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ONE-DIMENSIONAL ASYMPTOTICALLY

HOMOGENEOUS MARKOV CHAINS:

CRAM

�

ER TRANSFORM AND

LARGE DEVIATION PROBABILITIES

D.A.Korshunov

�

Abstrat

We onsider a time-homogeneous ergodi Markov hain fX

n

g that takes values on

the real line and has asymptotially homogeneous inrements at in�nity. We as-

sume that the \limit jump" � of fX

n

g has negative mean and satis�es the Cram�er

ondition, i.e., the equation E e

��

= 1 has positive solution �. The asymptoti be-

havior of the probability PfX

n

> xg is studied as n!1 and x!1. In parti-

ular, we distinguish the ranges of time n where this probability is asymptotially

equivalent to the tail of a stationary distribution.

Key words and phrases: real-valued Markov hain, large deviation probabilities,

transition phenomena, Cram�er transform, invariant distribution.

1. Introdution

Let P (x;B), x 2 R, B 2 B(R), be some time-homogeneous transi-

tion probability in R; here and in the sequel, B(R) denotes the �-algebra

of Borel sets in R. In the present artile the parameter n (time) ranges over

the set f0; 1; 2; : : :g. Consider a Markov hain fX

n

g with values in R and

the transition probabilities

P (x;B) = PfX

n+1

2 B j X

n

= xg:

Let �

n

be the distribution of X

n

, i.e. �

n

(B) = PfX

n

2 Bg. Denote by �(x)

the random variable whose distribution orresponds to the distribution of

the jump of fX

n

g from the state x, namely,

P

�

x + �(x) 2 B

	

= P (x;B); B 2 B(R):
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In this artile we study an asymptotially homogeneous (in spae) Markov

hain X

n

, i.e., a hain suh that the distribution of the jump �(x) has a weak

limit as x!1. Let the distribution of �(x) onverges weakly to the distribu-

tion F of a random variable �. We assume that E � < 0 and Pf� > 0g > 0.

The Laplae transform '(�) � E e

��

of the random variable � is a onvex

funtion, '(0) = 1, and '

0

(0) = E � < 0. Thus, the set

�

� : '(�) � 1

	

is an interval of the form [0; �℄, where � = sup

�

� : '(�) � 1

	

. Sine

Pf� > 0g > 0, it follows that � is a �nite number. In the artile we onsider

the Cram�er ase orresponding to the situation when � > 0 and '(�) = 1.

We assume that X

n

is a Harris ergodi hain with the unique invariant

distribution �. Then the distribution of X

n

onverges in the total variation

distane to � as n!1, i.e.,

j�

n

� �j(R) � 2 sup

B2B(R)

�

�

�

n

(B)� �(B)

�

�

! 0 (1)

�

here and in the sequel, for every signed measure � and every set B, we denote

the total variation of � on B by j�j(B)

�

. For a ountable hain X

n

, (1) takes

plae automatially provided the hain is irreduible, nonperiodi, and positive

reurrent; for real-valued hains the orresponding ergodiity onditions an

be found, for example, in [2, 10℄.

In view of (1), the family of distributions X

n

is tight, i.e., sup

n�0

PfX

n

>

xg ! 0 as x!1. In the present artile we study the asymptoti behavior of

the probability PfX

n

> xg as n!1 and x!1.

The simplest and, at the same time, very impotent example of suh

Markov hain is provided by the random walk W

n

with delay at the origin

(whih is alled a spae-homogeneous Markov hain in [4, 5℄) de�ned by the re-

ursion

W

n+1

= (W

n

+ �

n

)

+

;

where �

0

; �

1

; : : : are independent opies of the random variable �. Put S

0

= 0,

S

k

= �

1

+ � � �+ �

k

, and M

n

= max

0�k�n

S

k

. It is well known (see, for example,

[7, Chapter VI, Setion 9℄) that the distribution of the hain W

n

with zero

initial state W

0

= 0 oinides with the distribution of M

n

, i.e.,

PfW

n

> xg = PfM

n

> xg: (2)

In partiular, if W

0

= 0 then the sequene W

n

is stohastially growing and,

hene, has a weak limit. Denote by W

1

the random variable with this limit

distribution. The following Cram�er estimate is well known:

PfW

1

> xg � e

��x

; x � 0:

In addition, if � � '

0

(�) = E �e

��

is �nite then

PfW

1

> xg �

1� p

�ea

e

��x

as x!1 (3)
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(see [7, Chapter XII, Setion 5; 6℄), where p = PfM

1

> 0g and ea =

E

�

S

�

e

�S

�

; � < 1

	

with � = minfn � 1 : S

n

> 0g. Sine E � < 0, we

have p < 1, and both � and S

�

are defetive random variables.

In the ase when the distribution of � has a nonzero absolutely ontinuous

omponent, the prestationary distributions of W

n

were studied in detail by

A.A.Borovkov in [1℄. Theorems 7{11 of [1℄ provide the asymptoti expansion

for the probability P

�

max

0�k�n

S

k

� x; S

n

< x� y

	

within the broad ranges

of the parameters n, x, and y.

In [5℄ A.A.Borovkov and D.A.Korshunov generalized the results on

the asymptoti behavior of the probability PfW

n

> xg as n ! 1 and

x!1 for the Markov hains with values on the real line. Namely, the ase of

the so-alled U -partially homogeneous (in spae)Markov hain was onsidered.

We all a hain U -partially homogeneous, if, for every Borel set B � (U;1),

the transition probability P (y; B) oinides with the probability Pfy+ � 2 Bg

when y ranges over (U;1). In other words, in the domain (U;1) the sto-

hasti behavior of X oinides with the proess of summation of independent

random variables with ommon distribution F .

Earlier the author found the onditions on the asymptotially spae-

homogeneous Markov hain under whih the tail of the stationary distribu-

tion � is dereasing exponentially like in the estimate (3) for the distribution

tail of the supremum of partial sums (see [2, Setion 27, Theorems 3{5℄). We re-

produe the orresponding statements in view of their fundamental role in

the subsequent exposition. We start with the large deviation priniple (rough

asymptoti behavior) whih is valid under rather broad onditions. Following

traditions, heneforth the values of a measure � at the sets (x; y) and (x; y℄

are denoted by �(x; y) and �(x; y℄.

Theorem 1. Let the jumps of an asymptotially spae-homogeneous

Markov hain X

n

satisfy the ondition sup

y

E e

��(y)

<1. If �(y;1) > 0 for

every y then log �(x;1) � ��x as x!1.

In [5, Theorem 1℄ this result was generalized on the prestationary dis-

tributions; the large deviation priniple was proved for the asymptotially

homogeneous Markov hain.

In order to �nd the sharp asymptoti behavior of the probability �(x;1),

it is not suÆient to know only that the hain is asymptotially homogeneous.

We need some additional information about the onvergene rate of the jump

distribution to the limit distribution F .

Theorem 2. Let the distribution F be nonlattie and let the jumps

of X

n

satisfy the ondition

Z

1

�1

e

�t

�

�

P

�

�(y) < t

	

� Pf� < tg

�

�

dt � Æ(y); (4)
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where Æ(y) is a funtion regularly varying at in�nity with index ��, i.e.,

Æ(uy) � u

��

Æ(y) as y !1 for every �xed u > 0. If

Z

1

0

Æ(y) dy <1 (5)

(so that � � 1) then the tail of the invariant distribution � satis�es the as-

ymptoti equivalene

�(x;1) = e

��x

+ o

�

e

��x

�

as x!1; (6)

where

 =

1

�E �e

��

Z

1

�1

�

E e

��(y)

� 1

�

e

�y

�(dy) 2 [0;1): (7)

If F is a lattie distribution with span � > 0 and the hain X

n

takes

values on the lattie fn�; n 2 Zg then

�(n�) = 

�

e

��n�

+ o

�

e

��n�

�

as n!1; (8)

where



�

=

�

E �e

��

X

k2Z

�

E e

��(k�)

� 1

�

e

�k�

�(k�) 2 [0;1): (9)

In [2℄ we gave suÆient onditions for the positivity of the onstant .

Namely, if �(y;1) > 0 and E e

��(y)

� 1 � (y) for every y, where (y) � 0

and

R

1

1

(y)y(log y) dy <1, then  > 0.

The ondition (5) says that, roughly speaking, the onvergene rate of

the distribution of �(x) to that of � should be integrable. In Setion 10 we

give an example showing that, in some sense, the onditions (4) and (5) are

neessary for (6).

In present artile we obtain the exat asymptotis for the probability

PfX

n

> xg as n ! 1 and x ! 1 provided that the Markov hain X

n

is

asymptotially homogeneous in the spae and satis�es the onditions like (4)

and (5). We distinguish the ranges of time n where the probability PfX

n

> xg

is asymptotially equivalent to the tail �(x;1) of the invariant distribution.

A few words about the tehnique of proving. In [5℄ the study of U -partially

homogeneous hain is based on the total probability formula with respet to

the last entry into the set (�1; U ℄; namely, on the formula

PfX

n

> xg =

n�1

X

k=0

P

�

X

k

� U; X

j

> U for every j 2 [k + 1; n℄; X

n

> x

	

:
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Aording to the Markov property the summand in the last sum equals

P

n

X

k

� U; X

j

> U for every j 2 [k + 1; n℄; X

n

> x

o

=

Z

U

�1

PfX

k

2 dug

Z

1

U

P (u; dv)

� P

n

X

j

> U for every j 2 [k + 2; n℄; X

n

> x j X

k+1

= v

o

:

Sine the hain is U -partially homogeneous, above the level U the hain

stohastially behaves like a partial sum proess with the ommon step dis-

tribution F . This property allows us to alulate the last probability via

the well-known theorem on the taboo probabilities of large deviations for sums

of independent identially distributed random variables. For the asymptoti-

ally homogeneous hain this approah annot be used sine, in general, for

every high level U , the stohasti behavior of the hain above this level an-

not be desribed in terms of the partial sum proess based on independent

variables. Therefore we propose a new tehnique of proving.

The sketh of the proof follows: First, we apply the Cram�er transform with

orresponding parameter to the Markov hain under onsideration. As a result,

we obtain some objet alled the Markov evolution of masses. The main

di�erene between the Markov evolution of masses and the usual Markov hain

is that the jump of the Markov evolution of masses an have the total mass

(\probability") other than 1; in partiular, it an be greater than 1. Then

some limit theory is developed for the Markov evolution of masses and for

the Markov hains. In partiular, we prove the analogs of the entral limit

theorem. After that, we apply the inverse Cram�er transform to the Markov

evolution of masses what allows us to ompute the asymptoti behavior of

the probability of the event fX

n

> xg.

