X") the o-agebra gener-
ated by the finite-dimensional cylinders. The process (S; X) is defined on the measur-
able state space (), 0())), where o()) is generated by o(N) x o(X), o(N) denoting
the set of all subsets of N.

For stations i, j, vector = and cylinder Cg, B C (Z1)!, | € N, set

P((i;x),(j; CB))
> PSSO =4 Xa@®) =w ..., Xi() =y | SO =i, X(0) ==z},

where the conditional probabilities in the sum are defined in the obvious way.

After extending the function P((i; «),-) to a probability measure on (), o()))
P(-,-) is a transition probability, i.e., for every C € o()) the function P(-,C) is
measurable in the first argument. If C is a cylinder, then this is clear. Consider the
family of measurable sets C' for which P(-, () is a measurable function in the first
argument. Since it contains the cylinders and is a o-algebra, it coincides with o()).
Hence, P(-,-) is indeed a transition probability and (S(n); X(n)) is a Markov chain
with the measurable state space (), o())).

Let X* ={x e X: ), x; <oc}, V' =NxX* and let o()*) denote the power
set of Y*. This is identica with the restriction of o()) to Y*. If X(0) € X* and
> A < oo, then Y is an irreducible Markov chain with the countable state space )*,
and we can study the question of its ergodicity in the usua meaning of this notion.
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This will be one thing to be done below. In general, however, Y is not irreducible, as
there are clearly states of Y which do not communicate.
For instance:

@ If Y p2q |k — yj,| = oo, then one of the vectors, say «, is such that xj, >y, + 1
for infinitely many k. Therefore, the state (¢; y) cannot be reached from the state
(j; =) in finitely many steps.

(b) If the summary input stream is finite, i.e, >">°; \; < oo, then the equivalence re-
lation of communicability between states generates a continuum number of classes
of communicating states. If (i; x) € ), then the class containing the element (i; )
consists of al (j;y) € Y such that the vectors « and y have only a finite number
of different coordinates, i.e.,

oo
Z |z; — y;] < oo,
i=1

because only these states can be reached from (i; x) in finitely many steps.

Thus the usua type of ergodicity cannot prevail in general. Therefore, we intro-
duce a modified concept of ergodicity, which turns out to be useful.

We say that the chain (S(n); X (n)) isweakly ergodic if there exists adistribution
on the measurable space (), o()’)) such that, for dl 4, j, al x € X*, and al finite-
dimensional cylinders Cp

P{S(n) =3, X(n) € Cp | S(0) =i, X(0)=x}—n(j;Cp)

holds as n — oco. Note that we restrict this requirement to starting points in *. Call
« the limiting distribution associated with weak ergodicity.

Asusual, we say that the measure # = {«(7; -)} onthe space (), o()))) isinvariant
if for every i € N and C € o(X)

7:0) =Y [ i d)P(Gi ), (5)).
=177
Note that this is equivalent to the following assertion. For every i € N and every
finite-dimensional cylinder Cg, B € (Z1),
7(i; Cp)
:Z Z ﬂ(j;{:c: Ty =21, ..., T = Xy, :cj:mj})

j=lwz,...,x;,x;=0
x P{S(1) =i, X(1) € Cp | S0) =4, X1(0)==1, ..., Xi(0) =z, X;(0) ==, }.
The latter probability here is well defined since the conditional probability
P{S(l) =1, X() eCp|S0O) =4 X0 = :c}

depends only on x4, ..., x;, and x;.
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If the Markov chain (S; X) is weakly ergodic, then the associated distribution 7
is invariant. Indeed, for dl n, j, and B € (Z1)!

P{S(n+1)=1i, X(n+1) € Cp}

:Z Z P{S(n):j, Xi(n) =z, ..., Xi(n) = ay, Xj(n):mj}

j=1x,...,x,x;=0

X P{S(l)Zi, X(l) S CB ’ S(O)Zj, Xl(O)Z.%'l, ey Xl(O):ml, Xj(O)ij}
= Zaj(n).
j=1
Since a;(n) < P{S(n) = j} — m; asn — oo, by dominated convergence
lim > " aj(n) =>" lim a;(n).
J J

Therefore, by weak ergodicity, we finaly get

(i, Cp)
= JLrgoP{S(nqL D=4, X(n+1e CB}

=> Y nILrgOP{S(n) =j, Xa(n) = 21, ..., Xi(n) = 2, X;(n) = z;}

j=1lzi,...,x;,2;=0

x P{S() =i, X() e Cp | SO) =4, X1(Q)==1, ..., X)(0) =21, X;(0)=x;}

:Z Z w(j;{w: T1=21, ..., T =T, Tj :Ij})

j=1lz1,...,2,2;=0
x P{S(1)=i; X(1) € Cp | S©O)=7; X1(0O) =21, ..., X)(0) =1, X;(0) =x;}.

So we can cal a limit distribution associated with weak ergodicity also an invariant
distribution associated with weak ergodicity, or simply associated invariant distribu-
tion.

Weak ergodicity does not exclude the convergence

ZXZ(n) — 00 asn — 0o, (1.2
i=1

given Y2, X;(0) < co. Equivalently, weak ergodicity does not exclude the conver-
gence of the number of busy stations at step n to infinity as n — oc.

