
Queueing Systems 32 (1999) 169–193 169

Ergodicity of a polling network with an infinite number
of stations ∗

Alexandr A. Borovkov a, Dmitrii Korshunov a and Rolf Schassberger b

a Institute of Mathematics, 630090 Novosibirsk, Russia
E-mail: {borovkov; korshuno}@math.nsc.ru

b Technical University of Braunschweig, Germany
E-mail: schass@mswork.math.nat.tu-bs.de

Submitted 1 February 1998; accepted 1 December 1998

A Markov polling system with infinitely many stations is studied. The topic is the er-
godicity of the infinite-dimensional process of queue lengths. For the infinite-dimensional
process, the usual type of ergodicity cannot prevail in general and we introduce a mod-
ified concept of ergodicity, namely, weak ergodicity. It means the convergence of finite-
dimensional distributions of the process. We give necessary and sufficient conditions for
weak ergodicity. Also, the “usual” ergodicity of the system is studied, as well as convergence
of functionals which are continuous in some norm.
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1. Introduction and results

In this paper we study a polling system with infinitely many stations, numbered
1, 2, . . . . At station i groups of customers arrive from outside the system at the
instants of a Poisson process with rate µi, i = 1, 2, . . . . The size of a group is drawn
from a station specific distribution; it is greater than or equal to 1 and such that
E[ξi(1)] = λi < ∞, where ξi(t) is the number of customers arriving at station i in
[0, t], and where λi is a given parameter. At each station the customers wait until they
have received service. Thereafter they depart from the system.

A single server is polling the stations in Markovian fashion: given the server has
been polling station i the next one to be polled is station j, with probability pij . Let S =
S(n), n = 0, 1, . . . , be the corresponding Markov chain, i.e., let S(n) denote the nth
station polled by the server. We assume that the chain S is irreducible and ergodic with
stationary distribution {πi}. Given a switch from station i to j, the server will spend
a finite time to walk from i to j, distributed as a random variable Wij with arbitrary
distribution on the positive real numbers and with positive finite expectation wij .
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When the server arrives at station i for the mth time there will be a number
of consecutive services, distributed as min(xi,Di(m)), where xi is the number of
customers present at station i at the moment of server’s arrival and the Di(m) are
independent integer valued random variables distributed as Di, EDi=di ∈ (0,∞).
The service times in station i are drawn independently from an arbitrary distribution
on the non-negative real numbers with finite mean bi. The corresponding random
variable shall be denoted by Bi.

Arrival streams, routing, walking, and services are mutually independent. Let
Xi(n), n = 0, 1, . . . , denote the number of customers present at station i at the
moment the server finishes the walk from the (n − 1)st to the nth station polled.
If the system encompasses only finitely many stations, say N , then the process
(S;X) = {(S(n);X1(n), . . . ,XN (n))} is an irreducible Markov chain, for which nec-
essary and sufficient conditions for ergodicity were given in [2,4] (for a non-Markovian
case, see [5]). The polling models with cyclic routing were studied in [7]. The topic
of the present paper is also ergodicity.

Put X = (Z+)∞, where Z+ = {0, 1, 2, . . .}. For every vector x ∈ X let
xi be its ith coordinate and let 0 ≡ (0, 0, . . .). The process Y = (S;X) =
{(S(n);X1(n),X2(n), . . .)} is valued in Y ≡ N×X , N = {1, 2, . . .}.

Let i ∈ N, B ⊆ (Z+)i, and let

CB ≡
{
x ∈ X : (x1, . . . ,xi) ∈ B

}
(1.1)

be the finite-dimensional cylinder with base B. Denote by σ(X ) the σ-algebra gener-
ated by the finite-dimensional cylinders. The process (S;X) is defined on the measur-
able state space (Y ,σ(Y)), where σ(Y) is generated by σ(N) × σ(X ), σ(N) denoting
the set of all subsets of N.

For stations i, j, vector x and cylinder CB , B ⊆ (Z+)l, l ∈ N, set

P
(
(i;x), (j;CB )

)
≡

∑
y: (y1,...,yl)∈B

P
{
S(1) = j, X1(1) = y1, . . . , Xl(1) = yl | S(0) = i, X(0) = x

}
,

where the conditional probabilities in the sum are defined in the obvious way.
After extending the function P ((i;x), ·) to a probability measure on (Y ,σ(Y))

P (·, ·) is a transition probability, i.e., for every C ∈ σ(Y) the function P (·,C) is
measurable in the first argument. If C is a cylinder, then this is clear. Consider the
family of measurable sets C for which P (·,C) is a measurable function in the first
argument. Since it contains the cylinders and is a σ-algebra, it coincides with σ(Y).
Hence, P (·, ·) is indeed a transition probability and (S(n);X(n)) is a Markov chain
with the measurable state space (Y ,σ(Y)).

Let X ∗ = {x ∈ X :
∑

i xi <∞}, Y∗ ≡ N×X ∗, and let σ(Y∗) denote the power
set of Y∗. This is identical with the restriction of σ(Y) to Y∗. If X(0) ∈ X ∗ and∑
λi <∞, then Y is an irreducible Markov chain with the countable state space Y∗,

and we can study the question of its ergodicity in the usual meaning of this notion.
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This will be one thing to be done below. In general, however, Y is not irreducible, as
there are clearly states of Y which do not communicate.

For instance:

(a) If
∑∞

k=1 |xk − yk| =∞, then one of the vectors, say x, is such that xk > yk + 1
for infinitely many k. Therefore, the state (i;y) cannot be reached from the state
(j;x) in finitely many steps.

(b) If the summary input stream is finite, i.e.,
∑∞

i=1 λi <∞, then the equivalence re-
lation of communicability between states generates a continuum number of classes
of communicating states. If (i;x) ∈ Y , then the class containing the element (i;x)
consists of all (j;y) ∈ Y such that the vectors x and y have only a finite number
of different coordinates, i.e.,

∞∑
i=1

|xi − yi| <∞,

because only these states can be reached from (i;x) in finitely many steps.

Thus the usual type of ergodicity cannot prevail in general. Therefore, we intro-
duce a modified concept of ergodicity, which turns out to be useful.

We say that the chain (S(n);X(n)) is weakly ergodic if there exists a distribution π
on the measurable space (Y ,σ(Y)) such that, for all i, j, all x ∈ X ∗, and all finite-
dimensional cylinders CB

P
{
S(n) = j, X(n) ∈ CB | S(0) = i, X(0) = x

}
→ π(j;CB)

holds as n→∞. Note that we restrict this requirement to starting points in Y∗. Call
π the limiting distribution associated with weak ergodicity.

