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ONE-DIMENSIONAL ASYMPTOTICALLY

HOMOGENEOUS MARKOV CHAINS:

CRAM

�

ER TRANSFORM AND

LARGE DEVIATION PROBABILITIES

D.A.Korshunov

�

Abstra
t

We 
onsider a time-homogeneous ergodi
 Markov 
hain fX

n

g that takes values on

the real line and has asymptoti
ally homogeneous in
rements at in�nity. We as-

sume that the \limit jump" � of fX

n

g has negative mean and satis�es the Cram�er


ondition, i.e., the equation E e

��

= 1 has positive solution �. The asymptoti
 be-

havior of the probability PfX

n

> xg is studied as n!1 and x!1. In parti
-

ular, we distinguish the ranges of time n where this probability is asymptoti
ally

equivalent to the tail of a stationary distribution.

Key words and phrases: real-valued Markov 
hain, large deviation probabilities,

transition phenomena, Cram�er transform, invariant distribution.

1. Introdu
tion

Let P (x;B), x 2 R, B 2 B(R), be some time-homogeneous transi-

tion probability in R; here and in the sequel, B(R) denotes the �-algebra

of Borel sets in R. In the present arti
le the parameter n (time) ranges over

the set f0; 1; 2; : : :g. Consider a Markov 
hain fX

n

g with values in R and

the transition probabilities

P (x;B) = PfX

n+1

2 B j X

n

= xg:

Let �

n

be the distribution of X

n

, i.e. �

n

(B) = PfX

n

2 Bg. Denote by �(x)

the random variable whose distribution 
orresponds to the distribution of

the jump of fX

n

g from the state x, namely,

P

�

x + �(x) 2 B

	

= P (x;B); B 2 B(R):
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In this arti
le we study an asymptoti
ally homogeneous (in spa
e) Markov


hain X

n

, i.e., a 
hain su
h that the distribution of the jump �(x) has a weak

limit as x!1. Let the distribution of �(x) 
onverges weakly to the distribu-

tion F of a random variable �. We assume that E � < 0 and Pf� > 0g > 0.

The Lapla
e transform '(�) � E e

��

of the random variable � is a 
onvex

fun
tion, '(0) = 1, and '

0

(0) = E � < 0. Thus, the set

�

� : '(�) � 1

	

is an interval of the form [0; �℄, where � = sup

�

� : '(�) � 1

	

. Sin
e

Pf� > 0g > 0, it follows that � is a �nite number. In the arti
le we 
onsider

the Cram�er 
ase 
orresponding to the situation when � > 0 and '(�) = 1.

We assume that X

n

is a Harris ergodi
 
hain with the unique invariant

distribution �. Then the distribution of X

n


onverges in the total variation

distan
e to � as n!1, i.e.,

j�

n

� �j(R) � 2 sup

B2B(R)

�

�

�

n

(B)� �(B)

�

�

! 0 (1)

�

here and in the sequel, for every signed measure � and every set B, we denote

the total variation of � on B by j�j(B)

�

. For a 
ountable 
hain X

n

, (1) takes

pla
e automati
ally provided the 
hain is irredu
ible, nonperiodi
, and positive

re
urrent; for real-valued 
hains the 
orresponding ergodi
ity 
onditions 
an

be found, for example, in [2, 10℄.

In view of (1), the family of distributions X

n

is tight, i.e., sup

n�0

PfX

n

>

xg ! 0 as x!1. In the present arti
le we study the asymptoti
 behavior of

the probability PfX

n

> xg as n!1 and x!1.

The simplest and, at the same time, very impotent example of su
h

Markov 
hain is provided by the random walk W

n

with delay at the origin

(whi
h is 
alled a spa
e-homogeneous Markov 
hain in [4, 5℄) de�ned by the re-


ursion

W

n+1

= (W

n

+ �

n

)

+

;

where �

0

; �

1

; : : : are independent 
opies of the random variable �. Put S

0

= 0,

S

k

= �

1

+ � � �+ �

k

, and M

n

= max

0�k�n

S

k

. It is well known (see, for example,

[7, Chapter VI, Se
tion 9℄) that the distribution of the 
hain W

n

with zero

initial state W

0

= 0 
oin
ides with the distribution of M

n

, i.e.,

PfW

n

> xg = PfM

n

> xg: (2)

In parti
ular, if W

0

= 0 then the sequen
e W

n

is sto
hasti
ally growing and,

hen
e, has a weak limit. Denote by W

1

the random variable with this limit

distribution. The following Cram�er estimate is well known:

PfW

1

> xg � e

��x

; x � 0:

In addition, if � � '

0

(�) = E �e

��

is �nite then

PfW

1

> xg �

1� p

�ea

e

��x

as x!1 (3)
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(see [7, Chapter XII, Se
tion 5; 6℄), where p = PfM

1

> 0g and ea =

E

�

S

�

e

�S

�

; � < 1

	

with � = minfn � 1 : S

n

> 0g. Sin
e E � < 0, we

have p < 1, and both � and S

�

are defe
tive random variables.

In the 
ase when the distribution of � has a nonzero absolutely 
ontinuous


omponent, the prestationary distributions of W

n

were studied in detail by

A.A.Borovkov in [1℄. Theorems 7{11 of [1℄ provide the asymptoti
 expansion

for the probability P

�

max

0�k�n

S

k

� x; S

n

< x� y

	

within the broad ranges

of the parameters n, x, and y.

In [5℄ A.A.Borovkov and D.A.Korshunov generalized the results on

the asymptoti
 behavior of the probability PfW

n

> xg as n ! 1 and

x!1 for the Markov 
hains with values on the real line. Namely, the 
ase of

the so-
alled U -partially homogeneous (in spa
e)Markov 
hain was 
onsidered.

We 
all a 
hain U -partially homogeneous, if, for every Borel set B � (U;1),

the transition probability P (y; B) 
oin
ides with the probability Pfy+ � 2 Bg

when y ranges over (U;1). In other words, in the domain (U;1) the sto-


hasti
 behavior of X 
oin
ides with the pro
ess of summation of independent

random variables with 
ommon distribution F .

Earlier the author found the 
onditions on the asymptoti
ally spa
e-

homogeneous Markov 
hain under whi
h the tail of the stationary distribu-

tion � is de
reasing exponentially like in the estimate (3) for the distribution

tail of the supremum of partial sums (see [2, Se
tion 27, Theorems 3{5℄). We re-

produ
e the 
orresponding statements in view of their fundamental role in

the subsequent exposition. We start with the large deviation prin
iple (rough

asymptoti
 behavior) whi
h is valid under rather broad 
onditions. Following

traditions, hen
eforth the values of a measure � at the sets (x; y) and (x; y℄

are denoted by �(x; y) and �(x; y℄.

Theorem 1. Let the jumps of an asymptoti
ally spa
e-homogeneous

Markov 
hain X

n

satisfy the 
ondition sup

y

E e

��(y)

<1. If �(y;1) > 0 for

every y then log �(x;1) � ��x as x!1.

In [5, Theorem 1℄ this result was generalized on the prestationary dis-

tributions; the large deviation prin
iple was proved for the asymptoti
ally

homogeneous Markov 
hain.

In order to �nd the sharp asymptoti
 behavior of the probability �(x;1),

it is not suÆ
ient to know only that the 
hain is asymptoti
ally homogeneous.

We need some additional information about the 
onvergen
e rate of the jump

distribution to the limit distribution F .