Note that the invariant distribution associated with weak ergodicity has positive
mass on Y* if and only if Y is ergodic on Y* in the usual sense. Note aso that,
in the presence of wesk ergodicity, invariant distributions may exist besides the one
associated with the weak ergodicity.
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The following two theorems give necessary and sufficient conditions for weak
ergodicity of the Markov chain (S; X); as before, {;} stand for the invariant proba-
bilities of S.

Theorem 1 (Necessity). If the Markov chain (.S; X) admits an invariant distribution 7
(this is true if (S; X) is weakly ergodic) then

w= Zm Zpl-jwij < 00 (1.3

{ J

and, for al 7,

Aiw < (1 — p)mid;, (1.4
where p = > . A\;b;. If, in addition,

b= mdib; < oo, (1.5)
then

(i {x: x; = 2})E{ minz, D;)} = )\i%p, (1.6)
z=0

for al <.

Theorem 2 (Sufficiency). Let conditions (1.3) and (1.4) be fulfilled. Then the Markov
chain (S; X) is weakly ergodic. If, in addition, (1.5) holds, then the chain has no
invariant distribution other than the one associated with the weak ergodicity.

Theorems 1 and 2 imply the following:

Corollary 1. The following assertions are equivalent:
(i) The Markov chain (S; X) is weakly ergodic.
(i) The Markov chain (S; X) admits an invariant measure.

(ili) The Markov chain (S; X) satisfies conditions (1.3) and (1.4).

In the case of finitely many stations condition (1.4) was shown to be also sufficient
for ergodicity (see [2,4]). In the present case of infinitely many stations (1.4) implies
weak ergodicity, only, and this may ill alow (1.2).

To obtain the “usual” ergodicity of the system we have to introduce an additional
condition which excludes (1.2). The following theorem points out sufficient and nec-
essary conditions for the invariant measure to be concentrated on V* and, hence, gives
conditions for ergodicity of the chain (S(n); X (n)) in the space Y*.
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Let
¢ =1w1u=P{SQ) #1 ..., S(n—1) #1, S(n) =i for somen | S(0) = 1}.

Theorem 3.
(8 Sufficiency: Let X (0) € X* as. If conditions (1.3)«1.5) are fulfilled, and if
Ai
Z;<m, (1.7)

then the Markov chain (S; X) is ergodic in N x X™*.

(b) Necessity: If the Markov chain (S; X) is ergodic in N x X*, then (1.3) and (1.4)
hold and

%<m. (1.8)

In particular, >, p;/m < oo.

Remark. It is well known that the expected number of visits to 7 between two visits
to 1 equals 7; /71, and hence we have the inequality ¢; < m;/m1. Thisimplies the very
last statement in part (b) of the last theorem. In lemma 6 we prove that, under broad
conditions, ¢; > ém; for some 6 > 0 and al 4. If this holds, then (1.7) is equivalent to
the convergence of the series ). \; /m;.

Some estimates for the probability of the ith queue to be non-empty can be
given when the polling system is in stationary regime. Let the chain (S; X) be weakly
ergodic with the corresponding invariant measure 7, and let (S(o0); X (o0)) be arandom
element with distribution 7. If @ = sup; ;(w;; + bid;) < oo and Er? < oo, where 7 is
the number of steps required to reach 1 given start in 1, for the chain S, then for each
station ¢ the inequality

P{X;(c0) > 1} < = wETAN, (1.9)
qi

m
holds (for the proof see section 4). Note that the above results can be useful for an
analysis of systems with a finite but large number of stations. For instance, we can
construct bounds for the number of busy stations in large time.

Now return to weak ergodicity under the conditions of theorem 2. We can con-
sider aricher class of functionals of Y for which weak convergence holds. Along with
the finite-dimensional functionals, we may consider functionals which are continuous
in some norm. Let o = (a1, az, .. .) be a sequence of positive numbers. Consider the
norm

oo
zlo = ailai,
=1
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and let X, be the collection of al x such that |z|, < co. Put
‘(j;x”a = ‘]’ + ’a:‘a-

Theorem 4. Let S(0) have arbitrary distribution, and let X (0) be distributed in X*.
Let

Er?<oo and sup(EW} +EBED?) < oc. (1.10)
ij
Let condition (1.4) be fulfilled and

1

Iimsupﬁ <
i—oo (i w+b

Put o; = E(&(1) — \;)? = D&;(1). If for some sequence 3; > 0, Y, 3; < o0,
YT oo, (1.11)

then Y is weakly ergodic and the distributions of f(Y'(n)) converge weakly for any
bounded functiona f:NxX, — R which is continuous in the norm | - |,.

Remarks.

(i) Condition (1.10) impliesthat sup; ;(wi;+bid;) < co. In particular, conditions (1.3)
and (1.5) are fulfilled.

(i) If the input stream &;(¢) is simple, i.e., if u; = A;, then o; = \;.

Corallary 2. Let v > 0. If " 0;/i7q; < oo then {Y'(n)} converges in distribution in
the space X, with o; = 1/i7+t1+¢, 2 > 0.

Corollary 3. If supo;/q; < oo then the sequence { Y (n)} is convergent in distribution
in the space X, with a; = 1/i%*¢, ¢ > 0.