The artile is organized as follows: We obtain the main results in The-

orems 6 and 7 (in Setions 6 and 8 respetively) desribing the asymptoti

behavior of the large deviation probabilities of asymptotially homogeneous

Markov hain. In Setions 2{5, we develop the preliminary theory. In parti-

ular, in Setion 2, we disuss the notion and some properties of the Markov

evolution of masses. In Setion 3, we prove the loal limit theorem and the lo-

al renewal theorem for the asymptotially homogeneous Markov hain. Se-

tions 4 and 5 are devoted to more deliate asymptoti properties of the distri-

bution of the Markov evolution of masses. The artile is onluded with Se-

tion 10 in whih a simple example of asymptotially homogeneous Markov

hain demonstrates that the prinipal onditions of Theorem 6 on the integra-

bility of the onvergene rate of the distribution of �(x) to that of � annot be

weakened.
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2. The Markov evolution of masses

A Markov hain X

n

with the distribution �

n

may be onsidered as

the Markov evolution of unit mass in the spae R. Spei�ally, at time n = 0

the unit mass is distributed on the spae R aording to the law �

0

. At the

next moment of time n = 1 the mass is redistributed aording to the tran-

sition funtion P (� ; �), i.e., from every point u 2 R the element of mass is

redistributed on R aording to the law P (u; �). Hene, at time n = 1 the to-

tal unit mass is distributed aording to �

1

, i.e., the mass of every measurable

set B � R is equal to �

1

(B). And so on, at any time n.

Introdue the notion of generalized transition kernel Q(u;B), u 2 R,

B 2 B(R), possessing all properties of ordinary Markov transition kernel exept

for the fat that the nonnegative funtion Q(u;R) of the argument u is equal

to one. Thus, the values of Q(u;R) an be less or greater than one. Clearly,

the funtion

Q

�

(u;B) =

Q(u;B)

Q(u;R)

represents a traditional Markov transition kernel.

Let Q

0

be some nonnegative measure on R. Then the generalized transi-

tion kernel Q(u;B) generates the family of nonnegative measures fQ

n

g de�ned

by the reurrent equality

Q

n+1

(B) = (Q

n

Q)(B) �

Z

R

Q(u;B)Q

n

(du); n � 0:

De�ne the Markov evolution of masses (or simply the Markov mass)

Y

n

orresponding to the generalized transition kernel Q(� ; �) as follows: at

time n = 0 the mass Q

0

(R) is distributed on R aording to the law Q

0

.

During the time step n! n+1 the element of mass Y

n

at state u 2 R hanges

Q(u;R) times and the new element of mass Y

n+1

is distributed on the spae

aording to the measure Q(u;B)=Q(u;R). Therefore, at eah moment of

time n the mass is distributed aording to the lawQ

n

(�), i.e., the mass of every

measurable set B 2 B(R) equals Q

n

(B). While speaking about an ordinary

Markov hain we use the term \the value of X

n

at time n;" for the Markov

evolution of masses we use the term \element of mass Y

n

at time n" and denote

the mass of B at time n by MesfY

n

2 Bg.

Observe that, generally speaking, the �nite-dimensional distributions of

masses (Y

0

; : : : ; Y

n

) are not onsistent. For example, if Q(u;R) � 2 then

the mass of B

0

� � � ��B

n

�R is twie greater than the mass of B

0

� � � ��B

n

.

Thus, in general, the analog of the total probability formula does not hold.

Nevertheless, in order to alulate the mass of the measurable set B at time n,

we an \trae" all trajetories of the element of mass leading to B and \sum"

the masses that are arrying along these trajetories aording to the general-

ized transition kernel. For example, given two disjoint nonempty Borel sets B
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and B

1

, the measure of B at time n an be alulated by the following formula

with respet to the last entry of the element of mass into B

1

:

MesfY

n

2 Bg = Mes

�

Y

0

=2 B

1

; : : : ; Y

n�1

=2 B

1

; Y

n

2 B

	

+

n�2

X

k=0

Mes

�

Y

k

2 B

1

; Y

k+1

=2 B

1

; : : : ; Y

n�1

=2 B

1

; Y

n

2 B

	

+MesfY

n�1

2 B

1

; Y

n

2 Bg: (10)

Note in addition that here

Mes

n

Y

k

2 B

1

; Y

k+1

=2 B

1

; : : : ; Y

n�1

=2 B

1

; Y

n

2 B

o

=

Z

RnB

1

Q(u

n�1

; B)

Z

RnB

1

Q(u

n�2

; du

n�1

) � � �

Z

RnB

1

Q(u

k

; du

k+1

)

Z

B

1

Q

k

(du

k

):

Denote by �(u) the jump of the Markov evolution of masses Y

n

from

state u. By de�nition, �(u) is a funtion on some measurable spae with

the total mass Q(u;R) and the generalized distribution Q(u; u + �). Thus,

Mes

�

u+ �(u) 2 B

	

= Q(u;B).

2.1. Numerial harateristis. By the mean value of a funtion Y on

some measurable spae with �nite total mass we mean the integral EY =

R

R

yQ(dy), where Q is the generalized distribution of Y . So,

EY

n

=

Z

R

yQ

n

(dy); E�(u) =

Z

R

yQ(u; u+ dy):

Note that the mean value is a linear funtional if we onsider the funtions on

a �xed spae with a �xed measure. But the equality

EY

n+1

= EY

n

+

Z

R

E �(u)Q

n

(dy);

in general, is not valid. For example, if the distribution of the jump �(u) does

not depend on u and equals � then EY

1

= EY

0

� �(R) + Q

0

(R) � E �, but not

EY

1

= EY

0

+ E �.

Nevertheless, the time behavior of the exponential moments of the Markov

evolution of masses, namely the Laplae transform and the harateristi fun-

tion, is ompletely the same as one of the exponential moments of ordinary

Markov hain. Sine

Ee

�Y

n+1

=

Z

R

e

�y

Q

n+1

(dy)

=

Z

R

e

�y

Z

R

Q(u; dy)Q

n

(du)

=

Z

R

e

�(u+z)

Z

R

Q(u; u+ dz)Q

n

(du);



Large Deviation Probabilities 37

the following equality holds:

Ee

�Y

n+1

=

Z

R

e

�u

Ee

��(u)

Q

n

(du): (11)

2.2. The analog of Chebyshev's inequality. For every positive inreasing

funtion f(u), the inequality

MesfY � yg �

E f(Y )

f(y)

is valid. In partiular, for every � > 0, we have

MesfY � yg = Mesf�Y � �yg � e

�y

Ee

��Y

: (12)

2.3. The Cram�er transform over a Markov hain: the inversion formula.

LetX

n

be a real-valued Markov hain with transition probabilities P (u;B) and

distribution �

n

. Given � > 0, de�ne a generalized transition kernel P

(�)

(� ; �)

by the equality

P

(�)

(u; dv) = e

�(v�u)

P (u; dv);

the measure P

(�)

(u; u+ �) represents the Cram�er transform over the distribu-

tion P (u; u + �) with parameter �. In addition, for every n, de�ne the mea-

sure �

(�)

n

as

�

(�)

n

(du) = e

�u

PfX

n

2 dug:

The following reurrent equality is true:

�

(�)

n+1

(B) =

Z

B

e

�v

PfX

n+1

2 dvg

=

Z

B

e

�v

Z

R

P (u; dv)PfX

n

2 dug

=

Z

B

Z

R

e

�(v�u)

P (u; dv)e

�u

PfX

n

2 dug

=

Z

B

Z

R

P

(�)

(u; dv)�

(�)

n

(du)

=

Z

R

P

(�)

(u;B)�

(�)

n

(du):

Thus, the Markov evolution of masses X

(�)

n

with generalized transition ker-

nel P

(�)

(� ; �) is distributed aording to �

(�)

n

, i.e.,

�

(�)

n

(B) = Mes

�

X

(�)

n

2 B

	

for all n � 0 and B 2 B(R).
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By the onstrution of �

(�)

n

, the following inversion formula is valid:

�

n

(B) =

Z

B

e

��u

�

(�)

n

(du): (13)

In general, the following holds:

Lemma 1. For every n 2 Z

+

and u

0

; : : : ; u

n

2 R,

PfX

0

2 du

0

; : : : ; X

n

2 du

n

g = e

��u

n

Mes

�

X

(�)

0

2 du

0

; : : : ; X

(�)

n

2 du

n

	

:

Proof follows from the equalities

PfX

0

2 du

0

; : : : ; X

n

2 du

n

g

= PfX

0

2 du

0

gP (u

0

; du

1

) � � �P (u

n�1

; du

n

)

= e

��u

0

Mes

�

X

(�)

0

2 du

0

	

e

��(u

1

�u

0

)

P

(�)

(u

0

; du

1

)

� � � e

��(u

n

�u

n�1

)

P

(�)

(u

n�1

; du

n

)

= e

��u

n

Mes

�

X

(�)

0

2 du

0

; : : : ; X

(�)

n

2 du

n

	

:

3. The loal renewal theorem for transient Markov hains

We start with some modi�ations of (the loal limit) Theorems 7 (the lat-

tie ase) and 8 (the nonlattie ase) of the artile [9℄ whih are essential for

our subsequent study.

Let X

�

n

be a real-valued Markov hain. Denote the jump of this hain at

the state x by �

�

(x).

Theorem 3. Let the jumps of X

�

possess a minorant � with E � > 0

and Var � <1, i.e., for every x 2 R, the following stohasti inequality holds:

�

�

(x) �

st

�: (14)

Let �

�

(x)) �

�

as x!1, let the relations

E �

�

(x) = � + o

�

1=

p

x

�

;

Var �

�

(x)! �

2

> 0

hold, and let the family

��

�

�

(x)

�

2

; x 2 R

	

be uniformly integrable. In addi-

tion, assume that the initial distribution of the hain satis�es the ondition

P

�

X

�

0

� �x

	

= o

�

1=

p

x

�

as x!1.

