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1 Introduction

We consider the first-come-first-served single server queue system. Let τ be a typical interar-
rival time and σ be a typical service time. Sequences of independent identically distributed
interarrival times {τn} with mean a = Eτ and that of service times {σn} with mean b = Eσ

are assumed to be mutually independent. We also assume throughout these notes that the
distribution of σ has unbounded support, i.e. B(x) := P{σ ≤ x}< 1 for all x.

The customers form a single queue in front of the server, and the first customer in the
queue moves immediately to a server when it becomes idle.

For n = 1, 2, . . . , let Dn be the waiting time, or the delay which the nth customer expe-
riences upon its arrival into the system. The waiting times Dn satisfy the Lindley recursion
[13]: D1 = 0 and

Dn+1 = (Dn +σn− τn+1)+.

Recall that Dn+1 coincides in distribution with max(Sk,k ≤ n) where S0 = 0, Sn+1 = Sn +
ξn+1, ξk := σk − τk+1.

The system is assumed to be stable, i.e. ρ ≡ b/a < 1. Under this assumption, there
exists a unique distribution of the stationary waiting time (delay) D, and the distribution of
Dn converges to that of D in the total variation norm as n → ∞.

The stationary delay D in the single server queue is investigated in great details. Let
Br be the residual distribution, that is, the distribution on [0,∞) with density b−1B(x). In
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particular, it is well known (see, for example, [15,17,2,6]) that if the residual distribution
Br is subexponential then D is related to the service time distribution tail B(x) = P{σ > x}
via the equivalence

P{D > x} ∼ ρ

1−ρ
Br(x) as x → ∞. (1)

Recall that a distribution G on R+ is subexponential if G∗G(x)∼ 2G(x) as x → ∞.
Also, it is known from [12] that the asymptotics (1) implies subexponentiality of Br;

earlier it was proved for the case of exponentially distributed τ in [15] and in [5, Corollary
6.1] in the context of risk theory.

Both from theoretical and practical point of view, it is a question of real interest to
know how accurate the asymptotics (1) are. Essentially there are two ways to approach this
problem. The fist one is to find the next term (or several terms) of the asymptotical expansion
like

P{D > x} =
ρ

1−ρ
Br(x)+ cB(x)+o(B(x)) as x → ∞,

with an appropriate constant c > 0, under some additional assumptions on the distribution
B (see, e.g. [3,18,4]). Such asymptotical expansions give an idea how accurate the approxi-
mation in (1) may be for very large x. Nevertheless some authors (see, e.g. [1,16]) show that
the relative error in (1) can be big even for rather large values of x.

The second way is to derive explicit bounds for the difference of the left and right sides
of (1). In this way it is desirable to establish bound similar to the second term in the cor-
responding expansion. And this is the main problem in the area under discussion. The per-
spective solution is likely to be in terms, in particular, of the rate of convergence in the
equivalence Br ∗Br(x)∼ 2Br(x) as x → ∞.

There are two special cases where the distribution of D may be calculated as an explicit
geometric sum generated by Br. If τ is exponentially distributed with parameter a−1 then
(see [2, Section VIII.5])

P{D > x} = (1−ρ)
∞

∑
n=0

ρ
nB∗n

r (x). (2)

Another case is just a lattice analog of the first one. If σ and τ take values on Z and τ is
geometrically distributed, that is, P{τ = n}= qn−1(1−q), n = 1, 2, . . . , then

P{D ≥ N}= (1−ρ0)
∞

∑
n=0

ρ
n
0 B∗n

0 [N,∞),

where the lattice distribution B0 is defined by B0{N} := (b−1)−1B[N +1,∞), N = 1, 2, . . . ,
ρ0 = b−1

a−1 . In both exponential and geometric cases some technique developed for geometric
sums may be applied. Such an approach was developed for regular varying and Weibull
distributions B in [7–10,16]. For general τ , this approach is even less effective because of
necessity for explicit estimates for renewal measure generated by the descending ladder
hight.

Note that the main difficulty in estimating accuracy in (1) consists in establishing of
upper bound, which gives us the worst case scenario, while the lower bound is quite el-
ementary. Indeed, if τ is exponential then the representation (2) together with inequality
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B∗n
r (x)≤ Bn

r (x) implies that (see [9, Theorem 7])

P{D > x} ≥ (1−ρ)
∞

∑
n=0

ρ
n(1−Bn

r (x))

= 1− 1−ρ

1−ρ +ρBr(x)
=

Br(x)
1−ρ

ρ
+Br(x)

,

for a different proof see [11, Theorem 8.7.2].
In the general case the lower bound is slightly different and the proof is more compli-

cated but still quite elementary via an equilibrium identity.