If theinput stream issimple, if sup \;/q; < oo, and if there exist some exponential
moments for the random variables 7, W;;, B;, D;, then it can be shown that {Y (n)}
converges in distribution in the space X,, with o;; = 1/iIn**¢ i, £ > 0.

Condition (1.7) in theorem 3 is in fact the condition for the family of distribu-
space I1). This condition implies the convergence in total variation and, therefore, the
convergence in distribution of any bounded functional of Y (n).

Some analog of theorem 3 for the non-Markovian polling system with smple
input is proved in [6]. An infinite number of nodes approach to the ergodicity study
of queueing networks is known in the literature. For example, ergodicity results for
some queueing networks with random routing and with a very large or infinite number
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of nodes may be found in [1]. The uniqueness issues for invariant measure of Jackson
networks on denumerable graphs were studied in [8].

2. Necessary conditions for weak ergodicity

In the present section we prove theorem 1. For two polling systems (S; X) and
(S; X) with identical walking schemes (i.e, S =¢ S), we say that X(n) >4 X(n),
iff, for every station i, X (n) is greater or equal in distribution than/to X (n), given
S(n) = i. We need the following two monotonicity properties of our polling systems.

Lemma 1. Let (S; X) be apolling system such that S(0) = S(0), pi; = pij» Wij >
Wij, )\i > )\Z', Bi >4 Bi1 and Di =g Di for every 7 and j If X(O) >g X(O) then
X(n) 2g X(n) for every n.

Proof is straightforward from the definition of the polling systems.

Lemma 2. Let S(0) have distribution {7;}, and let X (0) = 0. Then the polling system
(S(n); X(n)) isincreasing in distribution, i.e., for every moment of time n, there exist
copies (S’(n); X'(n)) and (S’(n + 1); X'(n + 1)) of the random elements (S(n); X (n))
and (S(n + 1); X(n + 1)), respectively, such that S'(n) = S'(n + 1) and X[(n) <
X!(n+1) as. for al i.

Proof. The proof follows by induction with respect to n. Indeed, for n = 0, the
assertion is true, because S(0) and S(1) are equal in distribution and X;(1) > 0 =
X;(0).

In view of lemma 1 the random element X (2) is greater or equal in distribution
than/to X (1), because X (1) isgreater or equal in distribution than/to X (0) and because
S(1) =4 S(0). The transition n — n + 1 can be carried out in the same way. The
lemmais proved. a

We need also the following equilibrium-type inequality and identity for a Markov
chain in stationary regime.

Lemma 3 (see [3,9]). Let Y(n) be a Markov chain valued in a measurable space
and admitting a stationary distribution 7. Let G(y) be a non-negative measurable
function and put g(y) = E{G(Y' (1)) — G(y) | Y(0) = y}. If

témey@Dﬂ®%<m,
then

/g@nmw>o.
%
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In addition, if there exists ¢ < oo such that for every y

E{|G(Y() —Gw)| | Y(0) =y} < e(1+ |9)]),
then

/ 9y)r(dy) = O.
%

Proof of theorem 1. Let the random element (S(0); X (0)) have distribution 7. Then
for every n the random eement (S(n); X(n)) dso has digtribution =. Let N > 0
and let us consider an auxiliary polling system (S(n); X™)(n)) which differs from the
origina one only in its initial positions and in its walking and service times; we put

Wi =minwy, N), BN =pB; fori<N, BM=0 fori>N.

(N).

Denote w™ =7, m; 3= pijwy;; by definition,

w™ < N. (2.1)

Let X(M)(0) = 0, and let S(0) have stationary distribution {m;}. Since X (0) = 0 <
X(0), by lemma 1 we have that for every n

XM(n) <¢ X(n). (2.2)

It follows from lemma 2 that the random element (S(n); XV)(n)) has a weak limit
asn — oo. Inview of (2.2) and stationarity of X (n) each coordinate of this weak
limit is finite with probability 1. Let 7™ be an invariant distribution for the system
(S; X)) and let (S(00); XN (0)) be a random element with distribution 7("). It
follows from lemma 1 that

XM (00) <¢ XNV (). (2.3)

For (S; X™) let o™ (G, j; ) denote the expected increment in the number of
customers at station & between two consecutive arrivals of the server at a station, given
the first one is station 4, the second station j, and given the customer numbers at all
stations at the start of the first visit are given by «. Then

oM, i) = (W + dia)b™) Ny, — dia)oire,

where d;(z) = Emin(z, D;), 8") = b; for i < N, 8™ = 0for i > N, 6; = 1, and
b, = 0fori # k.
Put

LG z)={xM@) - XM | S(0) =4, XM(0) = 2}
= sz'jagv)(i,j; )
J

=" il + di@ )b N — di(@:)oin
J
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We have
E{|xM@) - xMO)] | S©0) =i, XM(0) = =}
< Zpijw%v))\k + dibO Ny, + didi,
J

and in view of (2.1)

Z /X 7™ (i; dz) E{| XM (1) — XM O] | S©) =i, XM(0) = =}

N
< )\kw(N) + A Zﬂzdzbz + mpdp < 00,
i=1

where
/X plis d)g(@s, @) = Y p(ii{a: @ = 2})g(x, )
=0

for any measure 1 and function g. So, the increments of the chain (S; X)) satisfy
the conditions of lemma 3, and hence, for every k € N,