If �

�

is a nonlattie random variable and, for every A > 0,

sup

j�j�A

�

�

E e

i��

�

(x)

� E e

i��

�

�

�

= o(1=x) as x!1 (15)
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then, for eah �xed � > 0, the following relation holds as n!1:

sup

x2R

�

�

�

�

P

�

X

�

n

2 (x; x +�℄

	

�

�

p

2�n�

2

e

�(x�n�)

2

=2n�

2

�

�

�

�

= o

�

1=

p

n

�

:

If the hain X

�

n

takes its values on the lattie f�k; k 2 Zg, � > 0, this

lattie is minimal, and

sup

j�j��=�

�

�

E e

i��

�

(k�)

� E e

i��

�

�

�

= o(1=k) as k !1;

then, as n!1, we have

sup

k2Z

+

�

�

�

�

PfX

�

n

= k�g �

�

p

2�n�

2

e

�(k��n�)

2

=2n�

2

�

�

�

�

= o

�

1=

p

n

�

:

Proof. As was observed in [9, Setion 4.2℄, the ondition (14) of the ex-

istene of minorant � with positive mean and �nite variane together with

the ondition on the left tail of the initial distribution provide the following

estimate:

P

�

X

�

k

� kE �=2 for some k � n

	

= o

�

1=

p

n

�

as n!1:

Thus, all onditions of Theorems 7 and 8 of [9℄ are satis�ed, whih ompletes

the proof.

De�ne the renewal measure generated by the Markov hain X

�

n

:

H(B) �

1

X

n=0

PfX

�

n

2 Bg

and the renewal proess

e

H(B) �

1

X

n=0

IfX

�

n

2 Bg:

The equality H(B) = E

e

H (B) holds.

Lemma 2. Let the minorization ondition (14) hold with E � > 0 and

E �

2

< 1. Then there exists a random variable � with �nite mean suh that

e

H(x; x+ 1℄ �

st

� for every x 2 R.

Proof. Consider the sums Z

n

= �

1

+ � � �+ �

n

, Z

0

= 0, where �

1

; �

2

; : : : are

independent opies of �. Sine the mean � is positive and the seond moment

is �nite, we have (see, for example, [11, Corollary 2.5℄)

� �

1

X

n=0

I

�

Z

n

� 1

	

<1; E � <1: (16)
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Let �(x) = minfn � 0 : X

�

n

> xg. Sine � minorizes the jumps, the Markov

hain X

�

n

and the sequene Z

n

an be de�ned on a ommon probability spae

so that X

�

�(x)+n

� x + Z

n

with probability 1 for every n � 0. Therefore,

e

H(x; x + 1℄ =

1

X

n=0

I

�

X

�

�(x)+n

2 (x; x + 1℄

	

�

1

X

n=0

I

�

X

�

�(x)+n

� x + 1

	

�

st

1

X

n=0

I

�

x+ Z

n

� x+ 1

	

;

whih, together with (16), implies the lemma onlusion.

From now on, we assume, in addition, that the hain X

�

n

is asymptotially

homogeneous. Let F

�

be the limit distribution of the variable �

�

(x) and let

�

�

be a random variable with the distribution F

�

.

Theorem 4. Let F

�

be a nonlattie distribution, let � = E �

�

, and let

the jumps of the hain X

�

possess a minorant � and a majorant � with E � > 0,

Var � <1, and E � <1, i.e., for every x, the following stohasti inequalities

are satis�ed:

� �

st

�

�

(x) �

st

�;

Then, for eah �xed � > 0, we have

lim

x!1

H(x; x+�℄ = �=�:

If, in addition, �

2

= Var �

�

< 1 and the loal limit theorem holds, i.e., if

the relation

P

�

X

�

n

2 (x; x+�℄

	

=

�

p

2�n�

2

e

�(x�n�)

2

=2n�

2

+ o

�

1=

p

n

�

holds as n!1 uniformly in x then, as n!1 and x!1,

n

X

k=0

P

�

X

�

k

2 (x; x +�℄

	

=

�

�

�

�

2

�

n�� x

p

x=�

�

+ o(1):

Proof. Denote by �(x) and �(x) the time and the value of the �rst

overshoot of the level x by the hain X

�

n

:

�(x) = min

�

n � 0 : X

�

n

> x

	

; �(x) = X

�

� (x)

� x:
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Let �

�

1

; �

�

2

; : : : be independent opies of the random variable �

�

. Put S

�

n

=

�

�

1

+ � � � + �

�

n

. Denote by �

�

(x) and �

�

(x) the time and the value of the �rst

overshoot of the level x by the sums S

�

n

:

�

�

(x) = min

�

n � 0 : S

�

n

> x

	

; �

�

(x) = S

�

� (x)

� x;

and by

e

H

�

(B) =

1

X

n=0

IfS

�

n

2 Bg;

the renewal proess. It is known (see, e.g., [11, Theorem 2.3℄) that the distri-

bution of �

�

(x) onverges weakly as x ! 1 to the distribution of the over-

shoot �

�

(1) of the so-alled in�nite level, and the distribution of �

�

(1) is

absolutely ontinuous. In view of absolute ontinuity of the overshoot weak

limit, the distribution of

e

H

�

(x; x + �℄ onverges weakly as x ! 1 to some

distribution, say G. By virtue of the loal renewal theorem for sums of indepen-

dent identially distributed random variables (see, for example, [7, Chapter XI;

11, Appendix℄), the mean of the distribution G is equal to �=�.

The onditions of Theorem 4 allow us to apply Theorem 2.2 of [3℄ a-

ording to whih the distribution of the overshoot �(x) onverges weakly to

the distribution of �

�

(1). Therefore, the distribution of

e

H(x; x + �℄ on-

verges weakly to the distribution G. Taking it into aount that, by Lemma 3,

the family

�

e

H(x; x + �℄; x 2 R

	

admits an integrable majorant, we obtain

the onvergene of the mean value of

e

H(x; x+�℄ to that of G as x!1, i.e.,

H(x; x+�℄! �=�;

and the �rst assertion of the theorem is proven.

If the loal limit theorem is valid then, for any �xed s and t, s < t,

the following onvergene holds:

x=�+t

p

x

X

k=x=�+s

p

x

P

�

X

�

k

2 (x; x+�℄

	

�

x=�+t

p

x

X

k=x=�+s

p

x

�

p

2�k�

2

e

�(x�k�)

2

=2k�

2

! 0

as x!1. Thus,

x=�+t

p

x

X

k=x=�+s

p

x

P

�

X

�

k

2 (x; x +�℄

	

!

�

�

�

�

�

2

�

t�

3=2

�

� �

�

2

�

s�

3=2

�

�

:

The last onvergene, together with the �rst assertion of the theorem, implies

the seond assertion. The proof is omplete.
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In the lattie ase assertions of Theorem 4 an be formulated as follows:

if F is a lattie distribution with span � > 0 then

lim

k!1

H(k�) = �=�;

n

X

j=0

P

�

X

�

j

= k�

	

=

�

�

�

�

2

�

n�� k�

p

k�=�

�

+ o(1)

uniformly in k as n!1.

4. Some preliminary estimates for

the distribution of a Markov evolution of masses

We onsider a Markov evolution of masses fY

n

g with jumps f�(x)g. De-

note Q

n

(B) = MesfY

n

2 Bg and Q(x;B) = Mes

�

x + �(x) 2 B

	

. Put

b

Q(x) � sup

y>x

Q(y;R);

b

Q � sup

y2R

Q(y;R):

First of all we �nd onditions on the Markov evolution of masses whih

provide the boundedness of the sequene of the whole spae masses.

Lemma 3. Let Q

0

(R) < 1 and

b

Q < 1. If, for some sequene of

levels x

n

, n � 0,

1

X

n=0

Q

n

(�1; x

n

℄ <1; (17)

1

X

n=0

bq(x

n

) <1; (18)

where

bq(x) � sup

y>x

�

�

Q(y;R) � 1

�

�

;

then the sequene of total masses is bounded:

sup

n�0

Q

n

(R) <1;

moreover, there exists a �nite limit

lim

n!1

Q

n

(R) = Q 2 [0;1):
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Proof. By indution on n, we hek the inequality

Q

n+1

(R) � Q

0

(R)

n

Y

k=0

b

Q(x

k

) +

b

Q

n

X

k=0

Q

k

(�1; x

k

℄

n

Y

j=k+1

b

Q(x

j

): (19)

We have

Q

n+1

(R) =

�

Z

x

n

�1

+

Z

1

x

n

�

Q(x;R)Q

n

(dx) �

b

QQ

n

(�1; x

n

℄ +

b

Q(x

n

)Q

n

(R):

For n = 0 this estimate implies the inequality

Q

1

(R) �

b

QQ

0

(�1; x

0

℄ +

b

Q(x

0

)Q

0

(R);

whih justi�es the basis of the indution. By the indution hypothesis,

Q

n+1

(R) �

b

QQ

n

(�1; x

n

℄ +

b

Q(x

n

)Q

n

(R)

�

b

QQ

n

(�1; x

n

℄

+

b

Q(x

n

)

"

Q

0

(R)

n�1

Y

k=0

b

Q(x

k

) +

b

Q

n�1

X

k=0

Q

k

(�1; x

k

℄

n�1

Y

j=k+1

b

Q(x

j

)

#

= Q

0

(R)

n

Y

k=0

b

Q(x

k

) +

b

Q

n

X

k=0

Q

k

(�1; x

k

℄

n

Y

j=k+1

b

Q(x

j

);

whih implies the indution step.

Sine the series (18) onverges, we obtain

Q

sup

� sup

n�0

n

Y

k=0

b

Q(x

k

) � sup

n�0

n

Y

k=0

�

1 + bq(x

k

)

�

<1:

From here and (19) we derive the estimate

Q

n+1

(R) � Q

0

(R)Q

sup

+

b

QQ

sup

n

X

k=0

Q

k

(�1; x

k

℄; (20)

whih proves the �rst assertion of the lemma. Further, for every n � 0, we

have

�

�

Q

n+1

(R) �Q

n

(R)

�

�

=

�

�

�

�

�

�

Z

x

n

�1

+

Z

1

x

n

�

�

Q(x;R) � 1

�

Q

n

(dx)

�

�

�

�

�

� (

b

Q + 1)Q

n

(�1; x

n

℄ +Q

n

(R)bq(x

n

):

Sine the sequene Q

n

(R) is bounded, from (17) and (18) it follows that

the sequene Q

n

(R) is fundamental. The proof is omplete.
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Lemma 4. Assume that the Markov evolution of masses takes positive

values only. Let

b

Q <1 and let, for eah �xed " > 0, the ondition (18) hold

for the sequene x

k

= k". If, for some � > 0,

E

sup

� sup

u>0

Ee

���(u)

< 1 (21)

then there exists b < 1 suh that, for any n � 0 and initial distribution Q

0

,

the following estimate holds:

Q

n

(R) � b

�

Q

0

(R) + 1

�

:

Proof. By (11), we have the estimate

Ee

��Y

n

=

Z

1

0

e

��u

Ee

���(u)

MesfY

n�1

2 dyg

� E

sup

Z

1

0

e

��u

MesfY

n�1

2 dyg

= E

sup

Ee

��Y

n�1

:

Therefore,

Ee

��Y

n

� Ee

��Y

0

(E

sup

)

n

� Q

0

[0;1)(E

sup

)

n

:

Using the analog of the exponential Chebyshev inequality (12) with y = n",

we arrive at the inequality

MesfY

n

� n"g � e

�n"

Ee

��Y

n

� Q

0

[0;1)

�

e

�"

E

sup

�

n

:

Sine E

sup

< 1, there exists a suÆiently small " > 0 suh that

Æ � e

�"

E

sup

< 1: (22)

With suh hoie of ", the ondition (17) of Lemma 3 is satis�ed. The lemma

assertion follows from the estimate (20).