As usual, we say that the measure π = {π(i; ·)} on the space (Y ,σ(Y)) is invariant
if for every i ∈ N and C ∈ σ(X )

π(i;C) =
∞∑
j=1

∫
X
π(j; dx)P

(
(j;x), (i;C)

)
.

Note that this is equivalent to the following assertion. For every i ∈ N and every
finite-dimensional cylinder CB , B ∈ (Z+)l,

π(i;CB)

=
∞∑
j=1

∞∑
x1,...,xl,xj=0

π
(
j; {x: x1 = x1, . . . , xl = xl, xj = xj}

)
×P
{
S(1) = i, X(1) ∈ CB | S(0) = j, X1(0) = x1, . . . , Xl(0) = xl, Xj(0) = xj

}
.

The latter probability here is well defined since the conditional probability

P
{
S(1) = i, X(1) ∈ CB | S(0) = j, X(0) = x

}
depends only on x1, . . . ,xl, and xj .
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If the Markov chain (S;X) is weakly ergodic, then the associated distribution π
is invariant. Indeed, for all n, j, and B ∈ (Z+)l

P
{
S(n+ 1) = i, X(n + 1) ∈ CB

}
=
∞∑
j=1

∞∑
x1,...,xl,xj=0

P
{
S(n) = j, X1(n) = x1, . . . , Xl(n) = xl, Xj(n) = xj

}
×P
{
S(1) = i, X(1) ∈ CB | S(0) = j, X1(0) = x1, . . . , Xl(0) = xl, Xj(0) = xj

}
≡
∞∑
j=1

aj(n).

Since aj(n) 6 P{S(n) = j}→ πj as n→∞, by dominated convergence

lim
n→∞

∑
j

aj(n) =
∑
j

lim
n→∞

aj(n).

Therefore, by weak ergodicity, we finally get

π(i,CB)

≡ lim
n→∞

P
{
S(n+ 1) = i, X(n + 1) ∈ CB

}
=
∞∑
j=1

∞∑
x1,...,xl,xj=0

lim
n→∞

P
{
S(n) = j, X1(n) = x1, . . . , Xl(n) = xl, Xj(n) = xj

}
×P
{
S(1) = i, X(1)∈CB | S(0) = j, X1(0) = x1, . . . , Xl(0) = xl, Xj(0) = xj

}
=
∞∑
j=1

∞∑
x1,...,xl,xj=0

π
(
j; {x: x1 = x1, . . . , xl = xl, xj = xj}

)
×P
{
S(1) = i; X(1)∈CB | S(0) = j; X1(0) = x1, . . . , Xl(0) = xl, Xj(0) = xj

}
.

So we can call a limit distribution associated with weak ergodicity also an invariant
distribution associated with weak ergodicity, or simply associated invariant distribu-
tion.

Weak ergodicity does not exclude the convergence

∞∑
i=1

Xi(n)→∞ as n→∞, (1.2)

given
∑∞

i=1Xi(0) < ∞. Equivalently, weak ergodicity does not exclude the conver-
gence of the number of busy stations at step n to infinity as n→∞.

Note that the invariant distribution associated with weak ergodicity has positive
mass on Y∗ if and only if Y is ergodic on Y∗ in the usual sense. Note also that,
in the presence of weak ergodicity, invariant distributions may exist besides the one
associated with the weak ergodicity.
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The following two theorems give necessary and sufficient conditions for weak
ergodicity of the Markov chain (S;X); as before, {πi} stand for the invariant proba-
bilities of S.

Theorem 1 (Necessity). If the Markov chain (S;X) admits an invariant distribution π
(this is true if (S;X) is weakly ergodic) then

w ≡
∑
i

πi
∑
j

pijwij <∞ (1.3)

and, for all i,

λiw < (1− ρ)πidi, (1.4)

where ρ =
∑

i λibi. If, in addition,

b ≡
∑
i

πidibi <∞, (1.5)

then
∞∑
x=0

π
(
i; {x: xi = x}

)
E
{

min(x,Di)
}

= λi
w

1− ρ , (1.6)

for all i.

Theorem 2 (Sufficiency). Let conditions (1.3) and (1.4) be fulfilled. Then the Markov
chain (S;X) is weakly ergodic. If, in addition, (1.5) holds, then the chain has no
invariant distribution other than the one associated with the weak ergodicity.

Theorems 1 and 2 imply the following:

Corollary 1. The following assertions are equivalent:

(i) The Markov chain (S;X) is weakly ergodic.

(ii) The Markov chain (S;X) admits an invariant measure.

(iii) The Markov chain (S;X) satisfies conditions (1.3) and (1.4).

In the case of finitely many stations condition (1.4) was shown to be also sufficient
for ergodicity (see [2,4]). In the present case of infinitely many stations (1.4) implies
weak ergodicity, only, and this may still allow (1.2).

To obtain the “usual” ergodicity of the system we have to introduce an additional
condition which excludes (1.2). The following theorem points out sufficient and nec-
essary conditions for the invariant measure to be concentrated on Y∗ and, hence, gives
conditions for ergodicity of the chain (S(n);X(n)) in the space Y∗.
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Let

qi ≡ 1p1i ≡ P
{
S(1) 6= 1, . . . , S(n−1) 6= 1, S(n) = i for some n | S(0) = 1

}
.

Theorem 3.

(a) Sufficiency: Let X(0) ∈ X ∗ a.s. If conditions (1.3)–(1.5) are fulfilled, and if∑
i

λi
qi
<∞, (1.7)

then the Markov chain (S;X) is ergodic in N×X ∗.
(b) Necessity: If the Markov chain (S;X) is ergodic in N×X ∗, then (1.3) and (1.4)

hold and ∑
i

µi
qi
<∞. (1.8)

In particular,
∑

i µi/πi <∞.

Remark. It is well known that the expected number of visits to i between two visits
to 1 equals πi/π1, and hence we have the inequality qi 6 πi/π1. This implies the very
last statement in part (b) of the last theorem. In lemma 6 we prove that, under broad
conditions, qi > δπi for some δ > 0 and all i. If this holds, then (1.7) is equivalent to
the convergence of the series

∑
i λi/πi.