> / 7M(G; dz) LNV (i; ) = 0.
i X
This equality implies the equation
N 00
<w<N> +3 b / MG, d:c)d@-(wi)> A= / 7N (i; dar)dy ()6
i=1 7 i=17X

_ / ANk, Ay ().
X

Letting
& = [ 29wy (e)
X
it follows that
N
i=1

Multiplying with b;, and summing up yields

N N
o) (w(m £y Cgmbi) =5 M,
i=1 k=1
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where

N
pN) = Z Akbi,
k=1

and this implies p™) < 1 (recall that w™) > 0 for N large enough). Hence,

N
E:&Wb:pme)
2T
i=1

From the last equality and (2.4) we have for every k

(N),,(N)
N prw
)\kw(N) = ng ) — )\kil — p(N) .
So, Mw™ = M (1 — o), or, equivalently,
Apw®™)
M(k; da)d () = 3 (2.5)
T tda T . .
Letting N — oo we obtain from (2.3) that
/ 7O )l () 1 / ks dz)dy () < mdy < 00, (26)
X X

where 7(>) is aweak limit for 7). Hence, there exists a finite limit for the right-hand
sidein (2.5):
Apw®) | ALW
1-p™) " 1—p
In particular, w < oo and (1.3) are proved. Using (2.6) and (2.7) in (2.5) implies the
equality

< 00. 2.7)

/ 7Ok d) () = kO
X 1-p

Since dj(z) < dy, di(0) = 0, and 7()(k; {z: x,=0}) > 0; the integral here is less

than md;,. Therefore, the last equality implies the assertion (1.4).
Let now (1.5) be fulfilled. In view of (1.3) and (1.5) we have

Z/Xw(z’;d:c)E{\Xk(l)Xk(Oﬂ | S(0) =i, X(0) =z}

< Apw+mpdp+Ag Zﬂidibi < 00,

and we can apply lemma 3 to the chain (S, X) with stationary distribution 7. As above,
we obtain for this chain the equality \;w = ¢;(1 — p), where ¢; = [, 7(i; d)d; (),
and the proof of theorem 1 is complete. O
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3.  Sufficient conditions for weak ergodicity

This section is devoted to the proof of theorem 2. First we construct a minorant
for the process X (n). Let (S; X®) be an auxiliary polling system, which differs from
(S; X) only in its service times at the stations k£ + 1,k + 2,. . .; we assume that

B®M =B, fori<k and B® =0 fori> k.

The distribution of the process (S(n); X (n), ..., XP(n)) is the same as of
the process (S(n); X1(n),..., Xx(n)), given X;,1(0) = X200 = --- = 0 and
Me+1(0) = Mg 2(0) = --- = 0. The finite-dimensional process (S; X\,..., Xy is
a Markov chain. It follows from conditions (1.3), (1.4) and from the results in [2,4]
that the chain (S; X)) is ergodic in J*. Let () be the invariant distribution for the
chain (S; X®). In view of theorem 1 the measure (%) satisfies the equality

w

Zw(k) (i;{z: z; = 2})E{min(z, D;)} = 1,0 (3.1

where

k
PP =>"Nb;
j=1

Let (S(00); X*¥)(c0)) be the random element with distribution 7). By virtue of
lemma 1 the random elements (S(o0); X*)(c0)), k € N, are increasing in distribution.
Therefore, () has a weak limit 7 in the enlarged space Y = N x X, where X =
(ZTU{oo})>®. Let (S(oc0); X(00)) be arandom element in Y with distribution 7.

The measure r isinvariant for the chain (S; X) in ). If S(0) has distribution { ;}
and X (0) = 0 then the distribution of the random element (S(n); X (n)) converges to
in the space ).

Fix any ¢ € N. Taking the limit in (3.1) with respect to k, k — oo, we obtain
the equdlity

. . . w
;}E(z,{m. x; = 2} )E{min(z, D;)} + z(i;{x: x; = o0})d; Nig— > (3.2)
Assume that P{X, = oo} = 1. Then n(j;{x: =, = oc}) = m; and it follows
from (3.2) that m;d; = \;w/(1 — p), which is in contradiction to (1.4). So,

P{X,;, <o} >0. (3.3

Let 1 be the conditional distribution of the random element (S(oc0); X (o0)), given
X ;(o<) < co. The measure  in the enlarged space ) is well defined in view of (3.3).
Since the sets {x: x; = oo} and {x: x; < oo} do not communicate, the measure 1
is invariant (in the space ) for the chain (S; X).
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Let S’(0) have distribution {x;}, and let X'(0) = 0. If the random element
(5(0); X(0)) has distribution 1 then for every n the random dement (S(n); X (n)) also
has distribution x. Since X’(0) <¢ X(0), by lemma 1 X’(n) <g¢ X(n) for every n.
Letting n — oo, we obtain the inequality

P{X, = oc} = lim lim P{X!(n) >y}
Y—00 N—00

gylim lim P{X;(n) >y} = u(N;{z: x; = oc}) = 0.

— 00 N—00

We have verified that P{ X, < oo} = 1 for every i € N and, therefore, the random
element (S(o0); X (00)) is valued in ). So, the measure 7 is invariant for the chain
(S; X) and the first part of theorem 2 is proved.