In the following lemma we onsider the Markov evolution of masses that

do not neessarily satisfy (17). Nonful�llment of this ondition leads to the pos-

sibility of unbounded growth of the sequene of the total spae masses. In the

ase of ordinary Markov hain, it is impossible sine, if the mass tends to in-

�nity, then the mass disappears near the origin. In the ase of the Markov

evolution of masses the jumps an generate masses greater than 1 and, there-

fore, the states near the origin an serve as a permanent soures of new masses.

Lemma 5. Let Q

0

(R) <1,

b

Q <1,

sup

n�0

Q

n

(�1; 0℄ <1
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and, for eah �xed " > 0, the ondition (18) hold for the sequene x

k

= k".

If, for some � > 0, the ondition (21) is satis�ed then there exists b <1 suh

that, for any n � 0 and x > 0, the following estimate holds:

Q

n

(�1; x℄ � b (x + 1):

Proof. In view of the ondition sup

n

Q

n

(�1; 0℄ <1, it is neessary and

suÆient to prove that, for some 

1

,

Q

n

(0; x℄ � 

1

(x + 1): (23)

We make use of the formula (10) on the last entrane into the set (�1; 0℄:

Q

n

(0; x℄ = Mes

�

Y

0

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

+

n�1

X

k=0

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

:

By Lemma 4, there exists 

2

<1 suh that, for any n � 0 and k < n,

Mes

�

Y

0

> 0; : : : ; Y

n

> 0

	

� 

2

;

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n

> 0

	

� 

2

:

Here the seond estimate follows from the fat that the value

Mes

�

Y

k

� 0; Y

k+1

> 0

	

� Q

k

(�1; 0℄

b

Q

is bounded uniformly in k � 0.

Choose " > 0 so that (22) is valid. If n � 2x=" then the lemma assertion

follows from the inequalities

Q

n

(0; x℄ � n

2

� 2x

2

=":

If n > 2x=" then

Q

n

(0; x℄ �

n�x="

X

k=0

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

+ x

2

=": (24)

We now estimate the kth term in the sum. Consider an auxiliary Markov

evolution of masses Z

n

taken values on the positive half-line with initial dis-

tribution

MesfY

k

� 0; Y

k+1

2 Bg; B 2 B(0;1)
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�

thus, MesfZ

0

2 Rg = MesfY

k

� 0; Y

k+1

> 0g � 

2

�

, and with jumps on

positive half-line possessing the distribution Mes

�

�(u) 2 B

	

, B 2 B(0;1).

We obtain the inequality

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

� MesfZ

n�k�1

� xg:

It follows from Lemma 4 that

Mes

�

Z

n�k�1

� (n� k � 1)"

	

� 

2

Æ

n�k�1

with Æ < 1. Therefore, for n > 2x=" and k � n� x="

�

thus, x � (n� k)"

�

,

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

� Mes

�

Z

n�k�1

� x

	

� Mes

�

Z

n�k�1

� (n� k � 1)"

	

� 

2

Æ

n�k�1

:

Finally,

Q

n

(0; x℄ � 

2

n�x="

X

k=0

Æ

n�k�1

+ x

2

=" �



2

1� Æ

+ x

2

=":

Both the estimate (23) and the lemma are proven.

5. An analog of the entral limit theorem

for a Markov evolution of masses

The harateristi funtion of the sum of independent random variables

is equal to the produt of the harateristi funtions of the summands. If we

deal with a Markov hain or, moreover, a Markov evolution of masses, then

the harateristi funtion is not a produt of something in view of the non-

homogeneity of jumps. In the following lemma we establish to what extent

the time-behavior of the harateristi funtion of a Markov evolution of masses

di�ers from the time-behavior of the harateristi funtion of a sequene of

partial sums of independent variables.

Consider a Markov evolution of masses fY

n

g with jumps

�

�

n

(x)

	

. Denote

Q

n

(B) = MesfY

n

2 Bg and Q(x;B) = Mes

�

x + �(x) 2 B

	

. Let

b

Q � sup

y2R

Q(y;R) <1; Q � sup

n�0

Q

n

(R) <1:
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Lemma 6. Let x

j

be an arbitrary sequene of levels in R. For all � 2 R,

n � 1, k � n and a omplex number ' 2 C , j'j � 1, the following inequality

holds:

�

�

�

Ee

i�Y

n

� '

n�k

Ee

i�Y

k

�

�

�

� (

b

Q+ 1)

n�1

X

j=k

Q

j

(�1; x

j

℄ +Q

n�1

X

j=k

"

j

;

where

"

j

= sup

x>x

j

�

�

Ee

i��(x)

� '

�

�

: (25)

Proof. Take j 2 [k + 1; n℄. By (11), we have

Ee

i�Y

j

=

Z

R

�

Ee

i��(x)

�

e

i�x

Q

j�1

(dx):

Therefore,

�

�

�

Ee

i�Y

j

� 'Ee

i�Y

j�1

�

�

�

=

�

�

�

�

Z

R

�

Ee

i��(x)

� '

�

e

i�x

Q

j�1

(dx)

�

�

�

�

�

�

�

�

�

Z

1

x

j�1

�

Ee

i��(x)

� '

�

e

i�x

Q

j�1

(dx)

�

�

�

�

+

�

�

�

�

Z

x

j�1

�1

�

Ee

i��(x)

� '

�

e

i�x

Q

j�1

(dx)

�

�

�

�

� "

j�1

Q

j�1

(R) +

�

b

Q + 1

�

Q

j�1

(�1; x

j�1

℄

in view of (25). Combining the last estimate with the inequality

�

�

�

Ee

i�Y

n

� '

n�k

Ee

i�Y

k

�

�

�

�

n

X

j=k+1

�

�

�

'

n�j

Ee

i�Y

j

� '

n�(j�1)

Ee

i�Y

j�1

�

�

�

=

n

X

j=k+1

�

�

�

Ee

i�Y

j

� 'Ee

i�Y

j�1

�

�

�

;

we dedue the lemma assertion.

In the formula (25) the value "

j

is de�ned as the maximal di�erene

between the jump harateristi funtion and some omplex number ' 2 C ,

j'j � 1, on some phase subspae rather than on the whole spae. We are going

to apply this lemma below in the ase when the mass of the orresponding

subspae is lose to the mass of the whole real line.

In the following theorem we give suÆient onditions under whih a Mar-

kov evolution of masses on real line [0;1) satis�es the entral limit theorem

in some sense.
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Theorem 5. Let the onditions of Lemma 4 be satis�ed and let

Q

0

[0;1) < 1. Assume that the family of jump squares f�

2

(x); x � 0g is

uniformly integrable. If, for some � > 0 and �

2

> 0, the relations

E

�

�(x)� �

�

= o

�

1=

p

x

�

; (26)

E

�

�(x)� �

�

2

! �

2

(27)

hold as x ! 1 then the distribution of the mass (Y

n

� n�)=

p

n onverges

weakly as n!1 to the normal law with zero mean and variane �

2

, i.e., for

every y 2 R the following onvergene holds:

Q

n

�

0; n� + y

p

n

�

! Q�

�

2

(y);

with Q = lim

n!1

Q

n

(R).

Proof is arried out by the method of harateristi funtions. Hereinafter

� 2 R. In view of the uniform integrability of the family of the jump squares,

the following deomposition is valid:

Ee

i�(�(x)��)

= Q(x;R) + i�E

�

�(x)� �

�

�

�

2

2

E

�

�(x)� �

�

2

+ o(�

2

)

as � ! 0 uniformly in x. Taking into aount the onditions (26) and (27),

we obtain the inequality

�

�

�

Ee

i�(�(x)��)

� (1� �

2

�

2

=2)

�

�

�

� "(x; �)

�

�=

p

x+ �

2

�

+

�

�

Q(x;R) � 1

�

�

;

where "(x; �) ! 0 as � ! 0 and x ! 1. Fix arbitrary � 2 R and " > 0.

From the last inequality we have

�

�

�

Ee

i�(�(x)��)=

p

n

� (1� �

2

�

2

=2n)

�

�

�

� e"(n; x)=

p

nj + bq(j");

where e"(n; x) ! 0 as n ! 1 and j ! 1 uniformly in the domain x > j".

Applying now Lemma 6 with ' = 1 � �

2

�

2

=2n and x

j

= j" to the Markov

evolution of masses (Y

n

� n�)=

p

n, we obtain the estimate

�

�

�

�

�

Ee

i�

Y

n

�n�

p

n

�

�

1�

�

2

�

2

2n

�

n�k

Ee

i�

Y

k

�k�

p

n

�

�

�

�

�

�

�

b

Q+ 1

�

n�1

X

j=k

Q

j

[0; j"℄ +Q

n�1

X

j=k

�

o(1)

p

nj

+ bq(j")

�

:

Sine all onditions of Lemma 4 are satis�ed, the value Q is �nite and

Q

j

[0; j"℄ � Q

0

[0;1)Æ

j

, Æ < 1. Thus, for eah �xed � 2 R, the di�erene

�

�

�

�

�

Ee

i�

Y

n

�n�

p

n

�

�

1�

�

2

�

2

2n

�

n�k

Ee

i�

Y

k

�k�

p

n

�

�

�

�

�
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an be made arbitrarily small uniformly in n > k by hoosing a suÆiently

large k. For eah �xed k,

Ee

i�

Y

k

�k�

p

n

! Q

k

(R)

as n ! 1 and Q

k

(R) ! Q as k ! 1 by Lemma 3. Thus, in view of

the onvergene

�

1�

�

2

�

2

2n

�

n�k

! e

��

2

�

2

=2

as n!1

for eah �xed k, the following holds:

Ee

i�

Y

n

�n�

p

n

! Qe

��

2

�

2

=2

as n!1;

whih ompletes the proof of the theorem.