Some estimates for the probability of the ith queue to be non-empty can be
given when the polling system is in stationary regime. Let the chain (S;X) be weakly
ergodic with the corresponding invariant measure π, and let (S(∞);X(∞)) be a random
element with distribution π. If w ≡ supi,j(wij + bidi) <∞ and Eτ 2 <∞, where τ is
the number of steps required to reach 1 given start in 1, for the chain S, then for each
station i the inequality

P
{
Xi(∞) > 1

}
6 w + b

π2
1

λi
qi

+ wEτ 2λi (1.9)

holds (for the proof see section 4). Note that the above results can be useful for an
analysis of systems with a finite but large number of stations. For instance, we can
construct bounds for the number of busy stations in large time.

Now return to weak ergodicity under the conditions of theorem 2. We can con-
sider a richer class of functionals of Y for which weak convergence holds. Along with
the finite-dimensional functionals, we may consider functionals which are continuous
in some norm. Let α = (α1,α2, . . .) be a sequence of positive numbers. Consider the
norm

|x|α =
∞∑
i=1

αi|xi|,
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and let Xα be the collection of all x such that |x|α <∞. Put∣∣(j;x)
∣∣
α

= |j| + |x|α.

Theorem 4. Let S(0) have arbitrary distribution, and let X(0) be distributed in X ∗.
Let

Eτ 2 <∞ and sup
i,j

(
EW 2

ij + EB2
iED2

i

)
<∞. (1.10)

Let condition (1.4) be fulfilled and

lim sup
i→∞

λi
qi
<

π1

w + b
.

Put σi ≡ E(ξi(1)− λi)2 = Dξi(1). If for some sequence βi > 0,
∑

i βi <∞,

∞∑
i=1

αi
βi

σi
qi
<∞, (1.11)

then Y is weakly ergodic and the distributions of f (Y (n)) converge weakly for any
bounded functional f :N×Xα → R which is continuous in the norm | · |α.

Remarks.

(i) Condition (1.10) implies that supi,j(wij+bidi) <∞. In particular, conditions (1.3)
and (1.5) are fulfilled.

(ii) If the input stream ξi(t) is simple, i.e., if µi = λi, then σi = λi.

Corollary 2. Let γ > 0. If
∑
σi/i

γqi <∞ then {Y (n)} converges in distribution in
the space Xα with αi = 1/iγ+1+ε, ε > 0.

Corollary 3. If sup σi/qi <∞ then the sequence {Y (n)} is convergent in distribution
in the space Xα with αi = 1/i2+ε, ε > 0.

If the input stream is simple, if supλi/qi <∞, and if there exist some exponential
moments for the random variables τ , Wij , Bi, Di, then it can be shown that {Y (n)}
converges in distribution in the space Xα with αi = 1/i ln2+ε i, ε > 0.

Condition (1.7) in theorem 3 is in fact the condition for the family of distribu-
tions of {Y (n), n ∈ N} to be tight in the space Y∗ = N × X(1,1,...) (X(1,1,...) is the
space l1). This condition implies the convergence in total variation and, therefore, the
convergence in distribution of any bounded functional of Y (n).

Some analog of theorem 3 for the non-Markovian polling system with simple
input is proved in [6]. An infinite number of nodes approach to the ergodicity study
of queueing networks is known in the literature. For example, ergodicity results for
some queueing networks with random routing and with a very large or infinite number
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of nodes may be found in [1]. The uniqueness issues for invariant measure of Jackson
networks on denumerable graphs were studied in [8].

2. Necessary conditions for weak ergodicity

In the present section we prove theorem 1. For two polling systems (S̃; X̃) and
(S;X) with identical walking schemes (i.e., S̃ =st S), we say that X̃(n) >st X(n),
iff, for every station i, X̃(n) is greater or equal in distribution than/to X(n), given
S(n) = i. We need the following two monotonicity properties of our polling systems.

Lemma 1. Let (S̃; X̃) be a polling system such that S̃(0) =st S(0), p̃ij = pij , W̃ij >st

Wij , λ̃i > λi, B̃i >st Bi, and D̃i =st Di for every i and j. If X̃(0) >st X(0) then
X̃(n) >st X(n) for every n.

Proof is straightforward from the definition of the polling systems.

Lemma 2. Let S(0) have distribution {πi}, and let X(0) = 0. Then the polling system
(S(n);X(n)) is increasing in distribution, i.e., for every moment of time n, there exist
copies (S′(n);X ′(n)) and (S′(n+ 1);X ′(n+ 1)) of the random elements (S(n);X(n))
and (S(n + 1);X(n + 1)), respectively, such that S′(n) = S′(n + 1) and X ′i(n) 6
X ′i(n+ 1) a.s. for all i.

Proof. The proof follows by induction with respect to n. Indeed, for n = 0, the
assertion is true, because S(0) and S(1) are equal in distribution and Xi(1) > 0 =
Xi(0).

In view of lemma 1 the random element X(2) is greater or equal in distribution
than/to X(1), because X(1) is greater or equal in distribution than/to X(0) and because
S(1) =st S(0). The transition n 7→ n + 1 can be carried out in the same way. The
lemma is proved. �

We need also the following equilibrium-type inequality and identity for a Markov
chain in stationary regime.

Lemma 3 (see [3,9]). Let Y (n) be a Markov chain valued in a measurable space Y
and admitting a stationary distribution π. Let G(y) be a non-negative measurable
function and put g(y) = E{G(Y (1)) −G(y) | Y (0) = y}. If∫

Y
max

(
0, g(y)

)
π(dy) <∞,

then ∫
Y
g(y)π(dy) > 0.
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In addition, if there exists c <∞ such that for every y

E
{∣∣G(Y (1)

)
−G(y)

∣∣ | Y (0) = y
}
6 c
(
1 +

∣∣g(y)
∣∣),

then ∫
Y
g(y)π(dy) = 0.

Proof of theorem 1. Let the random element (S(0);X(0)) have distribution π. Then
for every n the random element (S(n);X(n)) also has distribution π. Let N > 0
and let us consider an auxiliary polling system (S(n);X(N )(n)) which differs from the
original one only in its initial positions and in its walking and service times; we put

W (N )
ij ≡ min(Wij ,N ), B(N )

i = Bi for i 6 N , B(N )
i = 0 for i > N.