Theorem 2. Let the distribution F be nonlatti
e and let the jumps

of X

n

satisfy the 
ondition

Z

1

�1

e

�t

�

�

P

�

�(y) < t

	

� Pf� < tg

�

�

dt � Æ(y); (4)
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where Æ(y) is a fun
tion regularly varying at in�nity with index ��, i.e.,

Æ(uy) � u

��

Æ(y) as y !1 for every �xed u > 0. If

Z

1

0

Æ(y) dy <1 (5)

(so that � � 1) then the tail of the invariant distribution � satis�es the as-

ymptoti
 equivalen
e

�(x;1) = 
e

��x

+ o

�

e

��x

�

as x!1; (6)

where


 =

1

�E �e

��

Z

1

�1

�

E e

��(y)

� 1

�

e

�y

�(dy) 2 [0;1): (7)

If F is a latti
e distribution with span � > 0 and the 
hain X

n

takes

values on the latti
e fn�; n 2 Zg then

�(n�) = 


�

e

��n�

+ o

�

e

��n�

�

as n!1; (8)

where




�

=

�

E �e

��

X

k2Z

�

E e

��(k�)

� 1

�

e

�k�

�(k�) 2 [0;1): (9)

In [2℄ we gave suÆ
ient 
onditions for the positivity of the 
onstant 
.

Namely, if �(y;1) > 0 and E e

��(y)

� 1 � 
(y) for every y, where 
(y) � 0

and

R

1

1


(y)y(log y) dy <1, then 
 > 0.

The 
ondition (5) says that, roughly speaking, the 
onvergen
e rate of

the distribution of �(x) to that of � should be integrable. In Se
tion 10 we

give an example showing that, in some sense, the 
onditions (4) and (5) are

ne
essary for (6).

In present arti
le we obtain the exa
t asymptoti
s for the probability

PfX

n

> xg as n ! 1 and x ! 1 provided that the Markov 
hain X

n

is

asymptoti
ally homogeneous in the spa
e and satis�es the 
onditions like (4)

and (5). We distinguish the ranges of time n where the probability PfX

n

> xg

is asymptoti
ally equivalent to the tail �(x;1) of the invariant distribution.

A few words about the te
hnique of proving. In [5℄ the study of U -partially

homogeneous 
hain is based on the total probability formula with respe
t to

the last entry into the set (�1; U ℄; namely, on the formula

PfX

n

> xg =

n�1

X

k=0

P

�

X

k

� U; X

j

> U for every j 2 [k + 1; n℄; X

n

> x

	

:
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A

ording to the Markov property the summand in the last sum equals

P

n

X

k

� U; X

j

> U for every j 2 [k + 1; n℄; X

n

> x

o

=

Z

U

�1

PfX

k

2 dug

Z

1

U

P (u; dv)

� P

n

X

j

> U for every j 2 [k + 2; n℄; X

n

> x j X

k+1

= v

o

:

Sin
e the 
hain is U -partially homogeneous, above the level U the 
hain

sto
hasti
ally behaves like a partial sum pro
ess with the 
ommon step dis-

tribution F . This property allows us to 
al
ulate the last probability via

the well-known theorem on the taboo probabilities of large deviations for sums

of independent identi
ally distributed random variables. For the asymptoti-


ally homogeneous 
hain this approa
h 
annot be used sin
e, in general, for

every high level U , the sto
hasti
 behavior of the 
hain above this level 
an-

not be des
ribed in terms of the partial sum pro
ess based on independent

variables. Therefore we propose a new te
hnique of proving.

The sket
h of the proof follows: First, we apply the Cram�er transform with


orresponding parameter to the Markov 
hain under 
onsideration. As a result,

we obtain some obje
t 
alled the Markov evolution of masses. The main

di�eren
e between the Markov evolution of masses and the usual Markov 
hain

is that the jump of the Markov evolution of masses 
an have the total mass

(\probability") other than 1; in parti
ular, it 
an be greater than 1. Then

some limit theory is developed for the Markov evolution of masses and for

the Markov 
hains. In parti
ular, we prove the analogs of the 
entral limit

theorem. After that, we apply the inverse Cram�er transform to the Markov

evolution of masses what allows us to 
ompute the asymptoti
 behavior of

the probability of the event fX

n

> xg.

The arti
le is organized as follows: We obtain the main results in The-

orems 6 and 7 (in Se
tions 6 and 8 respe
tively) des
ribing the asymptoti


behavior of the large deviation probabilities of asymptoti
ally homogeneous

Markov 
hain. In Se
tions 2{5, we develop the preliminary theory. In parti
-

ular, in Se
tion 2, we dis
uss the notion and some properties of the Markov

evolution of masses. In Se
tion 3, we prove the lo
al limit theorem and the lo-


al renewal theorem for the asymptoti
ally homogeneous Markov 
hain. Se
-

tions 4 and 5 are devoted to more deli
ate asymptoti
 properties of the distri-

bution of the Markov evolution of masses. The arti
le is 
on
luded with Se
-

tion 10 in whi
h a simple example of asymptoti
ally homogeneous Markov


hain demonstrates that the prin
ipal 
onditions of Theorem 6 on the integra-

bility of the 
onvergen
e rate of the distribution of �(x) to that of � 
annot be

weakened.
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2. The Markov evolution of masses

A Markov 
hain X

n

with the distribution �

n

may be 
onsidered as

the Markov evolution of unit mass in the spa
e R. Spe
i�
ally, at time n = 0

the unit mass is distributed on the spa
e R a

ording to the law �

0

. At the

next moment of time n = 1 the mass is redistributed a

ording to the tran-

sition fun
tion P (� ; �), i.e., from every point u 2 R the element of mass is

redistributed on R a

ording to the law P (u; �). Hen
e, at time n = 1 the to-

tal unit mass is distributed a

ording to �

1

, i.e., the mass of every measurable

set B � R is equal to �

1

(B). And so on, at any time n.

Introdu
e the notion of generalized transition kernel Q(u;B), u 2 R,

B 2 B(R), possessing all properties of ordinary Markov transition kernel ex
ept

for the fa
t that the nonnegative fun
tion Q(u;R) of the argument u is equal

to one. Thus, the values of Q(u;R) 
an be less or greater than one. Clearly,

the fun
tion

Q

�

(u;B) =

Q(u;B)

Q(u;R)

represents a traditional Markov transition kernel.

Let Q

0

be some nonnegative measure on R. Then the generalized transi-

tion kernel Q(u;B) generates the family of nonnegative measures fQ

n

g de�ned

by the re
urrent equality

Q

n+1

(B) = (Q

n

Q)(B) �

Z

R

Q(u;B)Q

n

(du); n � 0:

De�ne the Markov evolution of masses (or simply the Markov mass)

Y

n


orresponding to the generalized transition kernel Q(� ; �) as follows: at

time n = 0 the mass Q

0

(R) is distributed on R a

ording to the law Q

0

.

During the time step n! n+1 the element of mass Y

n

at state u 2 R 
hanges

Q(u;R) times and the new element of mass Y

n+1

is distributed on the spa
e

a

ording to the measure Q(u;B)=Q(u;R). Therefore, at ea
h moment of

time n the mass is distributed a

ording to the lawQ

n

(�), i.e., the mass of every

measurable set B 2 B(R) equals Q

n

(B). While speaking about an ordinary

Markov 
hain we use the term \the value of X

n

at time n;" for the Markov

evolution of masses we use the term \element of mass Y

n

at time n" and denote

the mass of B at time n by MesfY

n

2 Bg.

Observe that, generally speaking, the �nite-dimensional distributions of

masses (Y

0

; : : : ; Y

n

) are not 
onsistent. For example, if Q(u;R) � 2 then

the mass of B

0

� � � ��B

n

�R is twi
e greater than the mass of B

0

� � � ��B

n

.

Thus, in general, the analog of the total probability formula does not hold.