6. Large deviation probabilities for

an asymptotially homogeneous Markov hain

In this setion we onsider an asymptotially spae-homogeneous Markov

hain, i.e., �(u)) � as u!1. We assume that F is a nonlattie distribution

of the random variable �; the lattie ase is disussed in Setion 8.

As before, the parameter � > 0 is de�ned as the solution to the equation

'(�) = E e

��

= 1. The measure, de�ned by the equality

F

(�)

(du) = e

�u

F (du); (28)

is probabilisti. Let �

(�)

be a random variable with the distribution F

(�)

.

Assume that

� � E �

(�)

= '

0

(�) 2 (0;1);

�

2

� Var �

(�)

= '

00

(�)�

�

'

0

(�)

�

2

<1:

Theorem 6. Let E e

�X

0

be �nite and let the family of jumps

�

�(u);

u 2 R

	

possess a stohasti majorant � suh that

E �

2

e

��

<1: (29)

Assume that the hain jumps satisfy the following onditions:

inf

u2R

E e

��(u)

> 0; (30)

E �(u)e

��(u)

= � + o

�

1=

p

u

�

as u!1: (31)
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Moreover, suppose that, for eah �xed A > 0, there exists a bounded dereasing

funtion Æ(u) = o(1=u) integrable at in�nity and suh that

sup

�2[�A;A℄

�

�

�

E e

(�+i�)�(u)

� E e

(�+i�)�

�

�

�

� Æ(u) (32)

for every u 2 R. Then the following relation holds:

PfX

n

> xg = e

��x

�

�

2

�

n�� x

p

x=�

�

+ o

�

e

��x

�

as x!1 uniformly in n � 0, where

 =

1

��

Z

1

�1

�

E e

��(y)

� 1

�

e

�y

�(dy) 2 [0;1): (33)

The ondition (30) is equivalent to the fat that there is no sequene of

points u

k

2 R suh that �(u

k

)) �1 as k !1.

In this theorem we do not assume that the funtion Æ(u) is regularly

varying at in�nity as it is assumed by the ondition (4) in Theorem 2; so,

the ondition (32) is weaker than (4). Moreover, sine

�

�

�

E e

(�+i�)�(u)

� E e

(�+i�)�

�

�

�

=

�

�

�

�

Z

1

�1

e

(�+i�)v

d

v

�

P

�

�(u) < v

	

� Pf� < vg

�

�

�

�

�

= j� + i�j

�

�

�

�

Z

1

�1

e

(�+i�)v

�

P

�

�(u) < v

	

� Pf� < vg

�

dv

�

�

�

�

� j� + i�j

Z

1

�1

e

�v

�

�

�

P

�

�(u) < v

	

� Pf� < vg

�

�

�

dv;

we an propose the following ondition suÆient for (32):

Z

1

�1

e

�v

�

�

�

P

�

�(u) < v

	

� Pf� < vg

�

�

�

dv � Æ(u):

From Theorem 6 we dedue

Corollary 1. Let by(x)!1 as x!1. Then we have the asymptoti

PfX

n

> xg = e

��x

�

+ o(1)

�

as x ! 1 uniformly in n � x=�

0

+ by(x)

p

x. If  > 0 then the following

equivalene holds in the above-indiated ranges of n:

PfX

n

> xg � �(x;1) as x!1:
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Proof of Theorem 6. First of all, note that the ondition (32) with � = 0

implies the relation

E e

��(u)

= 1 +O

�

Æ(u)

�

= 1 + o(1=u) as u!1: (34)

Consider the Cram�er transform with parameter � over the hain X

n

, i.e.,

introdue the generalized transition kernel

P

(�)

(u; dv) = e

�(v�u)

P (u; dv):

LetX

(�)

n

be a Markov evolution of masses with the generalized transition kernel

P

(�)

(� ; �). The following equality is valid:

�

(�)

n

(du) � Mes

�

X

(�)

n

2 du

	

= e

�u

�

n

(du) � e

�u

P

�

X

n

2 du

	

:

Sine E e

�X

0

is �nite, we have �

(�)

0

(R) < 1. By (34), the total masses of

the jumps of the Markov evolution of masses X

(�)

n

are uniformly bounded, i.e.

b

Q � sup

u2R

P

(�)

(u;R) <1:

Represent the kernel P

(�)

as the sum of the transition probability P

�

and

the signed kernel P

��

as follows:

P

�

(x; �) =

P

(�)

(x; �)

P

(�)

(x;R)

;

P

��

(x; �) = P

(�)

(x; �)� P

�

(x; �) =

P

(�)

(x;R) � 1

P

(�)

(x;R)

P

(�)

(x; �):

The measure P

��

(x; �) is negative in the ase P

(�)

(x;R) < 1, positive in

the ase P

(�)

(x;R) > 1, and is equal to 0 in the ase P

(�)

(x;R) = 1. Thus,

the total variation jP

��

j(u;B) of the measure P

��

(u; �) on the set B equals

�

�

P

��

(u;B)

�

�

.

Applying the nth power of the kernel P

(�)

to the measure �

(�)

0

, we ob-

tain the measure �

(�)

n

; so, we have �

(�)

n

= �

(�)

0

(P

�

+ P

��

)

n

. Deomposing

the power (P

�

+ P

��

)

n

into the sum with respet to the last appliation of

the kernel P

��

, we obtain the equality

(P

�

+ P

��

)

n

= (P

�

)

n

+

n�1

X

k=0

(P

�

+ P

��

)

k

P

��

(P

�

)

n�1�k

:
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From here we dedue the representation whih is basi for our subsequent

analysis:

�

(�)

n

= �

(�)

0

(P

�

)

n

+

n�1

X

k=0

�

(�)

k

P

��

(P

�

)

n�1�k

: (35)

The main idea of the further onsiderations onsists in the following: Sine

the sequene of measures �

(�)

n

(du) onverges weakly to the measure e

�u

�(du)

and the tail of the measure � behaves, as a rule, asymptotially as the expo-

nential with parameter ��, the weak limit of the sequene of measures �

(�)

n

far

away from the origin behaves like the Lebesgue measure up to some onstant.

In partiular, (34) implies the tightness (in the same sense as that for prob-

ability measures) of the family of measures

�

�

(�)

n

P

��

	

. In addition, the nth

power of the transition kernel P

�

satis�es the loal limit theorem. All of these

allows us to ompute the loal asymptoti of the measure �

(�)

n

.

Lemma 7. The family of measures

�

�

(�)

k

P

��

; k � 0

	

is tight in the sense

that

sup

k�0

�

�

�

(�)

k

P

��

�

�

(�1;�x℄ = O

�

e

��x

�

;

sup

k�0

�

�

�

(�)

k

P

��

�

�

(x;1)! 0

as x!1. Moreover, the sequene of measures �

(�)

k

P

��

onverges in the total

variation distane to the measure �

(�)

P

��

as k ! 1, where �

(�)

(du) �

�(du)e

�u

.

Taking it into aount that

�

�

(�)

P

��

�

(R) is equal to

Z

1

�1

P

��

(u;R)�

(�)

(du) =

Z

1

�1

�

P

(�)

(u;R) � P

�

(u;R)

�

�

(�)

(du)

=

Z

1

�1

�

E e

��(u)

� 1

�

e

�u

�(du); (36)

we obtain

Corollary 2. The onstant  in (33) is �nite.

As far as the positivity of  is onerned, some suÆient onditions are

given just after Theorem 2. Note that these onditions are satis�ed auto-

matially for the partially homogeneous hain with the uniformly bounded

moments of order 2 + " of negative parts of jumps.
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Proof of Lemma. We have the inequality

�

�

�

(�)

k

P

��

�

�

(B) �

Z

1

�1

jP

��

j(u;B)�

(�)

k

(du): (37)

From the de�nition of P

��

(u; �) and the ondition (32) with � = 0 it follows

that

jP

��

j(u;B) =

�

�

P

(�)

(u;R) � 1

�

�

P

(�)

(u;R)

P

(�)

(u;B)

=

�

�

E e

��(u)

� 1

�

�

E e

��(u)

P

(�)

(u;B)

�

Æ(u)

E e

��(u)

P

(�)

(u;B); (38)

thus, in view of (30), we dedue the estimate

jP

��

j(u;B) � 

1

P

(�)

(u;B): (39)

The measure �

(�)

k

is the Cram�er transform with positive parameter �

over a probability measure; therefore, its negative tail admits an exponential

estimate like �

(�)

k

(�1;�x℄ � e

��x

, x > 0. Thus, from (37) and (39) with

B = (�1;�x℄ we an dedue the following estimates:

�

�

�

(�)

k

P

��

�

�

(�1;�x℄ � 

1

Z

1

�1

P

(�)

�

u; (�1;�x℄

�

�

(�)

k

(du)

= 

1

�

(�)

k+1

(�1;�x℄

� 

1

e

��x

:

The proof of the �rst uniform estimate of the lemma is omplete.

Now, hek the seond uniform onvergene stated in the lemma. Fix ar-

bitrary � 2 (0; �); we have E e

��

< 1. Sine �(u) ) � as x ! 1 and

the family of random variables

�

e

��(u)

	

is uniformly integrable, we obtain

Ee

��(u)

! E e

��

< 1. Thus, there exists a suÆiently large U suh that

sup

u>U

E e

��(u)

< 1: (40)

Without loss of generality we may assume that U = 0. Then, by Lemma 5,

we have

sup

k

�

(�)

k

(�1; x℄ = O(x) as x!1: (41)
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In view of (29), from (39) it follows that

�

�

�

P

��

�

u; (x;1)

�

�

�

�

� 

1

E �

2

e

��

(x� u)

2

=



2

(x� u)

2

(42)

for u � x. From (38) we infer that

�

�

�

P

��

�

u; (x;1)

�

�

�

�

�

Æ(u)

E e

��(u)

P

(�)

(u;R) = Æ(u) (43)

for all u and x. Inserting (42) and (43) into (37) with B = (x;1), we obtain

�

�

�

(�)

k

P

��

�

�

(x;1) � 

3

Z

x=2

�1

(x� u)

�2

�

(�)

k

(du) +

Z

1

x=2

Æ(u)�

(�)

k

(du): (44)

Here the �rst integral vanishes as x ! 1. To alulate the seond integral,

we use the formula of integration by parts:

Z

1

x=2

Æ(u)�

(�)

k

(du) = Æ(u)�

(�)

k

[0; u℄

�

�

�

1

x=2

+

Z

1

x=2

�

(�)

k

[0; u℄d

�

�Æ(u)

�

:

By (41) and the relation Æ(u) = o(1=u), the �rst term on the right-hand side

of the last equality vanishes as x !1 uniformly in k. By the same theorem

and monotoniity of the funtion Æ, we have the following estimate uniform

in k:

Z

1

x=2

�

(�)

k

[0; u℄d

�

�Æ(u)

�

� 

4

Z

1

x=2

ud

�

�Æ(u)

�

:

Suessive integration by parts and integrability of the funtion Æ at in�nity

imply that the seond integral in (44) vanishes as x ! 1 uniformly in k as

well. Thus, the family of measures �

(�)

k

P

��

is tight.