Denote w(N ) ≡
∑

i πi
∑

j pijw
(N )
ij ; by definition,

w(N ) 6 N. (2.1)

Let X(N )(0) = 0, and let S(0) have stationary distribution {πi}. Since X(N )(0) = 0 6
X(0), by lemma 1 we have that for every n

X(N )(n)6st X(n). (2.2)

It follows from lemma 2 that the random element (S(n);X(N )(n)) has a weak limit
as n → ∞. In view of (2.2) and stationarity of X(n) each coordinate of this weak
limit is finite with probability 1. Let π(N ) be an invariant distribution for the system
(S;X(N )) and let (S(∞);X(N )(∞)) be a random element with distribution π(N ). It
follows from lemma 1 that

X(N )(∞)6st X
(N+1)(∞). (2.3)

For (S;X(N )) let α(N )
k (i, j;x) denote the expected increment in the number of

customers at station k between two consecutive arrivals of the server at a station, given
the first one is station i, the second station j, and given the customer numbers at all
stations at the start of the first visit are given by x. Then

α(N )
k (i, j;x) =

(
w(N )
ij + di(xi)b

(N )
i

)
λk − di(xi)δik,

where di(x) = E min(x,Di), b
(N )
i = bi for i 6 N , b(N )

i = 0 for i > N , δii = 1, and
δik = 0 for i 6= k.

Put

L(N )
k (i;x)≡E

{
X(N )
k (1)−X(N )

k (0) | S(0) = i, X(N )(0) = x
}

=
∑
j

pijα
(N )
k (i, j;x)

=
∑
j

pijw
(N )
ij λk + di(xi)b

(N )
i λk − di(xi)δik.
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We have

E
{∣∣X(N )

k (1)−X(N )
k (0)

∣∣ | S(0) = i, X(N )(0) = x
}

6
∑
j

pijw
(N )
ij λk + dib

(N )
i λk + diδik,

and in view of (2.1)∑
i

∫
X
π(N )(i; dx) E

{∣∣X(N )
k (1)−X(N )

k (0)
∣∣ | S(0) = i, X(N )(0) = x

}
6 λkw(N ) + λk

N∑
i=1

πidibi + πkdk <∞,

where ∫
X
µ(i; dx)g(xi,xk) ≡

∞∑
x=0

µ
(
i; {x: xi = x}

)
g(x,xk)

for any measure µ and function g. So, the increments of the chain (S;X(N )) satisfy
the conditions of lemma 3, and hence, for every k ∈ N,∑

i

∫
X
π(N )(i; dx)L(N )

k (i;x) = 0.

This equality implies the equation(
w(N ) +

N∑
i=1

bi

∫
X
π(N )(i; dx)di(xi)

)
λk =

∞∑
i=1

∫
X
π(N )(i; dx)di(xi)δik

=

∫
X
π(N )(k, dx)dk(xk).

Letting

c(N )
i =

∫
X
π(N )(i; dx)di(xi)

it follows that (
w(N ) +

N∑
i=1

c(N )
i bi

)
λk = c(N )

k , k = 1, 2, . . . . (2.4)

Multiplying with bk and summing up yields

ρ(N )

(
w(N ) +

N∑
i=1

c(N )
i bi

)
=

N∑
k=1

c(N )
k bk,
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where

ρ(N ) ≡
N∑
k=1

λkbk,

and this implies ρ(N ) < 1 (recall that w(N ) > 0 for N large enough). Hence,

N∑
i=1

c(N )
i bi =

ρ(N )w(N )

1− ρ(N ) .

From the last equality and (2.4) we have for every k

λkw
(N ) = c(N )

k − λk
ρ(N )w(N )

1− ρ(N ) .

So, λkw(N ) = c(N )
k (1− ρ(N )), or, equivalently,∫

X
π(N )(k; dx)dk(xk) =

λkw
(N )

1− ρ(N ) . (2.5)

Letting N →∞ we obtain from (2.3) that∫
X
π(N )(k; dx)dk(xk) ↑

∫
X
π(∞)(k; dx)dk(xk) 6 πkdk <∞, (2.6)

where π(∞) is a weak limit for π(N ). Hence, there exists a finite limit for the right-hand
side in (2.5):

λkw
(N )

1− ρ(N ) ↑
λkw

1− ρ <∞. (2.7)

In particular, w <∞ and (1.3) are proved. Using (2.6) and (2.7) in (2.5) implies the
equality ∫

X
π(∞)(k; dx)dk(xk) =

λkw

1− ρ.

Since dk(x) 6 dk, dk(0) = 0, and π(∞)(k; {x: xk=0}) > 0; the integral here is less
than πkdk. Therefore, the last equality implies the assertion (1.4).

Let now (1.5) be fulfilled. In view of (1.3) and (1.5) we have∑
i

∫
X
π(i; dx)E

{∣∣Xk(1)−Xk(0)
∣∣ | S(0) = i, X(0) = x

}
6 λkw+πkdk+λk

∑
i

πidibi <∞,

and we can apply lemma 3 to the chain (S,X) with stationary distribution π. As above,
we obtain for this chain the equality λiw = ci(1 − ρ), where ci ≡

∫
X π(i; dx)di(xi),

and the proof of theorem 1 is complete. �
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3. Sufficient conditions for weak ergodicity

This section is devoted to the proof of theorem 2. First we construct a minorant
for the process X(n). Let (S;X (k)) be an auxiliary polling system, which differs from
(S;X) only in its service times at the stations k + 1, k + 2, . . .; we assume that

B(k)
i = Bi for i 6 k and B(k)

i = 0 for i > k.

The distribution of the process (S(n);X (k)
1 (n), . . . ,X (k)

k (n)) is the same as of
the process (S(n);X1(n), . . . ,Xk(n)), given Xk+1(0) = Xk+2(0) = · · · = 0 and
λk+1(0) = λk+2(0) = · · · = 0. The finite-dimensional process (S;X (k)

1 , . . . ,X(k)
k ) is

a Markov chain. It follows from conditions (1.3), (1.4) and from the results in [2,4]
that the chain (S;X (k)) is ergodic in Y∗. Let π(k) be the invariant distribution for the
chain (S;X (k)). In view of theorem 1 the measure π(k) satisfies the equality

∞∑
x=0

π(k)(i; {x: xi = x}
)
E
{

min(x,Di)
}

= λi
w

1− ρ(k) , (3.1)

where

ρ(k) =
k∑
j=1

λjbj.

Let (S(∞);X (k)(∞)) be the random element with distribution π(k). By virtue of
lemma 1 the random elements (S(∞);X (k)(∞)), k ∈ N, are increasing in distribution.
Therefore, π(k) has a weak limit π in the enlarged space Y = N × X , where X =
(Z+∪{∞})∞. Let (S(∞);X(∞)) be a random element in Y with distribution π.

The measure π is invariant for the chain (S;X) in Y . If S(0) has distribution {πi}
and X(0) = 0 then the distribution of the random element (S(n);X(n)) converges to π
in the space Y .