Nevertheless, in order to 
al
ulate the mass of the measurable set B at time n,

we 
an \tra
e" all traje
tories of the element of mass leading to B and \sum"

the masses that are 
arrying along these traje
tories a

ording to the general-

ized transition kernel. For example, given two disjoint nonempty Borel sets B
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and B

1

, the measure of B at time n 
an be 
al
ulated by the following formula

with respe
t to the last entry of the element of mass into B

1

:

MesfY

n

2 Bg = Mes

�

Y

0

=2 B

1

; : : : ; Y

n�1

=2 B

1

; Y

n

2 B

	

+

n�2

X

k=0

Mes

�

Y

k

2 B

1

; Y

k+1

=2 B

1

; : : : ; Y

n�1

=2 B

1

; Y

n

2 B

	

+MesfY

n�1

2 B

1

; Y

n

2 Bg: (10)

Note in addition that here

Mes

n

Y

k

2 B

1

; Y

k+1

=2 B

1

; : : : ; Y

n�1

=2 B

1

; Y

n

2 B

o

=

Z

RnB

1

Q(u

n�1

; B)

Z

RnB

1

Q(u

n�2

; du

n�1

) � � �

Z

RnB

1

Q(u

k

; du

k+1

)

Z

B

1

Q

k

(du

k

):

Denote by �(u) the jump of the Markov evolution of masses Y

n

from

state u. By de�nition, �(u) is a fun
tion on some measurable spa
e with

the total mass Q(u;R) and the generalized distribution Q(u; u + �). Thus,

Mes

�

u+ �(u) 2 B

	

= Q(u;B).

2.1. Numeri
al 
hara
teristi
s. By the mean value of a fun
tion Y on

some measurable spa
e with �nite total mass we mean the integral EY =

R

R

yQ(dy), where Q is the generalized distribution of Y . So,

EY

n

=

Z

R

yQ

n

(dy); E�(u) =

Z

R

yQ(u; u+ dy):

Note that the mean value is a linear fun
tional if we 
onsider the fun
tions on

a �xed spa
e with a �xed measure. But the equality

EY

n+1

= EY

n

+

Z

R

E �(u)Q

n

(dy);

in general, is not valid. For example, if the distribution of the jump �(u) does

not depend on u and equals � then EY

1

= EY

0

� �(R) + Q

0

(R) � E �, but not

EY

1

= EY

0

+ E �.

Nevertheless, the time behavior of the exponential moments of the Markov

evolution of masses, namely the Lapla
e transform and the 
hara
teristi
 fun
-

tion, is 
ompletely the same as one of the exponential moments of ordinary

Markov 
hain. Sin
e

Ee

�Y

n+1

=

Z

R

e

�y

Q

n+1

(dy)

=

Z

R

e

�y

Z

R

Q(u; dy)Q

n

(du)

=

Z

R

e

�(u+z)

Z

R

Q(u; u+ dz)Q

n

(du);



Large Deviation Probabilities 37

the following equality holds:

Ee

�Y

n+1

=

Z

R

e

�u

Ee

��(u)

Q

n

(du): (11)

2.2. The analog of Chebyshev's inequality. For every positive in
reasing

fun
tion f(u), the inequality

MesfY � yg �

E f(Y )

f(y)

is valid. In parti
ular, for every � > 0, we have

MesfY � yg = Mesf�Y � �yg � e

�y

Ee

��Y

: (12)

2.3. The Cram�er transform over a Markov 
hain: the inversion formula.

LetX

n

be a real-valued Markov 
hain with transition probabilities P (u;B) and

distribution �

n

. Given � > 0, de�ne a generalized transition kernel P

(�)

(� ; �)

by the equality

P

(�)

(u; dv) = e

�(v�u)

P (u; dv);

the measure P

(�)

(u; u+ �) represents the Cram�er transform over the distribu-

tion P (u; u + �) with parameter �. In addition, for every n, de�ne the mea-

sure �

(�)

n

as

�

(�)

n

(du) = e

�u

PfX

n

2 dug:

The following re
urrent equality is true:

�

(�)

n+1

(B) =

Z

B

e

�v

PfX

n+1

2 dvg

=

Z

B

e

�v

Z

R

P (u; dv)PfX

n

2 dug

=

Z

B

Z

R

e

�(v�u)

P (u; dv)e

�u

PfX

n

2 dug

=

Z

B

Z

R

P

(�)

(u; dv)�

(�)

n

(du)

=

Z

R

P

(�)

(u;B)�

(�)

n

(du):

Thus, the Markov evolution of masses X

(�)

n

with generalized transition ker-

nel P

(�)

(� ; �) is distributed a

ording to �

(�)

n

, i.e.,

�

(�)

n

(B) = Mes

�

X

(�)

n

2 B

	

for all n � 0 and B 2 B(R).
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By the 
onstru
tion of �

(�)

n

, the following inversion formula is valid:

�

n

(B) =

Z

B

e

��u

�

(�)

n

(du): (13)

In general, the following holds:

Lemma 1. For every n 2 Z

+

and u

0

; : : : ; u

n

2 R,

PfX

0

2 du

0

; : : : ; X

n

2 du

n

g = e

��u

n

Mes

�

X

(�)

0

2 du

0

; : : : ; X

(�)

n

2 du

n

	

:

Proof follows from the equalities

PfX

0

2 du

0

; : : : ; X

n

2 du

n

g

= PfX

0

2 du

0

gP (u

0

; du

1

) � � �P (u

n�1

; du

n

)

= e

��u

0

Mes

�

X

(�)

0

2 du

0

	

e

��(u

1

�u

0

)

P

(�)

(u

0

; du

1

)

� � � e

��(u

n

�u

n�1

)

P

(�)

(u

n�1

; du

n

)

= e

��u

n

Mes

�

X

(�)

0

2 du

0

; : : : ; X

(�)

n

2 du

n

	

:

3. The lo
al renewal theorem for transient Markov 
hains

We start with some modi�
ations of (the lo
al limit) Theorems 7 (the lat-

ti
e 
ase) and 8 (the nonlatti
e 
ase) of the arti
le [9℄ whi
h are essential for

our subsequent study.

Let X

�

n

be a real-valued Markov 
hain. Denote the jump of this 
hain at

the state x by �

�

(x).

Theorem 3. Let the jumps of X

�

possess a minorant � with E � > 0

and Var � <1, i.e., for every x 2 R, the following sto
hasti
 inequality holds:

�

�

(x) �

st

�: (14)

Let �

�

(x)) �

�

as x!1, let the relations

E �

�

(x) = � + o

�

1=

p

x

�

;

Var �

�

(x)! �

2

> 0

hold, and let the family

��

�

�

(x)

�

2

; x 2 R

	

be uniformly integrable. In addi-

tion, assume that the initial distribution of the 
hain satis�es the 
ondition

P

�

X

�

0

� �x

	

= o

�

1=

p

x

�

as x!1.

If �

�

is a nonlatti
e random variable and, for every A > 0,

sup

j�j�A

�

�

E e

i��

�

(x)

� E e

i��

�

�

�

= o(1=x) as x!1 (15)
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then, for ea
h �xed � > 0, the following relation holds as n!1:

sup

x2R

�

�

�

�

P

�

X

�

n

2 (x; x +�℄

	

�

�

p

2�n�

2

e

�(x�n�)

2

=2n�

2

�

�

�

�

= o

�

1=

p

n

�

:

If the 
hain X

�

n

takes its values on the latti
e f�k; k 2 Zg, � > 0, this

latti
e is minimal, and

sup

j�j��=�

�

�

E e

i��

�

(k�)

� E e

i��

�

�

�

= o(1=k) as k !1;

then, as n!1, we have

sup

k2Z

+

�

�

�

�

PfX

�

n

= k�g �

�

p

2�n�

2

e

�(k��n�)

2

=2n�

2

�

�

�

�

= o

�

1=

p

n

�

:

Proof. As was observed in [9, Se
tion 4.2℄, the 
ondition (14) of the ex-

isten
e of minorant � with positive mean and �nite varian
e together with

the 
ondition on the left tail of the initial distribution provide the following

estimate:

P

�

X

�

k

� kE �=2 for some k � n

	

= o

�

1=

p

n

�

as n!1:

Thus, all 
onditions of Theorems 7 and 8 of [9℄ are satis�ed, whi
h 
ompletes

the proof.