The weak onvergene follows from the onvergene in total variation of

the sequene of measures �

(�)

k

as k ! 1 to the measure �

(�)

. The lemma is

proven.

The end of the proof of Theorem 6 is arried out under three additional

onditions: the ondition of existene of minorant for the family of jumps of

the hain with transition probability P

�

�

see (45)

�

, a ondition of suÆiently

fast onvergene rate of �

n

to �

�

see (46)

�

, and a ondition of absolute onti-

nuity of the distribution �

n

with respet to the invariant measure �

�

see (47)

�

.

The end of the proof in the general ase is onsidered separately in Setion 7.

Let �

�

(x) be the jump at the state x of the Markov hain X

�

n

with tran-

sition probabilities P

�

, i.e., be a random variable suh that P

�

�

�

(x) 2 B

	

=
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P

�

(x; x + B). Sine P

(�)

(x;R) ! 1 as x ! 1, by the de�nition of P

�

,

the following weak onvergene holds:

�

�

(x)) �

(�)

as x!1:

So, assume that the family of jumps

�

�

�

(x); x 2 R

	

possesses a mino-

rant � with positive mean and �nite variane, i.e., the stohasti inequality

�

�

(x) �

st

� (45)

takes plae for every x 2 R. Let the onvergene rate in (1) be suÆiently

fast; namely,

1

X

n=1

j�

n

� �j(R) <1: (46)

Moreover, assume that, for every n, the measure �

n

is absolutely ontinuous

with respet to the measure �, i.e., the (nonnegative) Radon{Nikod�ym deriv-

ative is de�ned as

f

n

(u) �

d�

n

d�

(u); (47)

and this derivative is bounded from above by some number � <1 uniformly

in n and u. By the de�nition of the Cram�er transform, we have

d�

(�)

n

d�

(�)

(u) =

d�

n

d�

(u) = f

n

(u):

Then the measure �

n

P

��

is absolutely ontinuous with respet to the mea-

sure �P

��

, and the orresponding signed density f

��

(u) an be estimated as

follows:

�

�

f

��

n

(u)

�

�

�

�

�

�

�

d�

(�)

n

P

��

d�

(�)

P

��

(u)

�

�

�

�

� �: (48)

This is possible due to the estimate

�

(�)

n

P

��

(B) =

Z

R

P

��

(u;B)f

n

(u)�

(�)

(du)

� �

Z

R

P

��

(u;B)�

(�)

(du) = ��

(�)

P

��

(B)

if B 2 B(R).

Sine

P

�

�

�

(x) > u

	

=

Mes

�

�

(�)

> u

	

E e

��(x)

�

Mes

�

�

(�)

> u

	

E e

��(x)

;
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by (29) and (30), the family of random variables

�

�

�

(x)

	

possesses a square

integrable majorant. In view of (31) and (34), we have

E �

�

(x) =

E �(x)e

��(x)

E e

��(x)

=

� + o

�

1=

p

x

�

1 + o(1=x)

= �+ o

�

1=

p

x

�

as x!1:

From the weak onvergene �(u)) � and the onditions (29) and (34) we infer

that

E

�

�

�

(x)

�

2

=

E

�

�(x)

�

2

e

��(x)

E e

��(x)

! �

2

+ �

2

as x!1:

For eah �xed A > 0, from (32) and (34) it follows that

sup

�2[�A;A℄

�

�

�

E e

i��

�

(x)

�E e

i��

(�)

�

�

�

= sup

�2[�A;A℄

�

�

�

�

E e

(i�+�)�(x)

E e

��(x)

�E e

(i�+�)�

�

�

�

�

= O

�

Æ(x)

�

as x ! 1. So, all onditions of Theorem 3 (in partiular, the existene of

a proper minorant) are ful�lled. Thus, the hain X

�

n

satis�es the loal limit

theorem. In partiular, for eah �xed � > 0, we obtain

sup

y

P

�

X

�

n

2 (y; y +�℄

	

! 0 as n!1: (49)

Aording to (35), we have

�

(�)

n

(y; y +�℄ = �

(�)

0

(P

�

)

n

(y; y +�℄ +

n�1

X

k=0

�

(�)

k

P

��

(P

�

)

n�1�k

(y; y +�℄:

By (49), the ontribution of the term �

(�)

0

(P

�

)

n

(y; y + �℄, as well as of eah

(for a �xed �nite set of k's) of the terms �

(�)

k

P

��

(P

�

)

n�1�k

(y; y + �℄, to

the resultant sum is negligible (of order o(1) as n!1 uniformly in y). Thus,

for eah �xed K, we have the relation

�

(�)

n

(y; y +�℄ =

n�1

X

k=K

�

(�)

k

P

��

(P

�

)

n�1�k

(y; y +�℄ + o(1) (50)

as n!1 uniformly in y. Reall that �

(�)

k

P

��

onverges in total variation to

the measure �

(�)

P

��

as k !1 (see Lemma 7). Hene, our immediate goal is

to make suh a hange of measures in (50) and prove the following relation as

n!1 uniformly in y:

�

(�)

n

(y; y +�℄ =

n�1

X

k=0

�

(�)

P

��

(P

�

)

n�1�k

(y; y +�℄ + o(1): (51)
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Justify the passage from (50) to (51).

Given A, we have

�

(�)

k

P

��

(P

�

)

n�1�k

(y; y +�℄

=

 

Z

A

�1

+

Z

1

A

!

(P

�

)

n�1�k

�

u; (y; y +�℄

��

�

(�)

k

P

��

�

(du)

� I

1

(k; A) + I

2

(k; A):

Using (48), we an estimate the seond integral as follows:

�

�

I

2

(k; A)

�

�

=

�

�

�

�

�

Z

1

A

(P

�

)

n�1�k

�

u; (y; y +�℄

�

f

��

k

(u)

�

�

(�)

P

��

�

(du)

�

�

�

�

�

� �

Z

1

A

(P

�

)

n�1�k

�

u; (y; y +�℄

�

�

�

�

(�)

P

��

�

�

(du):

Hene,

sup

n

�

�

�

�

n�1

X

k=0

I

1

(k; A)

�

�

�

�

� �

Z

1

A

n�1

X

k=0

(P

�

)

n�1�k

�

u; (y; y +�℄

�

�

�

�

(�)

P

��

�

�

(du)

! �

�

�

�

(�)

P

��

�

�

(A;1)�=�

by Theorem 4. Thus,

lim

A!1

sup

n

�

�

�

�

n�1

X

k=0

I

1

(k; A)

�

�

�

�

! 0: (52)

Now, onsider the integrals I

1

(k; A) for a �xed A. We have the estimates

�

�

�

�

�

I

1

(k; A)�

Z

A

�1

(P

�

)

n�1�k

�

u; (y; y +�℄

��

�

(�)

P

��

�

(du)

�

�

�

�

�

�

Z

A

�1

�

�

�

(�)

k

P

��

� �

(�)

P

��

�

�

(du)

=

�

�

�

(�)

k

P

��

� �

(�)

P

��

�

�

(�1; A)

�

�

�

�

(�)

k

� �

(�)

�

�

(�1; A) sup

u2R

jP

��

j(u;R)

� e

�A

j�

k

� �j(�1; A) sup

u2R

jP

��

j(u;R):
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From this and (46) it follows that, for a suÆiently large K, the sum

n�1

X

k=K

I

1

(k; A)

an be arbitrarily lose to the sum

n�1

X

k=K

Z

A

�1

(P

�

)

n�1�k

�

u; (y; y +�℄

��

�

(�)

P

��

�

(du)

uniformly in all n. Together with (52), this justi�es the passage from (50)

to (51).

From (51), using Theorem 4 and taking the equality (36) and Corollary 2

into aount, we dedue the asymptoti equality

�

(�)

n

(y; y +�℄ =

�

�

(�)

P

��

�

(R)

�

�

�

�

2

�

n�� y

p

y=�

�

+ o(1)

= ���

�

2

�

n� � y

p

y=�

�

+ o(1) as y !1; n!1: (53)

Applying the inverse Cram�er transform (13) to the Markov evolution of

masses X

(�)

n

, we obtain

PfX

n

> xg =

Z

1

x

e

��y

�

(�)

n

(dy):

Therefore, for every � > 0, the upper estimate

PfX

n

> xg �

1

X

k=0

e

��(x+k�)

�

(�)

n

(x + k�; x+ k�+�℄ � s

1

(�)

and the lower estimate

PfX

n

> xg �

1

X

k=0

e

��(x+k�+�)

�

(�)

n

(x + k�; x + k�+�℄ � s

2

(�):

are valid. The ratio s

1

(�)=s

2

(�) of the upper bound to the lower bound

equals e

��

and tends to 1 as � ! 0. For eah �xed � > 0, from (53) we

dedue the relation

s

1

(�) = o(1)

1

X

k=0

e

��(x+k�)

+ ��

1

X

k=0

e

��(x+k�)

�

�

2

 

n�� (x+ k�)

p

(x + k�)=�

!

= o

�

e

��x

�

+ ���

�

2

 

n�� x

p

x=�

!

1

X

k=0

e

��(x+k�)

= o

�

e

��x

�

+ 

��

1� e

���

e

��x

�

�

2

 

n�� x

p

x=�

!

;
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whih implies the asymptoti

PfX

n

> xg = �

�

2

 

n�� x

p

x=�

!

e

��x

+ o

�

e

��x

�

(54)

as n ! 1 and x ! 1. For eah �xed n, we have PfX

n

> xg = o

�

e

��x

�

.

Hene, (54) holds as x!1 uniformly in n � 0.

So, the theorem is proven only under the additional onditions: existene

of a stohasti minorant for the family of jumps f�

�

(x)g and absolute ontinuity

of �

n

with respet to the invariant measure �.

7. Completion of the proof of Theorem 6

In this setion we onstrut an auxiliary Markov hain

e

Z

n

that is equiv-

alent to the original hain X

n

from the point of view of the large deviation

probabilities but at the same time satis�es the additional onditions imposed

on the hain X

n

during the proof in the preeding setion.