Now let us assume that the system (S; X) satisfies, in addition, condition (1.5)
and has one more invariant measure, say 7. Denote by (S(c0); X (c0)) the random
element with distribution 7. We are going to prove that

T=T. (3.4

Let S(0) have digtribution {;}, and let X(0) = 0. If the random element
(5(0); X (0)) has distribution 7, then for every n the random eement (S(n); X(n))
also has distribution 7. Since X (0) < X (0), by lemma 1l X (n) <g X(n) for every n.
Letting n — oo, we obtain the inequality

X (00) <a X(00). (35

Let both (S(n); X(n)) and (S(n); X(n)) be in stationary regime with distrib-
utions = and T, respectively. In view of (3.5) equality (3.4) is equivaent to the
following system of equdlities:

P{X,0) >z} =P{X,(0) >z}, i€eN, zeZ". (3.6)

Let us assume that, to the contrary, (3.6) is not true. Then there exist 7/, ¢, and x such
that

P{S(0) =4; X,(0) >z} <P{S5(0) =7; X;(0) > z}. (3.7)

We assume that = is the minima number with the property that there exist i/
and i for which (3.7) holds.
Let us prove now that (3.7) is fulfilled with i/ = ¢, i.e., that

P{S(0) = i; X;(0) >z} <P{S(0) = i; X,(0) > z}. (3.9)

Indeed, if i’ # 4, let ng be the minimal n > 1 such that P{S(n) =i | S(0) =i’} > 0.
Put

fGy,2)=P{S(no) = i; Xi(no) >z | S(0) = j; X;(0) =y, Xi(0) = z}.
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By the stationarity of (S(n); X(n))
p=P{S(no)=i; X;(no)>x}=> P{SO)=j; X;0=y, X,(0)=2}f(,y,2).
Iz
Because the function f(j, y, 2) is nondecreasing in y and z, in view of X ;(0) < X,(0)
and X ,(0) < X;(0) as. we have
p< Y P{S(0)=j; X;(0) =y, Xi(0) =2} f(j,y,2)
JF Yz
+Y P{S(0) =1 Xy(0) =y, X;(0) =z} f(,y,2).
Y,z

Since P{S(n) =i | S(0) = ¢/} = O for every n < ng, the function f(¢',y, z) is strictly
increasing in z € [0, x]. Therefore, by (3.7),

Y P{S(0) =i X;(0) =y, X;(0) =2} f(i"y.2)

Y.z

<Y P{50) =i; Xa(0) =y, Xi(0) =z} (i, y,2).
Y,z

Hence,

p< > P{S(0) = j; X;(0) =y, Xi0) =2}f(.y.2)
Jhz
=P{S(no) = i; Xi(nog) >z}
=P{S(0) =4; X;(0) > z}.
So (3.8) is proved.
Now we prove that P{ D; > x} > 0. If, to the contrary, D; < x — 1 as,, then it
follows from (3.8) that for every j such that p;; > 0 we have
P{S(1) =j; X;(1) >y} <P{S(D) =j; Xi1) >y}
for some y < x. This contradicts the property for 2 to be the minimal number for
which (3.7) is fulfilled. So, P{D; > z} > 0 and, therefore, (3.8) implies
E{min(X ;(0), D;); S(0) = i} < E{min( X,(0), D;); S(0) = i}.
Since the measures = and 7 are invariant, by virtue of equation (1.6)

E{min(X,(0), D;); S(0) = i} :/Xg(i;dx)E{min(mi,Di)} :Ail%

and
_w

E{min(X:(0), D:); S(0) = i} :/Xﬁ(z’;d:c)E{min(xi,Di)} - N
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We arrive a a contradiction to the previous inequality. The proof of theorem 2 is
complete. O

4.  Sufficient conditions for ergodicity

In this section we prove the sufficiency part (a) of theorem 3. We begin with the
following lemma.

Lemma 4. Let the polling system (S; X)) be weakly ergodic with invariant measure m,
and let (S(c0); X (o)) be a random element with distribution 7. Then, for every I
and sequence zg, 141, - -,

P{X;(c0) > ; for some i > I} < limsupP{X;(n) > x; for somei > I}.

Proof. We have that
P{Xi(c0) > z; for some i > I} = I|m P{X (00) = ; for some i € [, J]}.

Hence, the assertion follows from the convergence
P{X;(n) > z; for some i € [I,J]} — P{X;(c0) > z; for some i € [1, J]}
asn — oo. Il

We need a further lemma. Let 7(0) = min{n > 0: S(n) =1} and T(l + 1) =
min{n > T(): S(n) = 1}, for [ > 0. We have that for every [ the difference
T(+1) — T(]) is equa in distribution to 7. First we prove the following lemma:
Lemma 5. For any initial distribution of (S(0); X(0)), and, for every station i,
limsup P{X, (T(0) > 1) < (L E0A

l—o00 T14;

Proof. We need to consider the case where
(w + )N\ < mq;. (4.2

Let us define an auxiliary polling system (S; X) with the following characteristics:
(1) X(0) = X(0);
2 ij Wij + Bp(D) + - - - + Br(Dy,) for al k, 5,
(3) A\ = M, By, =0, Dy, = Dy, for al k.
By definition the process X can be constructed in such a way that for every n