De�ne the renewal measure generated by the Markov 
hain X

�

n

:

H(B) �

1

X

n=0

PfX

�

n

2 Bg

and the renewal pro
ess

e

H(B) �

1

X

n=0

IfX

�

n

2 Bg:

The equality H(B) = E

e

H (B) holds.

Lemma 2. Let the minorization 
ondition (14) hold with E � > 0 and

E �

2

< 1. Then there exists a random variable � with �nite mean su
h that

e

H(x; x+ 1℄ �

st

� for every x 2 R.

Proof. Consider the sums Z

n

= �

1

+ � � �+ �

n

, Z

0

= 0, where �

1

; �

2

; : : : are

independent 
opies of �. Sin
e the mean � is positive and the se
ond moment

is �nite, we have (see, for example, [11, Corollary 2.5℄)

� �

1

X

n=0

I

�

Z

n

� 1

	

<1; E � <1: (16)
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Let �(x) = minfn � 0 : X

�

n

> xg. Sin
e � minorizes the jumps, the Markov


hain X

�

n

and the sequen
e Z

n


an be de�ned on a 
ommon probability spa
e

so that X

�

�(x)+n

� x + Z

n

with probability 1 for every n � 0. Therefore,

e

H(x; x + 1℄ =

1

X

n=0

I

�

X

�

�(x)+n

2 (x; x + 1℄

	

�

1

X

n=0

I

�

X

�

�(x)+n

� x + 1

	

�

st

1

X

n=0

I

�

x+ Z

n

� x+ 1

	

;

whi
h, together with (16), implies the lemma 
on
lusion.

From now on, we assume, in addition, that the 
hain X

�

n

is asymptoti
ally

homogeneous. Let F

�

be the limit distribution of the variable �

�

(x) and let

�

�

be a random variable with the distribution F

�

.

Theorem 4. Let F

�

be a nonlatti
e distribution, let � = E �

�

, and let

the jumps of the 
hain X

�

possess a minorant � and a majorant � with E � > 0,

Var � <1, and E � <1, i.e., for every x, the following sto
hasti
 inequalities

are satis�ed:

� �

st

�

�

(x) �

st

�;

Then, for ea
h �xed � > 0, we have

lim

x!1

H(x; x+�℄ = �=�:

If, in addition, �

2

= Var �

�

< 1 and the lo
al limit theorem holds, i.e., if

the relation

P

�

X

�

n

2 (x; x+�℄

	

=

�

p

2�n�

2

e

�(x�n�)

2

=2n�

2

+ o

�

1=

p

n

�

holds as n!1 uniformly in x then, as n!1 and x!1,

n

X

k=0

P

�

X

�

k

2 (x; x +�℄

	

=

�

�

�

�

2

�

n�� x

p

x=�

�

+ o(1):

Proof. Denote by �(x) and �(x) the time and the value of the �rst

overshoot of the level x by the 
hain X

�

n

:

�(x) = min

�

n � 0 : X

�

n

> x

	

; �(x) = X

�

� (x)

� x:
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Let �

�

1

; �

�

2

; : : : be independent 
opies of the random variable �

�

. Put S

�

n

=

�

�

1

+ � � � + �

�

n

. Denote by �

�

(x) and �

�

(x) the time and the value of the �rst

overshoot of the level x by the sums S

�

n

:

�

�

(x) = min

�

n � 0 : S

�

n

> x

	

; �

�

(x) = S

�

� (x)

� x;

and by

e

H

�

(B) =

1

X

n=0

IfS

�

n

2 Bg;

the renewal pro
ess. It is known (see, e.g., [11, Theorem 2.3℄) that the distri-

bution of �

�

(x) 
onverges weakly as x ! 1 to the distribution of the over-

shoot �

�

(1) of the so-
alled in�nite level, and the distribution of �

�

(1) is

absolutely 
ontinuous. In view of absolute 
ontinuity of the overshoot weak

limit, the distribution of

e

H

�

(x; x + �℄ 
onverges weakly as x ! 1 to some

distribution, say G. By virtue of the lo
al renewal theorem for sums of indepen-

dent identi
ally distributed random variables (see, for example, [7, Chapter XI;

11, Appendix℄), the mean of the distribution G is equal to �=�.

The 
onditions of Theorem 4 allow us to apply Theorem 2.2 of [3℄ a
-


ording to whi
h the distribution of the overshoot �(x) 
onverges weakly to

the distribution of �

�

(1). Therefore, the distribution of

e

H(x; x + �℄ 
on-

verges weakly to the distribution G. Taking it into a

ount that, by Lemma 3,

the family

�

e

H(x; x + �℄; x 2 R

	

admits an integrable majorant, we obtain

the 
onvergen
e of the mean value of

e

H(x; x+�℄ to that of G as x!1, i.e.,

H(x; x+�℄! �=�;

and the �rst assertion of the theorem is proven.

If the lo
al limit theorem is valid then, for any �xed s and t, s < t,

the following 
onvergen
e holds:

x=�+t

p

x

X

k=x=�+s

p

x

P

�

X

�

k

2 (x; x+�℄

	

�

x=�+t

p

x

X

k=x=�+s

p

x

�

p

2�k�

2

e

�(x�k�)

2

=2k�

2

! 0

as x!1. Thus,

x=�+t

p

x

X

k=x=�+s

p

x

P

�

X

�

k

2 (x; x +�℄

	

!

�

�

�

�

�

2

�

t�

3=2

�

� �

�

2

�

s�

3=2

�

�

:

The last 
onvergen
e, together with the �rst assertion of the theorem, implies

the se
ond assertion. The proof is 
omplete.
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In the latti
e 
ase assertions of Theorem 4 
an be formulated as follows:

if F is a latti
e distribution with span � > 0 then

lim

k!1

H(k�) = �=�;

n

X

j=0

P

�

X

�

j

= k�

	

=

�

�

�

�

2

�

n�� k�

p

k�=�

�

+ o(1)

uniformly in k as n!1.

4. Some preliminary estimates for

the distribution of a Markov evolution of masses

We 
onsider a Markov evolution of masses fY

n

g with jumps f�(x)g. De-

note Q

n

(B) = MesfY

n

2 Bg and Q(x;B) = Mes

�

x + �(x) 2 B

	

. Put

b

Q(x) � sup

y>x

Q(y;R);

b

Q � sup

y2R

Q(y;R):

First of all we �nd 
onditions on the Markov evolution of masses whi
h

provide the boundedness of the sequen
e of the whole spa
e masses.

Lemma 3. Let Q

0

(R) < 1 and

b

Q < 1. If, for some sequen
e of

levels x

n

, n � 0,

1

X

n=0

Q

n

(�1; x

n

℄ <1; (17)

1

X

n=0

bq(x

n

) <1; (18)

where

bq(x) � sup

y>x

�

�

Q(y;R) � 1

�

�

;

then the sequen
e of total masses is bounded:

sup

n�0

Q

n

(R) <1;

moreover, there exists a �nite limit

lim

n!1

Q

n

(R) = Q 2 [0;1):
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Proof. By indu
tion on n, we 
he
k the inequality

Q

n+1

(R) � Q

0

(R)

n

Y

k=0

b

Q(x

k

) +

b

Q

n

X

k=0

Q

k

(�1; x

k

℄

n

Y

j=k+1

b

Q(x

j

): (19)

We have

Q

n+1

(R) =

�

Z

x

n

�1

+

Z

1

x

n

�

Q(x;R)Q

n

(dx) �

b

QQ

n

(�1; x

n

℄ +

b

Q(x

n

)Q

n

(R):

For n = 0 this estimate implies the inequality

Q

1

(R) �

b

QQ

0

(�1; x

0

℄ +

b

Q(x

0

)Q

0

(R);

whi
h justi�es the basis of the indu
tion. By the indu
tion hypothesis,

Q

n+1

(R) �

b

QQ

n

(�1; x

n

℄ +

b

Q(x

n

)Q

n

(R)

�

b

QQ

n

(�1; x

n

℄

+

b

Q(x

n

)

"

Q

0

(R)

n�1

Y

k=0

b

Q(x

k

) +

b

Q

n�1

X

k=0

Q

k

(�1; x

k

℄

n�1

Y

j=k+1

b

Q(x

j

)

#

= Q

0

(R)

n

Y

k=0

b

Q(x

k

) +

b

Q

n

X

k=0

Q

k

(�1; x

k

℄

n

Y

j=k+1

b

Q(x

j

);

whi
h implies the indu
tion step.