By the above onstrution and (30), the mean

E

n

e

�j�

(�)

(u)j

; �

(�)

(u) � 0

o

=

1

P

(�)

(u;R)

Z

0

�1

e

��y

P

�

�

(�)

(u) 2 dy

	

=

1

E e

��(u)

Z

0

�1

P

�

�(u) 2 dy

	

�

1

E e

��(u)

is bounded uniformly in u 2 R. In partiular, the squares of the negative parts

of the random variables �

(�)

(u), u 2 R, are uniformly integrable. Together

with the weak onvergene �

(�)

(u) ) �

(�)

, this implies the existene of level

U 2 R suh that the family

�

�

(�)

(u); u > U

	

possesses a minorant with

positive mean and �nite seond moment. Choose suÆiently large U suh

that (40) is satis�ed and inf

n�0

PfX

n

� Ug > 0.

Enlarge the hain X

n

by merging the states on the half-line (�1; U ℄

into one state U , i.e., onsider the Markov hain Z

n

taken values on the half-

line [U;1) with initial state Z

0

= maxfU;X

0

g and with the following transi-

tion probabilities P

Z;n

nonhomogeneous in time:

P

Z;n

(u;B) = P

Z

(u;B) = P (u;B) if u > U and B � (U;1);

P

Z;n

�

u; fUg

�

= P

Z

�

u; fUg

�

= P

�

u; (�1; U ℄

�

if u > U ;

P

Z;n

(U;B) =

1

PfX

n

� Ug

Z

U

�1

P (u;B)PfX

n

2 dug if B � (U;1);

P

Z;n

�

U; fUg

�

=

1

PfX

n

� Ug

Z

U

�1

P

�

u; (�1; U ℄

�

PfX

n

2 dug:
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Note that only the transition probabilities from the state U an be nonhomo-

geneous in time. Moreover, in view of the onvergene in variation (1), we

have the asymptoti time-homogeneity as n!1:

P

Z;n

(U;B)!

1

�(�1; U ℄

Z

U

�1

P (u;B)�(du) if B � (U;1);

P

Z;n

�

U; fUg

�

!

1

�(�1; U ℄

Z

U

�1

P

�

u; (�1; U ℄

�

�(du):

By the onstrution of the initial distribution of Z

0

and the transition proba-

bilities of the hain Z

n

, we have

PfZ

n

= Ug = PfX

n

� Ug;

PfZ

n

> xg = PfX

n

> xg for x > U:

Consider one more hain, say

e

Z

n

, with the atom U and initial state

e

Z

0

= U .

Its transition probabilities

e

P (u; �) are equal to P

Z

(u; �) for u > U , and those

for u = U are equal to

e

P (U;B) =

1

�(�1; U ℄

Z

U

�1

P (u;B)�(du) if B � (U;1);

e

P

�

U; fUg

�

=

1

�(�1; U ℄

Z

U

�1

P

�

u; (�1; U ℄

�

�(du):

The transition probabilities of the hain

e

Z

n

are time-homogeneous. The in-

variant measure e� of this hain oinides with the measure � on the set (U;1),

and e�

�

fUg

�

= �(�1; U ℄. The jumps

e

�(u) of the hain

e

Z

n

possess a minorant

with positive mean and �nite variane. This hain with atom is geometrially

ergodi (see, for example, [10, Setion 15℄). Thus, j�

n

� �j(R) = o(r

n

) for some

r < 1, and the ondition (46) is ful�lled. Moreover, for every B 2 B(U;1),

we have the equality

P

�

e

Z

n

2 B

	

=

n�1

X

k=0

P

�

e

Z

k

= U

	

P

n

e

Z

k+1

>U; ::: ;

e

Z

n�1

>U;

e

Z

n

2 B

�

� e

Z

k

= U

o

:

Hene,

P

�

e

Z

n

2 B

	

�

n�1

X

k=0

P

n

e

Z

k+1

> U; : : : ;

e

Z

n�1

> U;

e

Z

n

2 B

�

� e

Z

k

= U

o

;

on the other hand, there exists " > 0 suh that

P

�

e

Z

m

2 B

	

� "

m�1

X

k=0

P

n

e

Z

k+1

> U; : : : ;

e

Z

m�1

> U;

e

Z

m

2 B

�

�
e

Z

k

= U

o

:
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It follows that, for every n < m, the measure P

�

e

Z

n

2 �

	

is absolutely ontin-

uous with respet to the measure P

�

e

Z

m

2 �

	

and the orresponding density

is bounded by 1=". Thus, for every n, the measure P

�

e

Z

n

2 �

	

is absolutely

ontinuous with respet to the measure e� too; the density is also bounded

by 1=".

Thus, the hain

e

Z

n

is satis�ed all additional onditions (45){(47) of

the preeding setion. Therefore, the equivalene

P

�

e

Z

n

> x

	

= e�

�

2

�

x� n�

p

x=�

�

e

��x

+ o

�

e

��x

�

(55)

uniform in n � 0 holds as x!1, with

e =

1

��

Z

1

U

�

E e

�

e

�(u)

� 1

�

e

�u

e�(du)

=

1

��

�

Z

1

U+0

�

E e

�(u+

e

�(u))

� e

�u

�

�(du)+

�

E e

�(U+

e

�(U))

� e

�U

�

�(�1; U ℄

�

=

1

��

Z

1

�1

�

E f

�

u+ �(u)

�

� f(u)

�

�(du); (56)

here f(u) = max

�

e

�U

; e

�u

	

. The values of the funtion g(u) = e

�u

� f(u)

lie between �e

�U

and 0. Hene, if the hain X

n

is in the stationary regime,

i.e., if X

n

is distributed aording to �, then E g(X

n+1

) = E g(X

n

). Therefore,

the equilibrium-type identity

Z

1

�1

�

E g

�

u+ �(u)

�

� g(u)

�

�(du) = 0

is valid. Dividing this identity by �� and summing with (56), we obtain

the �nal representation for the onstant e :

e =

1

��

Z

1

�1

�

E e

�(u+�(u))

� e

�u

�

�(du):

Let Z

(�)

n

and

e

Z

(�)

n

be the Markov evolution of masses obtained from

the hains Z

n

and

e

Z

n

respetively by the Cram�er transform with parameter �.

Analyze the measures Mes

�

Z

(�)

n

2 �

	

and Mes

�

e

Z

(�)

n

2 �

	

from the point of

view of the last entry into the point U . With regard to the �rst measure,
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we have

Mes

n

Z

(�)

n

2 [y; y +�)

o

= Mes

n

Z

(�)

0

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

o

+

n�1

X

k=0

Mes

n

Z

(�)

k

= U

o

�Mes

n

Z

(�)

k+1

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

�

�

Z

(�)

k

= U

o

: (57)

Reall that (40) holds. In view of (the entral limit) Theorem 5, the value of

Mes

n

Z

(�)

0

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

o

and, for eah �xed k, the value of

Mes

n

Z

(�)

k+1

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

�

�

Z

(�)

k

= U

o

are of order o(1) as n ! 1 uniformly in y. Hene, the replaement of eah

�nite (with respet to k) set of the transition probabilities among P

(�)

Z;k

(U; �)

with the probabilities

e

P

(�)

(U; �) hanges Mes

�

Z

(�)

n

2 (y; y + �℄

	

by the value

of order o(1). Taking the relation

Mes

�

Z

(�)

k

= U

	

= e

�U

PfZ

k

= Ug ! e

�U

�(�1; U ℄

as k !1 into aount, from (57) we dedue that

Mes

n

Z

(�)

n

2 [y; y +�)

o

= o(1) + e

�U

�(�1; U ℄

n�1

X

k=0

Mes

n

e

Z

(�)

k+1

> U; : : : ;

e

Z

(�)

n�1

> U;

e

Z

(�)

n

2 [y; y +�)

�

� e

Z

(�)

k

= U

o

as n ! 1 uniformly in y. By the same reasons, we an obtain the same

relation for the time-homogeneous Markov evolution of masses

e

Z

(�)

n

:

Mes

n

e

Z(�)

n

2 [y; y +�)

o

= o(1) + e

�U

�(�1; U ℄

n�1

X

k=0

Mes

n

e

Z

(�)

k+1

> U; : : : ;

e

Z

(�)

n�1

> U;

e

Z

(�)

n

2 [y; y +�)

�

� e

Z

(�)

k

= U

o

:
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Thus,

Mes

n

Z

(�)

n

2 [y; y +�)

o

= Mes

n

e

Z

(�)

n

2 [y; y +�)

o

+ o(1):

Applying the inverse Cram�er transform (with parameter ��, see Lemma 1) to

the measures Mes

�

Z

(�)

n

2 �

	

and Mes

�

e

Z

(�)

n

2 �

	

, we obtain the relation

PfZ

n

> xg = P

�

e

Z

n

> x

	

+ o(1)

uniformly in x as n!1, whih, together with (55), ompletes the proof.

8. The lattie ase

Let X

n

be a Markov hain taken values on the lattie fk�; k 2 Zg

with span � > 0, and this lattie is minimal. Consider an asymptotially

homogeneous hain, i.e., �(k�)) � as k !1; the values of the variable � are

proportional to �. We formulate the orresponding theorem on large deviation

probabilities.

Theorem 7. Let E e

�X

0

be �nite. Assume that the family of jumps

�

�(k�), k 2 Z

	

possesses a stohasti majorant � suh that E �

2

e

��

< 1.

Let the jumps of the hain satisfy the following onditions:

inf

k2Z

E e

��(k�)

> 0;

E �(k�)e

��(k�)

= � + o(1=

p

k) as k !1:

In addition, assume that there exists a bounded dereasing sequene Æ(k) =

o(1=k) summable at in�nity and suh that the inequality

sup

�2[��=�;�=�℄

�

�

�

E e

(�+i�)�(k�)

� E e

(�+i�)�

�

�

�

� Æ(k)

holds for every k 2 Z. Then

P

�

X

n

= m�

	

= 

�

e

��m�

�

�

2

�

n��m�

p

m�=�

�

+ o

�

e

��m�

�

uniformly in n � 0 as m!1, where



�

=

�

E �e

��

X

k2Z

�

E e

��(k�)

� 1

�

e

�k�

�(k�) 2 [0;1):

Proof an be arried out in the same way as in the nonlattie ase.