Fix any i ∈ N. Taking the limit in (3.1) with respect to k, k → ∞, we obtain
the equality

∞∑
x=0

π
(
i; {x: xi = x}

)
E
{

min(x,Di)
}

+ π
(
i; {x: xi =∞}

)
di = λi

w

1− ρ. (3.2)

Assume that P{X i = ∞} = 1. Then π(i; {x: xi = ∞}) = πi and it follows
from (3.2) that πidi = λiw/(1 − ρ), which is in contradiction to (1.4). So,

P{X i <∞} > 0. (3.3)

Let µ be the conditional distribution of the random element (S(∞);X(∞)), given
X i(∞) <∞. The measure µ in the enlarged space Y is well defined in view of (3.3).
Since the sets {x: xi = ∞} and {x: xi < ∞} do not communicate, the measure µ
is invariant (in the space Y) for the chain (S;X).
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Let S′(0) have distribution {πj}, and let X ′(0) = 0. If the random element
(S̃(0); X̃(0)) has distribution µ then for every n the random element (S̃(n); X̃(n)) also
has distribution µ. Since X ′(0) 6st X̃(0), by lemma 1 X ′(n) 6st X̃(n) for every n.
Letting n→∞, we obtain the inequality

P{X i =∞} = lim
y→∞

lim
n→∞

P
{
X ′i(n) > y

}
6 lim
y→∞

lim
n→∞

P
{
X̃i(n) > y

}
= µ

(
N; {x: xi =∞}

)
= 0.

We have verified that P{X i < ∞} = 1 for every i ∈ N and, therefore, the random
element (S(∞);X(∞)) is valued in Y . So, the measure π is invariant for the chain
(S;X) and the first part of theorem 2 is proved.

Now let us assume that the system (S;X) satisfies, in addition, condition (1.5)
and has one more invariant measure, say π. Denote by (S(∞);X(∞)) the random
element with distribution π. We are going to prove that

π = π. (3.4)

Let S(0) have distribution {πi}, and let X(0) = 0. If the random element
(S(0);X(0)) has distribution π, then for every n the random element (S(n);X(n))
also has distribution π. Since X(0) 6st X(0), by lemma 1 X(n) 6st X(n) for every n.
Letting n→∞, we obtain the inequality

X(∞) 6st X(∞). (3.5)

Let both (S(n);X(n)) and (S(n);X(n)) be in stationary regime with distrib-
utions π and π, respectively. In view of (3.5) equality (3.4) is equivalent to the
following system of equalities:

P
{
X i(0) > x

}
= P
{
X i(0) > x

}
, i ∈ N, x ∈ Z+. (3.6)

Let us assume that, to the contrary, (3.6) is not true. Then there exist i′, i, and x such
that

P
{
S(0) = i′; X i(0) > x

}
<P
{
S(0) = i′; Xi(0) > x

}
. (3.7)

We assume that x is the minimal number with the property that there exist i′

and i for which (3.7) holds.
Let us prove now that (3.7) is fulfilled with i′ = i, i.e., that

P
{
S(0) = i; Xi(0) > x

}
< P
{
S(0) = i; X i(0) > x

}
. (3.8)

Indeed, if i′ 6= i, let n0 be the minimal n > 1 such that P{S(n) = i | S(0) = i′} > 0.
Put

f (j, y, z) = P
{
S(n0) = i; Xi(n0) > x | S(0) = j; Xj(0) = y, Xi(0) = z

}
.
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By the stationarity of (S(n);X(n))

p ≡ P
{
S(n0) = i; X i(n0)>x

}
=
∑
j,y,z

P
{
S(0) = j; X j(0) = y, X i(0) = z

}
f (j, y, z).

Because the function f (j, y, z) is nondecreasing in y and z, in view of X j(0) 6 Xj(0)
and X i(0) 6 Xi(0) a.s. we have

p6
∑

j 6=i′,y,z

P
{
S(0) = j; Xj(0) = y, X i(0) = z

}
f (j, y, z)

+
∑
y,z

P
{
S(0) = i′; X i′(0) = y, X i(0) = z

}
f (i′, y, z).

Since P{S(n) = i | S(0) = i′} = 0 for every n < n0, the function f (i′, y, z) is strictly
increasing in z ∈ [0,x]. Therefore, by (3.7),∑

y,z

P
{
S(0) = i′; X i′(0) = y, X i(0) = z

}
f (i′, y, z)

<
∑
y,z

P
{
S(0) = i′; X i′(0) = y, X i(0) = z

}
f (i′, y, z).

Hence,

p<
∑
j,y,z

P
{
S(0) = j; Xj(0) = y, X i(0) = z

}
f (j, y, z)

= P
{
S(n0) = i; Xi(n0) > x

}
= P
{
S(0) = i; X i(0) > x

}
.

So (3.8) is proved.
Now we prove that P{Di > x} > 0. If, to the contrary, Di 6 x− 1 a.s., then it

follows from (3.8) that for every j such that pij > 0 we have

P
{
S(1) = j; X i(1) > y

}
< P
{
S(1) = j; Xi(1) > y

}
for some y < x. This contradicts the property for x to be the minimal number for
which (3.7) is fulfilled. So, P{Di > x} > 0 and, therefore, (3.8) implies

E
{

min
(
X i(0),Di

)
;S(0) = i

}
<E

{
min
(
X i(0),Di

)
;S(0) = i

}
.

Since the measures π and π are invariant, by virtue of equation (1.6)

E
{

min
(
X i(0),Di

)
;S(0) = i

}
=

∫
X
π(i; dx)E

{
min(xi,Di)

}
= λi

w

1− ρ
and

E
{

min
(
X i(0),Di

)
;S(0) = i

}
=

∫
X
π(i; dx)E

{
min(xi,Di)

}
= λi

w

1− ρ.
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We arrive at a contradiction to the previous inequality. The proof of theorem 2 is
complete. �

4. Sufficient conditions for ergodicity

In this section we prove the sufficiency part (a) of theorem 3. We begin with the
following lemma.

Lemma 4. Let the polling system (S;X) be weakly ergodic with invariant measure π,
and let (S(∞);X(∞)) be a random element with distribution π. Then, for every I
and sequence xI , xI+1, . . . ,

P
{
Xi(∞) > xi for some i > I

}
6 lim sup

n→∞
P
{
Xi(n) > xi for some i > I

}
.

Proof. We have that

P
{
Xi(∞) > xi for some i > I

}
= lim

J→∞
P
{
Xi(∞) > xi for some i ∈ [I ,J]

}
.