Sin
e the series (18) 
onverges, we obtain

Q

sup

� sup

n�0

n

Y

k=0

b

Q(x

k

) � sup

n�0

n

Y

k=0

�

1 + bq(x

k

)

�

<1:

From here and (19) we derive the estimate

Q

n+1

(R) � Q

0

(R)Q

sup

+

b

QQ

sup

n

X

k=0

Q

k

(�1; x

k

℄; (20)

whi
h proves the �rst assertion of the lemma. Further, for every n � 0, we

have

�

�

Q

n+1

(R) �Q

n

(R)

�

�

=

�

�

�

�

�

�

Z

x

n

�1

+

Z

1

x

n

�

�

Q(x;R) � 1

�

Q

n

(dx)

�

�

�

�

�

� (

b

Q + 1)Q

n

(�1; x

n

℄ +Q

n

(R)bq(x

n

):

Sin
e the sequen
e Q

n

(R) is bounded, from (17) and (18) it follows that

the sequen
e Q

n

(R) is fundamental. The proof is 
omplete.
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Lemma 4. Assume that the Markov evolution of masses takes positive

values only. Let

b

Q <1 and let, for ea
h �xed " > 0, the 
ondition (18) hold

for the sequen
e x

k

= k". If, for some � > 0,

E

sup

� sup

u>0

Ee

���(u)

< 1 (21)

then there exists b
 < 1 su
h that, for any n � 0 and initial distribution Q

0

,

the following estimate holds:

Q

n

(R) � b


�

Q

0

(R) + 1

�

:

Proof. By (11), we have the estimate

Ee

��Y

n

=

Z

1

0

e

��u

Ee

���(u)

MesfY

n�1

2 dyg

� E

sup

Z

1

0

e

��u

MesfY

n�1

2 dyg

= E

sup

Ee

��Y

n�1

:

Therefore,

Ee

��Y

n

� Ee

��Y

0

(E

sup

)

n

� Q

0

[0;1)(E

sup

)

n

:

Using the analog of the exponential Chebyshev inequality (12) with y = n",

we arrive at the inequality

MesfY

n

� n"g � e

�n"

Ee

��Y

n

� Q

0

[0;1)

�

e

�"

E

sup

�

n

:

Sin
e E

sup

< 1, there exists a suÆ
iently small " > 0 su
h that

Æ � e

�"

E

sup

< 1: (22)

With su
h 
hoi
e of ", the 
ondition (17) of Lemma 3 is satis�ed. The lemma

assertion follows from the estimate (20).

In the following lemma we 
onsider the Markov evolution of masses that

do not ne
essarily satisfy (17). Nonful�llment of this 
ondition leads to the pos-

sibility of unbounded growth of the sequen
e of the total spa
e masses. In the


ase of ordinary Markov 
hain, it is impossible sin
e, if the mass tends to in-

�nity, then the mass disappears near the origin. In the 
ase of the Markov

evolution of masses the jumps 
an generate masses greater than 1 and, there-

fore, the states near the origin 
an serve as a permanent sour
es of new masses.

Lemma 5. Let Q

0

(R) <1,

b

Q <1,

sup

n�0

Q

n

(�1; 0℄ <1



Large Deviation Probabilities 45

and, for ea
h �xed " > 0, the 
ondition (18) hold for the sequen
e x

k

= k".

If, for some � > 0, the 
ondition (21) is satis�ed then there exists b
 <1 su
h

that, for any n � 0 and x > 0, the following estimate holds:

Q

n

(�1; x℄ � b
 (x + 1):

Proof. In view of the 
ondition sup

n

Q

n

(�1; 0℄ <1, it is ne
essary and

suÆ
ient to prove that, for some 


1

,

Q

n

(0; x℄ � 


1

(x + 1): (23)

We make use of the formula (10) on the last entran
e into the set (�1; 0℄:

Q

n

(0; x℄ = Mes

�

Y

0

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

+

n�1

X

k=0

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

:

By Lemma 4, there exists 


2

<1 su
h that, for any n � 0 and k < n,

Mes

�

Y

0

> 0; : : : ; Y

n

> 0

	

� 


2

;

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n

> 0

	

� 


2

:

Here the se
ond estimate follows from the fa
t that the value

Mes

�

Y

k

� 0; Y

k+1

> 0

	

� Q

k

(�1; 0℄

b

Q

is bounded uniformly in k � 0.

Choose " > 0 so that (22) is valid. If n � 2x=" then the lemma assertion

follows from the inequalities

Q

n

(0; x℄ � n


2

� 2x


2

=":

If n > 2x=" then

Q

n

(0; x℄ �

n�x="

X

k=0

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

+ x


2

=": (24)

We now estimate the kth term in the sum. Consider an auxiliary Markov

evolution of masses Z

n

taken values on the positive half-line with initial dis-

tribution

MesfY

k

� 0; Y

k+1

2 Bg; B 2 B(0;1)
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�

thus, MesfZ

0

2 Rg = MesfY

k

� 0; Y

k+1

> 0g � 


2

�

, and with jumps on

positive half-line possessing the distribution Mes

�

�(u) 2 B

	

, B 2 B(0;1).

We obtain the inequality

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

� MesfZ

n�k�1

� xg:

It follows from Lemma 4 that

Mes

�

Z

n�k�1

� (n� k � 1)"

	

� 


2

Æ

n�k�1

with Æ < 1. Therefore, for n > 2x=" and k � n� x="

�

thus, x � (n� k)"

�

,

Mes

�

Y

k

� 0; Y

k+1

> 0; : : : ; Y

n�1

> 0; Y

n

2 (0; x℄

	

� Mes

�

Z

n�k�1

� x

	

� Mes

�

Z

n�k�1

� (n� k � 1)"

	

� 


2

Æ

n�k�1

:

Finally,

Q

n

(0; x℄ � 


2

n�x="

X

k=0

Æ

n�k�1

+ x


2

=" �




2

1� Æ

+ x


2

=":

Both the estimate (23) and the lemma are proven.

5. An analog of the 
entral limit theorem

for a Markov evolution of masses

The 
hara
teristi
 fun
tion of the sum of independent random variables

is equal to the produ
t of the 
hara
teristi
 fun
tions of the summands. If we

deal with a Markov 
hain or, moreover, a Markov evolution of masses, then

the 
hara
teristi
 fun
tion is not a produ
t of something in view of the non-

homogeneity of jumps. In the following lemma we establish to what extent

the time-behavior of the 
hara
teristi
 fun
tion of a Markov evolution of masses

di�ers from the time-behavior of the 
hara
teristi
 fun
tion of a sequen
e of

partial sums of independent variables.