X;(n) < X;(n) as. (4.2

Put G;(I) = X4(T(1)). The process G;(I) is a Markov chain with the following
increments:
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a;i(0) =E{G;(1) — G,(0) | G;(0) = 0} = \En,
ai(@)=E{Gi(1)) - G;(0) | Gi(0) =z} < NEn—¢q;, 2=1,2,...,
where 7 is the period of time (in real time) between two consecutive arrivals of the

server a the first station in system (S; X). By a standard result En = (w + b)/71 and,
hence,

4;(0) = @ (4.3)
@) <N o (4.4)
™

In view of (4.4) and (4.1) a;(z) < —6 < Ofor x > 1. So, by [10, theorem 1] the
Markov chain G;(l) is ergodic with invariant probabilities denoted by {m;(x)} 52,
follows from lemma 3 that

0< Z mi(x)ai(z).

=0
Substituting (4.3) and (4.4) we obtain that

(w + b))\ Z ().

Hence,
7Tz‘([1, OO)) < M
T19;
The last inequaity and (4.2) imply the assertion of the lemma. O

Theorem 2 implies that the Markov chain (S(n); X(n)) is weakly ergodic with
unique invariant measure 7. In particular, for every ¢ there exists a limit of the
probability P{S(n) =1, X;(n) > 1} asn — oo.

Lemma 6. If S(0) has distribution {7;} and X (0) = 0, then

PIS() = 1, Xi(n) > 1} < DA
T1gi
for dl 7 and n.
Proof. Since T'(k) > k, it follows that
k
Jim P{S(k) =1, X;(k) > Z P{S(m) =1, Xi(m) > 1}

<limsup = ZP{X (T() > 1}.

k—o0 l 0
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In view of lemma 2, for each n,
P{S(n) =1, X;(n) > 1} < klim P{S(k) =1, X;k) > 1}.
Now lemma 5 finishes the proof. O

Let S(0) have distribution {m;}, and let X(0) = 0. Let I € N. Let us now
estimate the probability that one of the queues ¢, ¢ > I, is non-empty. For any my
and my, m1 < mg, denote by Bj[m1, m2] the event that during the (real-) time period
between the server’s mth and moth arrival times to a station at |east one new customer
arrives at one of the stations ¢ > I. By the formula of total probability we get for
any n

P{Xi(n) > 1for somei > I}

S Z Z(P{T(Z) =n—m, T(I4+1) > n, X;(n—m) > 1 for somei > I}
m=0 [=0

+ P{T(l) =n—m, T(+1) > n, Bl[nfm,n]}) + P{T(O) > n}
= zn: i(P{T(Z) =n—m, X;(n—m) > 1 for some i>I}

m=0 [=0

x P{T(1+1)-T() > m}

+ P{T(l) =n-—m, T(+1) > n, Bl[nfm,n]}) + P{T(O) > n}

— Z P{S(h—m) =1, X;(n—m) > 1 for somei > I}P{r > m}
m=0

+ Xn: i P{T(l) = n—m, T(I+1) > n, Bifln—m,n]} + P{T(0) > n}

m=0 [=0
= Ri(I,n) + Ro(I,n) + P{T(0) > n}. 4.5)
Since
> 1
ZP{T>m} =Er=— < o0,
m=0 m
by lemma 6 we obtain that, for all I and n,
b)\; b i
Rl(f,n)gzu&: “’*; > o= (4.6)
i>1 145 T i>1 qi

The term R»(I,n) can be estimated in the following way:

n

Ro(I,m)=> P{S(n—m)=1, S(n—m+1)#1, ..., S(n)#1, Biln—m,n]}

m=0
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<§:P{S(n—m+l)7él, ..., S(nh)#1, Bj[n—m,n]\S(n—m):l}

m=0
=> P{S@) #1, ..., S(m)# 1, B/0,m] | S(0) =1}. 4.7)
m=0

Since
P{S(l) #1, ..., S(m) # 1, B;[0,m]|S(0) = 1} < P{r>m},

and in view of P{B;[0,m] | S(0) = 1} — 0 as I — oo for every m, by dominated
convergence we obtain

sup Ro(I,n) — 0 asl — co. (4.8)

Subsgtituting estimate (4.6) into (4.5), we obtain
w + b

P{X;(n) > 1 for somei > I} < Z o +supR2(I n) + P{T(0) > n}.

l i1 v
Hence,
. b
limsup P{X;(n) > 1 for somei > I} < w

n— o0 7Tl

> 2 b apRlin). (49

i>1 1

Let (S(c0), X(c0)) be a random element with distribution 7. It follows from
lemma 4 and (4.9) that, for al I,

P{Xi(cc) > 1 for somei > I} < w+b

Z +supR2(I n).

l i1
The last inequality, condition (1.7), and convergence (4.8) imply that
P{X;(cc) > 1forsomei >} -0 as] — oo.