Proposition 1 If ρ < 1 then, for any x ≥ 0,

P{D > x} ≥ EBr(x+ τ)
1−ρ

ρ
+EBr(x+ τ)

.

Proof Let ξ := σ − τ be independent of D. Since D has the stationary distribution, D is
equal in distribution to (D+ξ )+. Now fix x ≥ 0. For z > 0 consider the function

Lz(y) =


x if y ≤ x,
y if y ∈ (x,x+ z],
x+ z if y > x+ z.

Since this function is bounded, ELz(D) is finite and ELz(D) = ELz(D+ξ ). Therefore,

E(Lz(D+ξ )−Lz(D)) = 0.

We have |Lz(D+ξ )−Lz(D)| ≤ |ξ | for all z and Lz(D+ξ )−Lz(D)→ L(D+ξ )−L(D) as
z → ∞ where

L(y) =
{

x if y ≤ x,
y if y > x.

Hence, by the dominated convergence we obtain the equality

E(L(D+ξ )−L(D)) = 0. (3)

We make use of the following bounds. For y ∈ [0,x],

L(y+ξ )−L(y) = (y+ξ − x)I{y+ξ > x} ≥ (ξ − x)I{ξ > x},

and so

E{L(D+ξ )−L(D);D ≤ x} ≥ E{ξ − x;ξ > x}P{D ≤ x}. (4)

For y > x,
L(y+ξ )−L(y)≥ ξ ,

and so

E{L(D+ξ )−L(D);D > x} ≥ EξP{D > x}. (5)

Substituting (4) and (5) into (3) we get the inequality

E{ξ − x;ξ > x}P{D ≤ x} ≤ −EξP{D > x}.
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Therefore,

P{D > x} ≥ E{ξ − x;ξ > x}
a−b+E{ξ − x;ξ > x}

.

Since

E{ξ − x;ξ > x} = E(ξ − x)+

=
∫

∞

0
P{ξ − x > y}dy =

∫
∞

0
P{σ > x+ τ + y}dy,

conditioning on τ leads to the equality E{ξ − x;ξ > x}= bEBr(x+ τ), so that the required
lower bound for P{D > x} follows.

To conclude the discussion on this open problem we mention the possibility of obtaining
upper bounds via Lyapunov (test) functions. Such types of bounds are never tight in the case
of heavy tails but they are easily computable in explicit way. Let, for example, σ have β th
moment finite, mβ := Eσβ < ∞, β ≥ 2. Consider the test function V (x) = xβ I{x > 0} and
calculate the drift of V at point x. Take x1 such that Emax(σ − τ,−x1) ≤ 2(b− a)/3 < 0.
Then, for x ≥ x1, we have

EV (x+σ − τ)−V (x) = L′(x)Emax(σ − τ,−x)+EV ′′(x+θ(σ − τ)(σ − τ)2/2

≤ −2V ′(x)(a−b)/3+EV ′′(x+σ)(σ − τ)2/2

≤ −2V ′(x)(a−b)/3+2β−2(V ′′(x)E(σ − τ)2 +EV ′′(σ)(σ − τ)2)/2,

here we take use of the inequality V ′′(x + y)≤ 2β−2(V ′′(x)+V ′′(y)). Take x2 := 2β−1(β −
1)E(σ − τ)2/(a−b). Then, for all x ≥ x2,

EV (x+σ − τ)−V (x) ≤ −V ′(x)(a−b)/3+ c1,

where c1 := 2β−2β (β −1)Eσβ−2(σ − τ)2/2. Put x3 := max(x1,x2). For all x ∈ [0,x3],

EV (x+σ − τ)−V (x) ≤ EV (x+σ)−V (x)

≤ EV ′(x3 +σ)σ =: c2.

Combining this altogether we deduce, for all x,

EV (x+σ − τ) ≤ V (x)−V ′(x)(a−b)/3+ c3,

where c3 := max(c1,c2)+V ′(x3)(a−b)/3. Therefore, as follows from [14, Theorem 14.3.7],
EV ′(D)≤ 3c3/(a−b), that is,

EDβ−1 ≤ 3c3/(a−b)β .

Now if we consider service time with Pareto type distribution, for example P{σ > x}=
x−α , x ≥ 1, α > 1, then we may take β = α − ε , ε > 0. In this case Eσβ = O(1/ε) as
ε ↓ 0 and c3 = O(1/ε), so that EDβ−1 ≤ c/ε with explicit constant c. Hence, the Chebyshev
inequality implies the following upper bound,

P{D > x} ≤ c
εxβ−1 =

c
εxα−1−ε

,

which is heavier than the actual asymptotics

P{D > x} ∼ α −1
(a−b)xα−1 ,

but may be still useful.
Similar calculations can be carried out for the moments of order exβ

, β ∈ (0,1), with
further application to Weibull type distributions.
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