Consider a Markov evolution of masses fY

n

g with jumps

�

�

n

(x)

	

. Denote

Q

n

(B) = MesfY

n

2 Bg and Q(x;B) = Mes

�

x + �(x) 2 B

	

. Let

b

Q � sup

y2R

Q(y;R) <1; Q � sup

n�0

Q

n

(R) <1:
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Lemma 6. Let x

j

be an arbitrary sequen
e of levels in R. For all � 2 R,

n � 1, k � n and a 
omplex number ' 2 C , j'j � 1, the following inequality

holds:

�

�

�

Ee

i�Y

n

� '

n�k

Ee

i�Y

k

�

�

�

� (

b

Q+ 1)

n�1

X

j=k

Q

j

(�1; x

j

℄ +Q

n�1

X

j=k

"

j

;

where

"

j

= sup

x>x

j

�

�

Ee

i��(x)

� '

�

�

: (25)

Proof. Take j 2 [k + 1; n℄. By (11), we have

Ee

i�Y

j

=

Z

R

�

Ee

i��(x)

�

e

i�x

Q

j�1

(dx):

Therefore,

�

�

�

Ee

i�Y

j

� 'Ee

i�Y

j�1

�

�

�

=

�

�

�

�

Z

R

�

Ee

i��(x)

� '

�

e

i�x

Q

j�1

(dx)

�

�

�

�

�

�

�

�

�

Z

1

x

j�1

�

Ee

i��(x)

� '

�

e

i�x

Q

j�1

(dx)

�

�

�

�

+

�

�

�

�

Z

x

j�1

�1

�

Ee

i��(x)

� '

�

e

i�x

Q

j�1

(dx)

�

�

�

�

� "

j�1

Q

j�1

(R) +

�

b

Q + 1

�

Q

j�1

(�1; x

j�1

℄

in view of (25). Combining the last estimate with the inequality

�

�

�

Ee

i�Y

n

� '

n�k

Ee

i�Y

k

�

�

�

�

n

X

j=k+1

�

�

�

'

n�j

Ee

i�Y

j

� '

n�(j�1)

Ee

i�Y

j�1

�

�

�

=

n

X

j=k+1

�

�

�

Ee

i�Y

j

� 'Ee

i�Y

j�1

�

�

�

;

we dedu
e the lemma assertion.

In the formula (25) the value "

j

is de�ned as the maximal di�eren
e

between the jump 
hara
teristi
 fun
tion and some 
omplex number ' 2 C ,

j'j � 1, on some phase subspa
e rather than on the whole spa
e. We are going

to apply this lemma below in the 
ase when the mass of the 
orresponding

subspa
e is 
lose to the mass of the whole real line.

In the following theorem we give suÆ
ient 
onditions under whi
h a Mar-

kov evolution of masses on real line [0;1) satis�es the 
entral limit theorem

in some sense.
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Theorem 5. Let the 
onditions of Lemma 4 be satis�ed and let

Q

0

[0;1) < 1. Assume that the family of jump squares f�

2

(x); x � 0g is

uniformly integrable. If, for some � > 0 and �

2

> 0, the relations

E

�

�(x)� �

�

= o

�

1=

p

x

�

; (26)

E

�

�(x)� �

�

2

! �

2

(27)

hold as x ! 1 then the distribution of the mass (Y

n

� n�)=

p

n 
onverges

weakly as n!1 to the normal law with zero mean and varian
e �

2

, i.e., for

every y 2 R the following 
onvergen
e holds:

Q

n

�

0; n� + y

p

n

�

! Q�

�

2

(y);

with Q = lim

n!1

Q

n

(R).

Proof is 
arried out by the method of 
hara
teristi
 fun
tions. Hereinafter

� 2 R. In view of the uniform integrability of the family of the jump squares,

the following de
omposition is valid:

Ee

i�(�(x)��)

= Q(x;R) + i�E

�

�(x)� �

�

�

�

2

2

E

�

�(x)� �

�

2

+ o(�

2

)

as � ! 0 uniformly in x. Taking into a

ount the 
onditions (26) and (27),

we obtain the inequality

�

�

�

Ee

i�(�(x)��)

� (1� �

2

�

2

=2)

�

�

�

� "(x; �)

�

�=

p

x+ �

2

�

+

�

�

Q(x;R) � 1

�

�

;

where "(x; �) ! 0 as � ! 0 and x ! 1. Fix arbitrary � 2 R and " > 0.

From the last inequality we have

�

�

�

Ee

i�(�(x)��)=

p

n

� (1� �

2

�

2

=2n)

�

�

�

� e"(n; x)=

p

nj + bq(j");

where e"(n; x) ! 0 as n ! 1 and j ! 1 uniformly in the domain x > j".

Applying now Lemma 6 with ' = 1 � �

2

�

2

=2n and x

j

= j" to the Markov

evolution of masses (Y

n

� n�)=

p

n, we obtain the estimate

�

�

�

�

�

Ee

i�

Y

n

�n�

p

n

�

�

1�

�

2

�

2

2n

�

n�k

Ee

i�

Y

k

�k�

p

n

�

�

�

�

�

�

�

b

Q+ 1

�

n�1

X

j=k

Q

j

[0; j"℄ +Q

n�1

X

j=k

�

o(1)

p

nj

+ bq(j")

�

:

Sin
e all 
onditions of Lemma 4 are satis�ed, the value Q is �nite and

Q

j

[0; j"℄ � Q

0

[0;1)Æ

j

, Æ < 1. Thus, for ea
h �xed � 2 R, the di�eren
e

�

�

�

�

�

Ee

i�

Y

n

�n�

p

n

�

�

1�

�

2

�

2

2n

�

n�k

Ee

i�

Y

k

�k�

p

n

�

�

�

�

�
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an be made arbitrarily small uniformly in n > k by 
hoosing a suÆ
iently

large k. For ea
h �xed k,

Ee

i�

Y

k

�k�

p

n

! Q

k

(R)

as n ! 1 and Q

k

(R) ! Q as k ! 1 by Lemma 3. Thus, in view of

the 
onvergen
e

�

1�

�

2

�

2

2n

�

n�k

! e

��

2

�

2

=2

as n!1

for ea
h �xed k, the following holds:

Ee

i�

Y

n

�n�

p

n

! Qe

��

2

�

2

=2

as n!1;

whi
h 
ompletes the proof of the theorem.

6. Large deviation probabilities for

an asymptoti
ally homogeneous Markov 
hain

In this se
tion we 
onsider an asymptoti
ally spa
e-homogeneous Markov


hain, i.e., �(u)) � as u!1. We assume that F is a nonlatti
e distribution

of the random variable �; the latti
e 
ase is dis
ussed in Se
tion 8.

As before, the parameter � > 0 is de�ned as the solution to the equation

'(�) = E e

��

= 1. The measure, de�ned by the equality

F

(�)

(du) = e

�u

F (du); (28)

is probabilisti
. Let �

(�)

be a random variable with the distribution F

(�)

.

Assume that

� � E �

(�)

= '

0

(�) 2 (0;1);

�

2

� Var �

(�)

= '

00

(�)�

�

'

0

(�)

�

2

<1:

Theorem 6. Let E e

�X

0

be �nite and let the family of jumps

�

�(u);

u 2 R

	

possess a sto
hasti
 majorant � su
h that

E �

2

e

��

<1: (29)

Assume that the 
hain jumps satisfy the following 
onditions:

inf

u2R

E e

��(u)

> 0; (30)

E �(u)e

��(u)

= � + o

�

1=

p

u

�

as u!1: (31)
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Moreover, suppose that, for ea
h �xed A > 0, there exists a bounded de
reasing

fun
tion Æ(u) = o(1=u) integrable at in�nity and su
h that

sup

�2[�A;A℄

�

�

�

E e

(�+i�)�(u)

� E e

(�+i�)�

�

�

�

� Æ(u) (32)

for every u 2 R. Then the following relation holds:

PfX

n

> xg = 
e

��x

�

�

2

�

n�� x

p

x=�

�

+ o

�

e

��x

�

as x!1 uniformly in n � 0, where


 =

1

��

Z

1

�1

�

E e

��(y)

� 1

�

e

�y

�(dy) 2 [0;1): (33)

The 
ondition (30) is equivalent to the fa
t that there is no sequen
e of

points u

k

2 R su
h that �(u

k

)) �1 as k !1.