Therefore, 7 is concentrated on Y*, i.e., the Markov chain (S(n), X(n)) is ergodic
in Y*. The proof of theorem 3 part (@) is complete. O

Now proceed to the proof of estimate (1.9). It follows from (4.9) that it is suf-
ficient to prove that R(i,n) < w Er2)\;. Indeed, the mean number of new customers
until the mth arrival time of the server at a station is less than or equa to mw;.
Therefore, by estimate (4.7) and Chebyshev's inequality we have

Ro(I,n) < En: P{S() #1, ..., S(m) # 1| S(©0) = 1y mwA;

n
=wX; Y _ P{r >m}m < WAET. O

m=0
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5. Necessary conditions for ergodicity

In the present section we prove the necessity part (b) of theorem 3.
Suppose that the chain (S; X) is ergodic in N x X*. Then the state (1;0) is
positive recurrent, i.e., if

F=min{n: S() =1, X(n) =0] S(0) = 1, X(0) =0}
then
ET < 0. (5.1)
Put
@) =min{n >1: S(n) =1, S(n) =i for somen’ < n: S(0) = 1}.

It follows from the definition of 7(i) that
o o 1

Er@) =Y P{r()>s}>> (1-¢q) = o 1 (5.2)

s=1 s=1 v

Ergodicity implies that > \; < oo. Since p; < A,
> i < oo (5.3)
i=1

Without loss of generality, we may assume that ppw1> > 0. Hence, in view of (5.3)
we have
ri=P{S(1) =2, X;(1) > 1, X,(1) =0 for each k # i | S(0) = 1, X(0) =0}
=p2P{Xi(1) > 1| S(0) =1, S(2) =2, X(0) =0}
< [TP{Xx(1) =0] S(0) =1, S(1) =2, X(0) =0}
ki
=p12(1 —E eﬂuinz) H E g Wiz > S
ki

for some 6 > 0 and every i € N. Since

E7 > rEr(i),

7

we have

E7 =6 wEr(). (5.4)

Theorem 3 part (b) follows now from (5.1), (5.2), and (5.4). O
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6. Some estimates for the taboo probability ¢;

In the following lemma we expose a condition on the chain S under which there
exists § > 0 such that for every station ¢ the inequality ¢; > ém; holds. Under this
inequality condition (1.7) is equivaent to the convergence of the series > \; /.

Let ¢; be arandom variable with values in Z distributed according to

P{(i =k} = piitr, k€L

Lemma 7. Suppose that, for some random variable ¢ with negative mean value and
for some state i,

G <«( (6.2)

for every i > i,. Then there exists § > 0 such that ¢; > ém; for al i.

Proof. Let 1p;; be the taboo probability of the transition from 4 to ¢ avoiding the first
station, and let v; denote the number of visits to ¢ between two consecutive visits to 1.
Then

o0 o0
- 1P
Evi=Y Plv;>s} =) 1pulwpn)’ ' = ———.
s=1 s=1 1- 1Pii

On the other hand,

hence,

ug 1P 4
=t = = ) 6.2
m l—apy  1—a1pi 2
Let {((n),n = 1,2,..., denote i.i.d. copies of (. By the Strong Law of Large
Numbers and by the negativity of E( there exists ¢ > 0 such that
p=P{C(D)+ -+ {(n) < —en for every n} > 0. (6.3)

It follows from the condition (6.1) that, given S(0) = ¢, i > i,, the chain S and the
random variables ((n) can be constructed on the same probability space in such a way
that

Sn)<i+¢@)+---+(¢(n) as

on the event S(1) > 4., ..., S(n — 1) > i,. The last property and (6.3) imply that
for every i > i,
P{S(1) #4, ..., S(n—1)#4, S(n) < i, for somen | S©O) =i} >p>0.

Since, in view of the ergodicity of the chain S,

inf ;pi1 > 0,
i<i. iPj1
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it follows that
,i>nf pin=P{SQ) #i, ..., S(n—1) #1i, S(n) < i, for somen | S(0) =i}

x inf ;p;
=q>0.

Hence, by the equality 1p;; + ;pi1 = 1,
inf (1 —1py) > q>0.

1 >0
Therefore,
inf(1— 1p;;) > 0.

Substituting this into (6.2) yields the assertion of the lemma. O

7. Convergence in the space X,

The present section is devoted to the proof of theorem 4. By theorem 2 the finite-
dimensiona distributions of X (n) converge weakly. So, by Prokhorov’'s theorem, for
proving the weak convergence of Y'(n) in the space with norm |- |,, it remains to check
the tightness condition.

The space X, is isomorphic to the Hilbert space {1 with the isomorphism

(z1,72,...) = (@171, Q272 . . ).

Since the form of compact sets in [ is well known, we obtain that for every sequence
o) ] 0, I — oo, the set

sz{w: Zai|wi| <o), I= 1,2,...}

i1
is compact in the normed space X,. Hence, if for every ¢ > 0 there is ¢(I) | O
such that P{ X (n) ¢ K,} < ¢ for each n, then tightness holds. The family {(X1(n),
..., Xx(n)), n € N} istight for each fixed k because of weak convergence of the
finite-dimensional distributions. Taking this into account we obtain that the family
{X(n), n € N} istight in X, if

limsup P{X;(n) > B;/a; for somei > I} —0 asI— oo. (7.2)

n—oo

Indeed, in this case we have with high probability
Z a; Xi(n) < Z Bi,
i1 izl

where >, ; 3 — 0 as I — oo. So, to prove theorem 4 it is sufficient to verify (7.1).
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Lemma 8. There exists ¢ < oo such that, for any initial distribution of (S(0), X(0)),
if

WHDN ) A Ao,
T14;
then
limsup P{X; (T(1)) > 2} <
lﬂoop ' ~ T Agin

Proof. Let the process X and the Markov chain G;(I) = X;(T'(!)) be the same as in
the proof of lemma 5. Consider a quadratic test function. Let us estimate the mean
value of

mi(y) = E{G?(1) — y* | G;(0) = y}.