Hence, the assertion follows from the convergence

P
{
Xi(n) > xi for some i ∈ [I ,J]

}
→ P

{
Xi(∞) > xi for some i ∈ [I ,J]

}
as n→∞. �

We need a further lemma. Let T (0) = min{n > 0: S(n) = 1} and T (l + 1) =
min{n > T (l): S(n) = 1}, for l > 0. We have that for every l the difference
T (l+1)− T (l) is equal in distribution to τ . First we prove the following lemma:

Lemma 5. For any initial distribution of (S(0);X(0)), and, for every station i,

lim sup
l→∞

P
{
Xi

(
T (l)

)
> 1
}
6 (w + b)λi

π1qi
.

Proof. We need to consider the case where

(w + b)λi < π1qi. (4.1)

Let us define an auxiliary polling system (S;X) with the following characteristics:

(1) X(0) = X(0);

(2) W kj = Wkj +Bk(1) + · · ·+Bk(Dk) for all k, j;

(3) λk = λk, Bk ≡ 0, Dk ≡ Dk for all k.

By definition the process X can be constructed in such a way that for every n

Xi(n)6Xi(n) a.s. (4.2)

Put Gi(l) = Xi(T (l)). The process Gi(l) is a Markov chain with the following
increments:
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ai(0)≡E
{
Gi(1)−Gi(0) | Gi(0) = 0

}
= λiEη,

ai(x)≡E
{
Gi(1)−Gi(0) | Gi(0) = x

}
6 λiEη − qi, x = 1, 2, . . . ,

where η is the period of time (in real time) between two consecutive arrivals of the
server at the first station in system (S;X). By a standard result Eη = (w+ b)/π1 and,
hence,

ai(0) =
(w + b)λi

π1
, (4.3)

ai(x)6 (w + b)λi
π1

− qi, x > 1. (4.4)

In view of (4.4) and (4.1) ai(x) 6 −δ < 0 for x > 1. So, by [10, theorem 1] the
Markov chain Gi(l) is ergodic with invariant probabilities denoted by {πi(x)}∞x=0. It
follows from lemma 3 that

06
∞∑
x=0

πi(x)ai(x).

Substituting (4.3) and (4.4) we obtain that

06 (w + b)λi
π1

− qi
∞∑
x=1

πi(x).

Hence,

πi
(
[1,∞)

)
6 (w + b)λi

π1qi
.

The last inequality and (4.2) imply the assertion of the lemma. �

Theorem 2 implies that the Markov chain (S(n);X(n)) is weakly ergodic with
unique invariant measure π. In particular, for every i there exists a limit of the
probability P{S(n) = 1, Xi(n) > 1} as n→∞.

Lemma 6. If S(0) has distribution {πi} and X(0) = 0, then

P
{
S(n) = 1, Xi(n) > 1

}
6 (w + b)λi

π1qi
,

for all i and n.

Proof. Since T (k) > k, it follows that

lim
k→∞

P
{
S(k) = 1, Xi(k) > 1

}
= lim
k→∞

1
k

k∑
m=0

P
{
S(m) = 1, Xi(m) > 1

}
6 lim sup

k→∞

1
k

k∑
l=0

P
{
Xi

(
T (l)

)
> 1
}
.
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In view of lemma 2, for each n,

P
{
S(n) = 1, Xi(n) > 1

}
6 lim
k→∞

P
{
S(k) = 1, Xi(k) > 1

}
.

Now lemma 5 finishes the proof. �

Let S(0) have distribution {πi}, and let X(0) = 0. Let I ∈ N. Let us now
estimate the probability that one of the queues i, i > I , is non-empty. For any m1

and m2, m1 < m2, denote by BI [m1,m2] the event that during the (real-) time period
between the server’s m1th and m2th arrival times to a station at least one new customer
arrives at one of the stations i > I . By the formula of total probability we get for
any n

P
{
Xi(n) > 1 for some i > I

}
6

n∑
m=0

∞∑
l=0

(
P
{
T (l) = n−m, T (l+1) > n, Xi(n−m) > 1 for some i > I

}
+ P

{
T (l) = n−m, T (l+1) > n, BI [n−m,n]

})
+ P

{
T (0) > n

}
=

n∑
m=0

∞∑
l=0

(
P
{
T (l) = n−m, Xi(n−m) > 1 for some i>I

}
× P

{
T (l+1)−T (l) > m

}
+ P

{
T (l) = n−m, T (l+1) > n, BI [n−m,n]

})
+ P

{
T (0) > n

}
=

n∑
m=0

P
{
S(n−m) = 1, Xi(n−m) > 1 for some i > I

}
P{τ > m}

+
n∑

m=0

∞∑
l=0

P
{
T (l) = n−m, T (l+1) > n, BI [n−m,n]

}
+ P

{
T (0) > n

}
= R1(I ,n) +R2(I ,n) + P

{
T (0) > n

}
. (4.5)

Since
∞∑
m=0

P{τ > m} = Eτ =
1
π1

<∞,

by lemma 6 we obtain that, for all I and n,

R1(I ,n) 6
∑
i>I

(w + b)λi
π1qi

Eτ =
w + b

π2
1

∑
i>I

λi
qi
. (4.6)

The term R2(I ,n) can be estimated in the following way:

R2(I ,n) =
n∑

m=0

P
{
S(n−m) = 1, S(n−m+ 1) 6= 1, . . . , S(n) 6= 1, BI [n−m,n]

}
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6
n∑

m=0

P
{
S(n−m+ 1) 6= 1, . . . , S(n) 6= 1, BI [n−m,n] | S(n−m) = 1

}
=

n∑
m=0

P
{
S(1) 6= 1, . . . , S(m) 6= 1, BI[0,m] | S(0) = 1

}
. (4.7)

Since

P
{
S(1) 6= 1, . . . , S(m) 6= 1, BI [0,m] | S(0) = 1

}
6 P{τ > m},

and in view of P{BI[0,m] | S(0) = 1} → 0 as I → ∞ for every m, by dominated
convergence we obtain

sup
n
R2(I ,n)→ 0 as I →∞. (4.8)

Substituting estimate (4.6) into (4.5), we obtain

P
{
Xi(n) > 1 for some i > I

}
6 w + b

π2
1

∑
i>I

λi
qi

+ sup
n
R2(I ,n) + P

{
T (0) > n

}
.