In this theorem we do not assume that the fun
tion Æ(u) is regularly

varying at in�nity as it is assumed by the 
ondition (4) in Theorem 2; so,

the 
ondition (32) is weaker than (4). Moreover, sin
e

�

�

�

E e

(�+i�)�(u)

� E e

(�+i�)�

�

�

�

=

�

�

�

�

Z

1

�1

e

(�+i�)v

d

v

�

P

�

�(u) < v

	

� Pf� < vg

�

�

�

�

�

= j� + i�j

�

�

�

�

Z

1

�1

e

(�+i�)v

�

P

�

�(u) < v

	

� Pf� < vg

�

dv

�

�

�

�

� j� + i�j

Z

1

�1

e

�v

�

�

�

P

�

�(u) < v

	

� Pf� < vg

�

�

�

dv;

we 
an propose the following 
ondition suÆ
ient for (32):

Z

1

�1

e

�v

�

�

�

P

�

�(u) < v

	

� Pf� < vg

�

�

�

dv � Æ(u):

From Theorem 6 we dedu
e

Corollary 1. Let by(x)!1 as x!1. Then we have the asymptoti


PfX

n

> xg = e

��x

�


+ o(1)

�

as x ! 1 uniformly in n � x=�

0

+ by(x)

p

x. If 
 > 0 then the following

equivalen
e holds in the above-indi
ated ranges of n:

PfX

n

> xg � �(x;1) as x!1:
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Proof of Theorem 6. First of all, note that the 
ondition (32) with � = 0

implies the relation

E e

��(u)

= 1 +O

�

Æ(u)

�

= 1 + o(1=u) as u!1: (34)

Consider the Cram�er transform with parameter � over the 
hain X

n

, i.e.,

introdu
e the generalized transition kernel

P

(�)

(u; dv) = e

�(v�u)

P (u; dv):

LetX

(�)

n

be a Markov evolution of masses with the generalized transition kernel

P

(�)

(� ; �). The following equality is valid:

�

(�)

n

(du) � Mes

�

X

(�)

n

2 du

	

= e

�u

�

n

(du) � e

�u

P

�

X

n

2 du

	

:

Sin
e E e

�X

0

is �nite, we have �

(�)

0

(R) < 1. By (34), the total masses of

the jumps of the Markov evolution of masses X

(�)

n

are uniformly bounded, i.e.

b

Q � sup

u2R

P

(�)

(u;R) <1:

Represent the kernel P

(�)

as the sum of the transition probability P

�

and

the signed kernel P

��

as follows:

P

�

(x; �) =

P

(�)

(x; �)

P

(�)

(x;R)

;

P

��

(x; �) = P

(�)

(x; �)� P

�

(x; �) =

P

(�)

(x;R) � 1

P

(�)

(x;R)

P

(�)

(x; �):

The measure P

��

(x; �) is negative in the 
ase P

(�)

(x;R) < 1, positive in

the 
ase P

(�)

(x;R) > 1, and is equal to 0 in the 
ase P

(�)

(x;R) = 1. Thus,

the total variation jP

��

j(u;B) of the measure P

��

(u; �) on the set B equals

�

�

P

��

(u;B)

�

�

.

Applying the nth power of the kernel P

(�)

to the measure �

(�)

0

, we ob-

tain the measure �

(�)

n

; so, we have �

(�)

n

= �

(�)

0

(P

�

+ P

��

)

n

. De
omposing

the power (P

�

+ P

��

)

n

into the sum with respe
t to the last appli
ation of

the kernel P

��

, we obtain the equality

(P

�

+ P

��

)

n

= (P

�

)

n

+

n�1

X

k=0

(P

�

+ P

��

)

k

P

��

(P

�

)

n�1�k

:
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From here we dedu
e the representation whi
h is basi
 for our subsequent

analysis:

�

(�)

n

= �

(�)

0

(P

�

)

n

+

n�1

X

k=0

�

(�)

k

P

��

(P

�

)

n�1�k

: (35)

The main idea of the further 
onsiderations 
onsists in the following: Sin
e

the sequen
e of measures �

(�)

n

(du) 
onverges weakly to the measure e

�u

�(du)

and the tail of the measure � behaves, as a rule, asymptoti
ally as the expo-

nential with parameter ��, the weak limit of the sequen
e of measures �

(�)

n

far

away from the origin behaves like the Lebesgue measure up to some 
onstant.

In parti
ular, (34) implies the tightness (in the same sense as that for prob-

ability measures) of the family of measures

�

�

(�)

n

P

��

	

. In addition, the nth

power of the transition kernel P

�

satis�es the lo
al limit theorem. All of these

allows us to 
ompute the lo
al asymptoti
 of the measure �

(�)

n

.

Lemma 7. The family of measures

�

�

(�)

k

P

��

; k � 0

	

is tight in the sense

that

sup

k�0

�

�

�

(�)

k

P

��

�

�

(�1;�x℄ = O

�

e

��x

�

;

sup

k�0

�

�

�

(�)

k

P

��

�

�

(x;1)! 0

as x!1. Moreover, the sequen
e of measures �

(�)

k

P

��


onverges in the total

variation distan
e to the measure �

(�)

P

��

as k ! 1, where �

(�)

(du) �

�(du)e

�u

.

Taking it into a

ount that

�

�

(�)

P

��

�

(R) is equal to

Z

1

�1

P

��

(u;R)�

(�)

(du) =

Z

1

�1

�

P

(�)

(u;R) � P

�

(u;R)

�

�

(�)

(du)

=

Z

1

�1

�

E e

��(u)

� 1

�

e

�u

�(du); (36)

we obtain

Corollary 2. The 
onstant 
 in (33) is �nite.

As far as the positivity of 
 is 
on
erned, some suÆ
ient 
onditions are

given just after Theorem 2. Note that these 
onditions are satis�ed auto-

mati
ally for the partially homogeneous 
hain with the uniformly bounded

moments of order 2 + " of negative parts of jumps.
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Proof of Lemma. We have the inequality

�

�

�

(�)

k

P

��

�

�

(B) �

Z

1

�1

jP

��

j(u;B)�

(�)

k

(du): (37)

From the de�nition of P

��

(u; �) and the 
ondition (32) with � = 0 it follows

that

jP

��

j(u;B) =

�

�

P

(�)

(u;R) � 1

�

�

P

(�)

(u;R)

P

(�)

(u;B)

=

�

�

E e

��(u)

� 1

�

�

E e

��(u)

P

(�)

(u;B)

�

Æ(u)

E e

��(u)

P

(�)

(u;B); (38)

thus, in view of (30), we dedu
e the estimate

jP

��

j(u;B) � 


1

P

(�)

(u;B): (39)

The measure �

(�)

k

is the Cram�er transform with positive parameter �

over a probability measure; therefore, its negative tail admits an exponential

estimate like �

(�)

k

(�1;�x℄ � e

��x

, x > 0. Thus, from (37) and (39) with

B = (�1;�x℄ we 
an dedu
e the following estimates:

�

�

�

(�)

k

P

��

�

�

(�1;�x℄ � 


1

Z

1

�1

P

(�)

�

u; (�1;�x℄

�

�

(�)

k

(du)

= 


1

�

(�)

k+1

(�1;�x℄

� 


1

e

��x

:

The proof of the �rst uniform estimate of the lemma is 
omplete.