Denote by 7, asinlemmays, the period of time (in “real time”) between two consecutive
server’s arrivals at the first station in the system (S; X). In view of condition (1.10)
we have that

En? < . (7.2)
n

Denote by &; = &;(n) the number of new customers a station i between two
consecutive server’s arrivals at the first station in the system (S; X). By Wald's
identity
)\i (w + b)

1

E&; = MEn = (7.3)

By the formula of total probability
E¢? = / ((\t)? + o3t)dP{n < t} = N2En” + o4En.
0

Since Ex? is finite and o; > \;, there exists ¢1 < oo such that, for each i,
E¢? < ¢105. (7.4)

Denote by (; the indicator that at least one customer was served at station
between two consecutive server’s arrivals at the first station in the system (S; X). We
have that E¢; = EC? = ¢;.

Given y > 1 and G;(0) = y, G;(1) is less than or equal to y + & — (;, in
distribution. Hence, for y > 1,

miy) SEQY + & — G)* — v = 29E(& — G) + E(G — G
< 2yE(& — G) + B +ECE.
Therefore, by (7.3), (7.4) and the condition of the lemma, for y > 1

Ni(w+b
m;(y) < 29<2(7T71) - Qi> +c10; + ¢ < —20qy + c10; + ;.
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For y = 0, we have that m;(0) = ng < a10;. By lemma 3 the following inequality
isvalid:

0< ) miy)mi(y),

y=0

where {m;(y)} o ae the stationary probabilities of the chain G;(I). Substituting the
estimates for m;(y) gives the inequality

o o
20q; Y ymily) S c1oi+qi Y miy) < caoi + e\,
y=0 y=1

using the relevant inequality in the proof of lemma5. The last inequality, the relation
o; = A, and Chebyshev's inequality imply that

> Cco;
Zm(?ﬁé Noa’
y—=2 di

Now the assertion follows from (4.2). O

Lemma 9. Let S(0) have distribution {7;}, X(0) = 0, and let A > 0. Then there
exists ¢ < oo such that, for al i with \;(w + b)/m1¢; < 1— A, and for al n,

P{S(n) = 1, Xi(n) > 2} < =,

q;T

Proof. Since T'(k) > k, it follows that

k
k“l?o P{S(k) =1, X;(k) >z} :kILrQO%%P{S(m) =1, X;(m) >z}

k
< Iimsup% > P{Xi(T() = =}

k=00 ™0
In view of lemma 2, for each n,

P{S(n) =1, X;(n) > x} < kILrl;lo P{S(k:) =1, X;(k) > x}
Now apply lemma 8. O

Turning now to the proof of (7.1) let S(0) have distribution {x;}, and let
X(0) = 0. As derived in (4.5) we have, for al n,

P{X;(n) > Bi/c; for somei > I'}
<) P{S(n—m)=1, Xi(n—m) > Bi/a; for some i > I}P{r > m}

m=0



192 A.A. Borovkov et al. / Ergodicity of an infinite polling network

+ zn: i P{T()=n—m, T(+1) >n, Biln—m,n]} +P{T(0) >n}
m=0 [=0
= R1(I,n) + Ra(I,n) + P{T(O) > n} (7.5)

By the assumption that limsup,_, . \i(w + b)/m1¢; < 1, and by lemma 9, we obtain
that for some ¢ < oo, I large enough, and al n

;0; c ;0;
Ri(I,n)<c "B = — Lt (7.6)
; Biqi m ; Biqi

Substituting the last estimate into (7.5), we obtain

Y%Ly sup Ro(I,m) + P{T(0) > n}.

iq;

P{X;(n) > B;/a; for some i > I'} < CIZ
i1
Now (7.1) follows from the last estimate, condition (1.11), and convergence (4.8).

Note, that (7.1) is now proved for the special case when S(0) has distribution {;}
and X (0) = 0. For arbitrary stations j, k, arbitrary m, and x € X'™*, put

pjr(m,x) = P{S(m) = k; X(m) ==z |S(0)=j, X(0)=0}.
Then it follows from what was said above that

limsup Z mipje(m, ©)P{X;(n) > B;i/co; for some i > 1| S(m)=k; X(m)==x}—0

n—0o0

7.k
as I — oo. In particular, if p;.(m,x) > 0, then

limsup P{X;(n) > 3;/c; for somei > 1| S(m) = k; X(m) =x} — 0,

n—oo

I — oo. (7.7)

Let now S(0) have arbitrary distribution, and let X (0) be distributed in X*. Then
(7.1) holds if for each initial station j and initia queue lengths = € X™*
limsup P{X;(n) > 3;/c; for somei > 1| S(0) =j, X(0)=x} —0, I— ooc.

n—oo

This convergence follows from (7.7), because x € X* and because, by virtue of the
irreducibility of the system (5; X), there exist & and m such that p;i(m,x) > 0. The
proof of theorem 4 is complete. O
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