Hence,

lim sup
n→∞

P
{
Xi(n) > 1 for some i > I

}
6 w + b

π2
1

∑
i>I

λi
qi

+ sup
n
R2(I ,n). (4.9)

Let (S(∞),X(∞)) be a random element with distribution π. It follows from
lemma 4 and (4.9) that, for all I ,

P
{
Xi(∞) > 1 for some i > I

}
6 w + b

π2
1

∑
i>I

λi
qi

+ sup
n
R2(I ,n).

The last inequality, condition (1.7), and convergence (4.8) imply that

P
{
Xi(∞) > 1 for some i > I

}
→ 0 as I →∞.

Therefore, π is concentrated on Y∗, i.e., the Markov chain (S(n),X(n)) is ergodic
in Y∗. The proof of theorem 3 part (a) is complete. �

Now proceed to the proof of estimate (1.9). It follows from (4.9) that it is suf-
ficient to prove that R2(i,n) 6 wEτ 2λi. Indeed, the mean number of new customers
until the mth arrival time of the server at a station is less than or equal to mwλi.
Therefore, by estimate (4.7) and Chebyshev’s inequality we have

R2(I ,n)6
n∑

m=0

P
{
S(1) 6= 1, . . . , S(m) 6= 1 | S(0) = 1

}
mwλi

=wλi

n∑
m=0

P{τ > m}m 6 wλiEτ 2. �
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5. Necessary conditions for ergodicity

In the present section we prove the necessity part (b) of theorem 3.
Suppose that the chain (S;X) is ergodic in N × X ∗. Then the state (1; 0) is

positive recurrent, i.e., if

τ̃ ≡min
{
n: S(n) = 1, X(n) = 0 | S(0) = 1, X(0) = 0

}
then

Eτ̃ <∞. (5.1)

Put

τ (i)≡min
{
n > 1: S(n) = 1, S

(
n′
)

= i for some n′ 6 n: S(0) = 1
}
.

It follows from the definition of τ (i) that

Eτ (i) =
∞∑
s=1

P
{
τ (i) > s

}
>
∞∑
s=1

(1− qi)s =
1
qi
− 1. (5.2)

Ergodicity implies that
∑
λi <∞. Since µi 6 λi,

∞∑
i=1

µi <∞. (5.3)

Without loss of generality, we may assume that p12w12 > 0. Hence, in view of (5.3)
we have

ri≡P
{
S(1) = 2, Xi(1) > 1, Xk(1) = 0 for each k 6= i | S(0) = 1, X(0) = 0

}
= p12P

{
Xi(1) > 1 | S(0) = 1, S(1) = 2, X(0) = 0

}
×
∏
k 6=i

P
{
Xk(1) = 0 | S(0) = 1, S(1) = 2, X(0) = 0

}
= p12

(
1− E e−µiW12

)∏
k 6=i

E e−µkW12 > δµi

for some δ > 0 and every i ∈ N. Since

Eτ̃ >
∑
i

riEτ (i),

we have

Eτ̃ > δ
∑
i

µiEτ (i). (5.4)

Theorem 3 part (b) follows now from (5.1), (5.2), and (5.4). �
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6. Some estimates for the taboo probability qi

In the following lemma we expose a condition on the chain S under which there
exists δ > 0 such that for every station i the inequality qi > δπi holds. Under this
inequality condition (1.7) is equivalent to the convergence of the series

∑
λi/πi.

Let ζi be a random variable with values in Z distributed according to

P{ζi = k} = pi,i+k, k ∈ Z.

Lemma 7. Suppose that, for some random variable ζ with negative mean value and
for some state i∗,

ζi6st ζ (6.1)

for every i > i∗. Then there exists δ > 0 such that qi > δπi for all i.

Proof. Let 1pii be the taboo probability of the transition from i to i avoiding the first
station, and let νi denote the number of visits to i between two consecutive visits to 1.
Then

Eνi =
∞∑
s=1

P{νi > s} =
∞∑
s=1

1p1i(1pii)
s−1 =

1p1i

1− 1pii
.

On the other hand,

Eνi =
πi
π1

,

hence,
πi
π1

=
1p1i

1− 1pii
=

qi
1− 1pii

. (6.2)

Let ζ(n), n = 1, 2, . . . , denote i.i.d. copies of ζ . By the Strong Law of Large
Numbers and by the negativity of Eζ there exists ε > 0 such that

p ≡ P
{
ζ(1) + · · ·+ ζ(n) 6 −εn for every n

}
> 0. (6.3)

It follows from the condition (6.1) that, qiven S(0) = i, i > i∗, the chain S and the
random variables ζ(n) can be constructed on the same probability space in such a way
that

S(n) 6 i+ ζ(1) + · · · + ζ(n) a.s.

on the event S(1) > i∗, . . . , S(n − 1) > i∗. The last property and (6.3) imply that
for every i > i∗

P
{
S(1) 6= i, . . . , S(n− 1) 6= i, S(n) 6 i∗ for some n | S(0) = i

}
> p > 0.

Since, in view of the ergodicity of the chain S,

inf
j6i∗

ipj1 > 0,
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it follows that

inf
i>i∗

ipi1> P
{
S(1) 6= i, . . . , S(n− 1) 6= i, S(n) 6 i∗ for some n | S(0) = i

}
× inf
j6i∗ i

pj1

= q > 0.

Hence, by the equality 1pii + ipi1 = 1,

inf
i>i∗

(1− 1pii) > q > 0.

Therefore,

inf
i

(1− 1pii) > 0.

Substituting this into (6.2) yields the assertion of the lemma. �

7. Convergence in the space Xα

The present section is devoted to the proof of theorem 4. By theorem 2 the finite-
dimensional distributions of X(n) converge weakly. So, by Prokhorov’s theorem, for
proving the weak convergence of Y (n) in the space with norm | · |α it remains to check
the tightness condition.

The space Xα is isomorphic to the Hilbert space l1 with the isomorphism

(x1,x2, . . .) 7→ (α1x1,α2x2, . . .).

Since the form of compact sets in l1 is well known, we obtain that for every sequence
ϕ(I) ↓ 0, I →∞, the set

Kϕ≡
{
x:
∑
i>I

αi|xi| 6 ϕ(I), I = 1, 2, . . .