The only di�erene is generated by the lattie variant of the loal renewal the-

orem, whih implies the di�erent multiple in the �nal asymptoti of the prob-

ability PfX

n

� m�g.
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9. On the positivity of the multiplier  in Theorem 6

As was noted just after Theorem 2, the onstant

 �

1

��

Z

1

�1

�

E e

��(y)

� 1

�

e

�y

�(dy) (58)

is positive if E e

��(y)

� 1� (y), where (y) � 0 for every y and

Z

1

0

(y)y log y dy <1:

In the following theorem this ondition is somehow weakened. The proof is

a substantially improved version of the proof of Theorem 5 in [2, Setion 27℄.

Theorem 8. Let the hain X

n

be asymptotially spae-homogeneous,

i.e., �(y) ) � as y ! 1. Assume that E � < 0 and there exists � > 0 suh

that E e

��

= 1. Let E e

��(y)

� 1�(y), where (y) is a nonnegative dereasing

funtion, (y) = o(1=y) as y !1, and

Z

1

0

(y)y dy <1: (59)

Let � be an arbitrary probability invariant distribution of the hain X

n

suh

that �(y;1) > 0 for every y and �(y;1) = O

�

e

��y

�

as y ! 1. Then

the onstant  de�ned by the equality (58) is positive.

Proof. Prove �rst that, under the onditions of the theorem, the equality

Z

1

�1

e

�u

�(du) =1 (60)

is valid.

Enlarge the hain X

n

by averaging the states on the half-line (�1; U ℄

with respet to the measure � and by merging them into one state U ; namely,

onsider the Markov hain X

U;n

taken values on the half-line [U;1) with

the following transition probabilities P

U

:

P

U

(y; B) = P (y; B) if y > U and B � (U;1);

P

U

�

y; fUg

�

= P

�

y; (�1; U ℄

�

if y > U ;

P

U

(U;B) =

1

�(�1; U ℄

Z

U

�1

P (u;B)�(du) if B � (U;1);

P

U

�

U; fUg

�

=

1

�(�1; U ℄

Z

U

�1

P

�

u; (�1; U ℄

�

�(du):
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By the onstrution of the transition probabilities P

U

, the invariant mea-

sure �

U

of the hain X

U;n

oinides with the measure � on the set (U;1), and

�

U

�

fUg

�

equals �(�1; U ℄. For every y > U , the jumps �

U

(y) of the hainX

U;n

satisfy the stohasti inequality

�

U

(y) �

st

�(y): (61)

Choose a level U so large that, for every u > U , the inequality

u

�

E e

��(u)

� 1

�

+ E �(u)e

��(u)

> 0 (62)

hold. This hoie is possible due to (u) = o(1=u) and

lim inf

u!1

E �(u)e

��(u)

� E �e

��

2 (0;1℄

in view of the weak onvergene �(u)) �.

Assume now that the integral in (60) is �nite. Then, for every � 2 [0; �℄,

the mean drift of the exponent e

�X

U;n

for one step in the stationary regime �

U

is equal to zero, i.e., the following equilibrium-type identity holds:

Z

1

U

e

�u

�

E e

��

U

(u)

� 1

�

�

U

(du) = 0: (63)

Di�erentiating this equality with respet to �, we obtain

Z

1

U

e

�u

u

�

E e

��

U

(u)

� 1

�

�

U

(du) +

Z

1

U

e

�u

E �

U

(u)e

��

U

(u)

�

U

(du) = 0

for every � 2 [0; �℄. Putting � = �, we arrive at the equality

Z

1

U

e

�u

h

u

�

E e

��

U

(u)

� 1

�

+ E �

U

(u)e

��

U

(u)

i

�

U

(du) = 0;

whih annot be true in view of (62), (61), and �(U;1) > 0. Thus, (60) is

proven.

Further, assume that  = 0 in (58). Then, as it was demonstrated in

the proess of alulating the onstant e in (56), for eah level U , the equilib-

rium-type identity (63) is valid for � = �. Therefore,

�

E e

��

U

(U)

� 1

�

e

�U

�(�1; U ℄ =

Z

1

U+0

�

1� E e

��

U

(u)

�

e

�u

�(du): (64)

By the de�nition of the transition probabilities P

U

, the right-hand side of

the last equality is equal to

e

�U

Z

U

�1

E max

n

0; e

�(u+�(u)�U)

� 1

o

�(du):



66 D.A.Korshunov

Sine �(u) ) �, there exist " > 0 and Æ > 0 suh that, for all suÆiently

large U , the inequality E max

�

0; e

�(u+�(u)�U)

� 1

	

� Æ holds for every u 2

(U � "; U ℄ and, hene,

�

E e

��

U

(U)

� 1

�

e

�U

�(�1; U ℄ � Æe

�U

�(U � "; U ℄: (65)

By (61) and the onditions of the theorem, the right-hand side of (64) does

not exeed

Z

1

U+0

(y)e

�y

�(dy) � 

Z

1

U+1

(y)dy; (66)

where  <1. Inserting (65) and (66) into (64), we arrive at the inequality

e

�U

�(U � "; U ℄ �



Æ

Z

1

U+1

(y)dy: (67)

Sine this holds for all suÆiently large U , from the ondition (59) it follows

that the exponential moment of order � of the distribution � is �nite, whih

ontradits (60). Thus, the assumption  = 0 leads to ontradition, and

the theorem is proven.

The ondition (59) an be onsiderably weakened by imposing stronger

moment onditions on the jumps of X

n

. If, for example, the hain has bounded

jumps, i.e., if there exists a onstant A < 1 suh that j�(y)j � A with

probability 1 for every y, then it suÆes to assume that

Z

1

0

(y)y

�

dy <1 (68)

for some � > 0. In order to prove this, observe that, in this ase, we have

Z

1

1

e

�u

u

1��

�(du) =1: (69)

Indeed, sine the mean drift v

�

(y) � E V

�

�

y+�(y)

�

�V

�

(y) of the test funtion

V

�

(y) = e

�y

y

��1

Ify > 1g is equal to

e

�y

y

1��

 

E e

��(y)

�

1

1 + �(y)=y

�

1��

� 1

!
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for y > 1 + A, under the jump boundedness ondition, we have

dv

�

(y)

d�

�

�

�

�

�=�

=

ye

�y

y

1��

�

E e

��(y)

� 1�

1� �

y

E �(y)e

��(y)

+O(1=y

2

)

�

+

e

�y

y

1��

�

E �(y)e

��(y)

+O(1=y)

�

=

ye

�y

y

1��

�

o(1=y)�

1� �

y

E �e

��

+O(1=y

2

)

�

+

e

�y

y

1��

�

E �e

��

+O(1=y)

�

=

e

�y

y

1��

�

o(1) + �E �e

��

�

; y !1;

whih is a positive value for large y and implies (69) (as was observed in

the preeding proof). Further, multiplying (67) by U

��1

and summing up, we

arrive at the inequalities

1

X

k=0

e

�(U+k")

(U + k")

1��

�

�

U + (k � 1)"; U + k"

�

�



Æ

1

X

k=0

1

(U + k")

1��

Z

1

U+k"+1

(y)dy

� 

�

Z

1

U

(y)y

�

dy;

where 

�

< 1, whih imply the �niteness of the integral in (69) in view of

the ondition (68). This ontradition ompletes the proof.

10. On neessity of the ondition

for integrability of the onvergene rate

of the jump distribution to the limit distribution

In onlusion, we onstrut an example of Markov hain, whih demon-

strates that the ondition (32) on the onvergene rate of the jump distribution

to the limit distribution F is so signi�ant that it an be onsidered as almost

neessary.

Consider a Markov hain X

n

with values in Z

+

. Assume that the hain is

ontinuous from above as well as from below, i.e., the hain hanges its value
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at most by 1 in one step. Denote

p(k; k � 1) � P

�

X

n+1

= k � 1 j X

n

= k

	

; k � 1;

p(k; k + 1) � P

�

X

n+1

= k + 1 j X

n

= k

	

; k � 0;

p(0; 0) � P

�

X

n+1

= 0 j X

n

= 0

	

:

Assume that

p(k; k � 1) + p(k; k + 1) = 1; p(0; 0) + p(0; 1) = 1;

and

1

X

k=1

k�1

Y

j=0

p(j; j + 1)

p(j + 1; j)

<1:

It is known (see, for example, [8, Chapter 3, Setion 7℄) that the last ondition

is neessary and suÆient for the ergodiity of hain of this type. Denote

the stationary probabilities of the hain by

�

�(k); k 2 Z

+

	

. The speial

simpliity of the system of equations

�(k + 1)p(k + 1; k) + �(k � 1)p(k � 1; k) = �(k); k � 1;

�(1)p(1; 0) + �(0)p(0; 0) = �(0);

1

X

k=0

�(k) = 1

for the stationary probabilities f�(k)g allows us to ompute the stationary

probabilities in expliit form (see again [8, Chapter 3, Setion 7℄):

�(k) = �(0)

k�1

Y

j=0

p(j; j + 1)

p(j + 1; j)

; k � 1;

where

�(0) =

 

1 +

1

X

k=1

k�1

Y

j=0

p(j; j + 1)

p(j + 1; j)

!

�1

:

Let p(k; k + 1) ! p and, therefore, p(k; k � 1) ! 1 � p as k ! 1, so

that the limit distribution F is a Bernoulli distribution with parameter p and

the Laplae transform

'(�) = pe

�

+ (1� p)e

��

:
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In order to have an ergodi hain, we assume that p < 1=2. The unique nonzero

solution � to the equation '(�) = 1 is equal to

� = log

1� p

p

> 0:

Under the above onditions, the integrability ondition (32) for the rate of

onvergene to the limit distribution is equivalent to the following:

1

X

k=0

�

�

p(k)� p

�

�

<1: (70)

Theorem 9. Let "(k) � p(k; k+1)�p � 0 for every k. Then the following

two assertions are equivalent:

(a) there exists  > 0 suh that

�(k) � e

��k

as k !1;

(b) the ondition (70) holds.

Proof. We have

�(k) = �(0)

k�1

Y

j=0

p+ "(j)

1� p� "(j + 1)

= �(0)

�

p

1� p

�

k

k�1

Y

j=0

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

:

Taking the de�nition of � into aount, we obtain

�(k) = �(0)e

��k

k�1

Y

j=0

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

:

Hene, (a) is equivalent to the following:

1

Y

j=0

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

<1:

In turn, this is equivalent to the onvergene of the series

1

X

j=0

 

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

� 1

!

=

1

X

j=0

�

"(j)=(p)

�

+

�

"(j + 1)=(1� p)

�

1�

�

"(j + 1)=(1� p)

�

:

Sine "(j)! 0, this is equivalent to the inequality

1

X

j=0

�

"(j + 1)

1� p

+

"(j)

p

�

<1;

whih is equivalent to (70). The proof is omplete.
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