}
is compact in the normed space Xα. Hence, if for every ε > 0 there is ϕ(I) ↓ 0
such that P{X(n) /∈ Kϕ} 6 ε for each n, then tightness holds. The family {(X1(n),
. . . ,Xk(n)), n ∈ N} is tight for each fixed k because of weak convergence of the
finite-dimensional distributions. Taking this into account we obtain that the family
{X(n), n ∈ N} is tight in Xα if

lim sup
n→∞

P
{
Xi(n) > βi/αi for some i > I

}
→ 0 as I →∞. (7.1)

Indeed, in this case we have with high probability∑
i>I

αiXi(n) 6
∑
i>I

βi,

where
∑

i>I βi → 0 as I →∞. So, to prove theorem 4 it is sufficient to verify (7.1).
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Lemma 8. There exists c < ∞ such that, for any initial distribution of (S(0),X(0)),
if

(w + b)λi
π1qi

6 1− ∆, ∆ > 0,

then

lim sup
l→∞

P
{
Xi

(
T (l)

)
> x

}
6 cσi

∆qix
.

Proof. Let the process X and the Markov chain Gi(l) ≡ X i(T (l)) be the same as in
the proof of lemma 5. Consider a quadratic test function. Let us estimate the mean
value of

mi(y) ≡ E
{
G2
i (1)− y2 | Gi(0) = y

}
.

Denote by η, as in lemma 5, the period of time (in “real time”) between two consecutive
server’s arrivals at the first station in the system (S;X). In view of condition (1.10)
we have that

Eη2 <∞. (7.2)

Denote by ξi ≡ ξi(η) the number of new customers at station i between two
consecutive server’s arrivals at the first station in the system (S;X). By Wald’s
identity

Eξi = λiEη =
λi(w + b)

π1
. (7.3)

By the formula of total probability

Eξ2
i =

∫ ∞
0

(
(λit)

2 + σit
)
dP{η < t} = λ2

iEη
2 + σiEη.

Since Eη2 is finite and σi > λi, there exists c1 <∞ such that, for each i,

Eξ2
i 6 c1σi. (7.4)

Denote by ζi the indicator that at least one customer was served at station i
between two consecutive server’s arrivals at the first station in the system (S;X). We
have that Eζi = Eζ2

i = qi.
Given y > 1 and Gi(0) = y, Gi(1) is less than or equal to y + ξi − ζi, in

distribution. Hence, for y > 1,

mi(y)6E(y + ξi − ζi)2 − y2 = 2yE(ξi − ζi) + E(ξi − ζi)2

6 2yE(ξi − ζi) + Eξ2
i + Eζ2

i .

Therefore, by (7.3), (7.4) and the condition of the lemma, for y > 1

mi(y)6 2y

(
λi(w + b)

π1
− qi

)
+ c1σi + qi 6 −2∆qiy + c1σi + qi.
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For y = 0, we have that mi(0) = Eξ2
i 6 c1σi. By lemma 3 the following inequality

is valid:

06
∞∑
y=0

πi(y)mi(y),

where {πi(y)}∞y=0 are the stationary probabilities of the chain Gi(l). Substituting the
estimates for mi(y) gives the inequality

2∆qi
∞∑
y=0

yπi(y)6 c1σi + qi

∞∑
y=1

πi(y) 6 c1σi + c2λi,

using the relevant inequality in the proof of lemma 5. The last inequality, the relation
σi > λi, and Chebyshev’s inequality imply that

∞∑
y=x

πi(y)6 cσi
∆qix

.

Now the assertion follows from (4.2). �

Lemma 9. Let S(0) have distribution {πi}, X(0) = 0, and let ∆ > 0. Then there
exists c <∞ such that, for all i with λi(w + b)/π1qi 6 1− ∆, and for all n,

P
{
S(n) = 1, Xi(n) > x

}
6 cσi
qix

.

Proof. Since T (k) > k, it follows that

lim
k→∞

P
{
S(k) = 1, Xi(k) > x

}
= lim
k→∞

1
k

k∑
m=0

P
{
S(m) = 1, Xi(m) > x

}
6 lim sup

k→∞

1
k

k∑
l=0

P
{
Xi

(
T (l)

)
> x

}
.

In view of lemma 2, for each n,

P
{
S(n) = 1, Xi(n) > x

}
6 lim
k→∞

P
{
S(k) = 1, Xi(k) > x

}
.

Now apply lemma 8. �

Turning now to the proof of (7.1) let S(0) have distribution {πi}, and let
X(0) = 0. As derived in (4.5) we have, for all n,

P
{
Xi(n) > βi/αi for some i > I

}
6

n∑
m=0

P
{
S(n−m) = 1, Xi(n−m) > βi/αi for some i > I

}
P{τ > m}
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+
n∑

m=0

∞∑
l=0

P
{
T (l) = n−m, T (l + 1) > n, BI [n−m,n]

}
+ P

{
T (0) > n

}
= R1(I ,n) +R2(I ,n) + P

{
T (0) > n

}
. (7.5)

By the assumption that lim supi→∞ λi(w + b)/π1qi < 1, and by lemma 9, we obtain
that for some c <∞, I large enough, and all n

R1(I ,n) 6 c
∑
i>I

αiσi
βiqi

Eτ =
c

π1

∑
i>I

αiσi
βiqi

. (7.6)

Substituting the last estimate into (7.5), we obtain

P
{
Xi(n) > βi/αi for some i > I

}
6 c′

∑
i>I

αiσi
βiqi

+ sup
n
R2(I ,n) + P

{
T (0) > n

}
.

Now (7.1) follows from the last estimate, condition (1.11), and convergence (4.8).
Note, that (7.1) is now proved for the special case when S(0) has distribution {πi}
and X(0) = 0. For arbitrary stations j, k, arbitrary m, and x ∈ X ∗, put

pjk(m,x) ≡ P
{
S(m) = k; X(m) = x | S(0) = j, X(0) = 0

}
.

Then it follows from what was said above that

lim sup
n→∞

∑
j,k,x

πjpjk(m,x)P
{
Xi(n)>βi/αi for some i> I |S(m) = k; X(m) =x

}
→ 0

as I →∞. In particular, if pjk(m,x) > 0, then

lim sup
n→∞

P
{
Xi(n) > βi/αi for some i > I | S(m) = k; X(m) = x

}
→ 0,

I →∞. (7.7)

Let now S(0) have arbitrary distribution, and let X(0) be distributed in X ∗. Then
(7.1) holds if for each initial station j and initial queue lengths x ∈ X ∗

lim sup
n→∞

P
{
Xi(n) > βi/αi for some i > I | S(0) = j, X(0) = x

}
→ 0, I →∞.

This convergence follows from (7.7), because x ∈ X ∗ and because, by virtue of the
irreducibility of the system (S;X), there exist k and m such that pjk(m,x) > 0. The
proof of theorem 4 is complete. �
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