Now, 
he
k the se
ond uniform 
onvergen
e stated in the lemma. Fix ar-

bitrary � 2 (0; �); we have E e

��

< 1. Sin
e �(u) ) � as x ! 1 and

the family of random variables

�

e

��(u)

	

is uniformly integrable, we obtain

Ee

��(u)

! E e

��

< 1. Thus, there exists a suÆ
iently large U su
h that

sup

u>U

E e

��(u)

< 1: (40)

Without loss of generality we may assume that U = 0. Then, by Lemma 5,

we have

sup

k

�

(�)

k

(�1; x℄ = O(x) as x!1: (41)
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In view of (29), from (39) it follows that

�

�

�

P

��

�

u; (x;1)

�

�

�

�

� 


1

E �

2

e

��

(x� u)

2

=




2

(x� u)

2

(42)

for u � x. From (38) we infer that

�

�

�

P

��

�

u; (x;1)

�

�

�

�

�

Æ(u)

E e

��(u)

P

(�)

(u;R) = Æ(u) (43)

for all u and x. Inserting (42) and (43) into (37) with B = (x;1), we obtain

�

�

�

(�)

k

P

��

�

�

(x;1) � 


3

Z

x=2

�1

(x� u)

�2

�

(�)

k

(du) +

Z

1

x=2

Æ(u)�

(�)

k

(du): (44)

Here the �rst integral vanishes as x ! 1. To 
al
ulate the se
ond integral,

we use the formula of integration by parts:

Z

1

x=2

Æ(u)�

(�)

k

(du) = Æ(u)�

(�)

k

[0; u℄

�

�

�

1

x=2

+

Z

1

x=2

�

(�)

k

[0; u℄d

�

�Æ(u)

�

:

By (41) and the relation Æ(u) = o(1=u), the �rst term on the right-hand side

of the last equality vanishes as x !1 uniformly in k. By the same theorem

and monotoni
ity of the fun
tion Æ, we have the following estimate uniform

in k:

Z

1

x=2

�

(�)

k

[0; u℄d

�

�Æ(u)

�

� 


4

Z

1

x=2

ud

�

�Æ(u)

�

:

Su

essive integration by parts and integrability of the fun
tion Æ at in�nity

imply that the se
ond integral in (44) vanishes as x ! 1 uniformly in k as

well. Thus, the family of measures �

(�)

k

P

��

is tight.

The weak 
onvergen
e follows from the 
onvergen
e in total variation of

the sequen
e of measures �

(�)

k

as k ! 1 to the measure �

(�)

. The lemma is

proven.

The end of the proof of Theorem 6 is 
arried out under three additional


onditions: the 
ondition of existen
e of minorant for the family of jumps of

the 
hain with transition probability P

�

�

see (45)

�

, a 
ondition of suÆ
iently

fast 
onvergen
e rate of �

n

to �

�

see (46)

�

, and a 
ondition of absolute 
onti-

nuity of the distribution �

n

with respe
t to the invariant measure �

�

see (47)

�

.

The end of the proof in the general 
ase is 
onsidered separately in Se
tion 7.

Let �

�

(x) be the jump at the state x of the Markov 
hain X

�

n

with tran-

sition probabilities P

�

, i.e., be a random variable su
h that P

�

�

�

(x) 2 B

	

=
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P

�

(x; x + B). Sin
e P

(�)

(x;R) ! 1 as x ! 1, by the de�nition of P

�

,

the following weak 
onvergen
e holds:

�

�

(x)) �

(�)

as x!1:

So, assume that the family of jumps

�

�

�

(x); x 2 R

	

possesses a mino-

rant � with positive mean and �nite varian
e, i.e., the sto
hasti
 inequality

�

�

(x) �

st

� (45)

takes pla
e for every x 2 R. Let the 
onvergen
e rate in (1) be suÆ
iently

fast; namely,

1

X

n=1

j�

n

� �j(R) <1: (46)

Moreover, assume that, for every n, the measure �

n

is absolutely 
ontinuous

with respe
t to the measure �, i.e., the (nonnegative) Radon{Nikod�ym deriv-

ative is de�ned as

f

n

(u) �

d�

n

d�

(u); (47)

and this derivative is bounded from above by some number � <1 uniformly

in n and u. By the de�nition of the Cram�er transform, we have

d�

(�)

n

d�

(�)

(u) =

d�

n

d�

(u) = f

n

(u):

Then the measure �

n

P

��

is absolutely 
ontinuous with respe
t to the mea-

sure �P

��

, and the 
orresponding signed density f

��

(u) 
an be estimated as

follows:

�

�

f

��

n

(u)

�

�

�

�

�

�

�

d�

(�)

n

P

��

d�

(�)

P

��

(u)

�

�

�

�

� �: (48)

This is possible due to the estimate

�

(�)

n

P

��

(B) =

Z

R

P

��

(u;B)f

n

(u)�

(�)

(du)

� �

Z

R

P

��

(u;B)�

(�)

(du) = ��

(�)

P

��

(B)

if B 2 B(R).

Sin
e

P

�

�

�

(x) > u

	

=

Mes

�

�

(�)

> u

	

E e

��(x)

�

Mes

�

�

(�)

> u

	

E e

��(x)

;
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by (29) and (30), the family of random variables

�

�

�

(x)

	

possesses a square

integrable majorant. In view of (31) and (34), we have

E �

�

(x) =

E �(x)e

��(x)

E e

��(x)

=

� + o

�

1=

p

x

�

1 + o(1=x)

= �+ o

�

1=

p

x

�

as x!1:

From the weak 
onvergen
e �(u)) � and the 
onditions (29) and (34) we infer

that

E

�

�

�

(x)

�

2

=

E

�

�(x)

�

2

e

��(x)

E e

��(x)

! �

2

+ �

2

as x!1:

For ea
h �xed A > 0, from (32) and (34) it follows that

sup

�2[�A;A℄

�

�

�

E e

i��

�

(x)

�E e

i��

(�)

�

�

�

= sup

�2[�A;A℄

�

�

�

�

E e

(i�+�)�(x)

E e

��(x)

�E e

(i�+�)�

�

�

�

�

= O

�

Æ(x)

�

as x ! 1. So, all 
onditions of Theorem 3 (in parti
ular, the existen
e of

a proper minorant) are ful�lled. Thus, the 
hain X

�

n

satis�es the lo
al limit

theorem. In parti
ular, for ea
h �xed � > 0, we obtain

sup

y

P

�

X

�

n

2 (y; y +�℄

	

! 0 as n!1: (49)

A

ording to (35), we have

�

(�)

n

(y; y +�℄ = �

(�)

0

(P

�

)

n

(y; y +�℄ +

n�1

X

k=0

�

(�)

k

P

��

(P

�

)

n�1�k

(y; y +�℄:

By (49), the 
ontribution of the term �

(�)

0

(P

�

)

n

(y; y + �℄, as well as of ea
h

(for a �xed �nite set of k's) of the terms �

(�)

k

P

��

(P

�

)

n�1�k

(y; y + �℄, to

the resultant sum is negligible (of order o(1) as n!1 uniformly in y). Thus,

for ea
h �xed K, we have the relation

�

(�)

n

(y; y +�℄ =

n�1

X

k=K

�

(�)

k

P

��

(P

�

)

n�1�k

(y; y +�℄ + o(1) (50)

as n!1 uniformly in y. Re
all that �

(�)

k

P

��


onverges in total variation to

the measure �

(�)

P

��

as k !1 (see Lemma 7). Hen
e, our immediate goal is

to make su
h a 
hange of measures in (50) and prove the following relation as

n!1 uniformly in y:

�

(�)

n

(y; y +�℄ =

n�1

X

k=0

�

(�)

P

��

(P

�

)

n�1�k

(y; y +�℄ + o(1): (51)



Large Deviation Probabilities 57

Justify the passage from (50) to (51).

Given A, we have

�

(�)

k

P

��

(P

�

)

n�1�k

(y; y +�℄

=

 

Z

A

�1

+

Z

1

A

!

(P

�

)

n�1�k

�

u; (y; y +�℄

��

�

(�)

k

P

��

�

(du)

� I

1

(k; A) + I

2

(k; A):

Using (48), we 
an estimate the se
ond integral as follows:

�

�

I

2

(k; A)

�

�

=

�

�

�

�

�

Z

1

A

(P

�

)

n�1�k

�

u; (y; y +�℄

�

f

��

k

(u)

�

�

(�)

P

��

�

(du)

�

�

�

�

�

� �

Z

1

A

(P

�

)

n�1�k

�

u; (y; y +�℄

�

�

�

�

(�)

P

��

�

�

(du):

Hen
e,

sup

n

�

�

�

�

n�1

X

k=0

I

1

(k; A)

�

�

�

�

� �

Z

1

A

n�1

X

k=0

(P

�

)

n�1�k

�

u; (y; y +�℄

�

�

�

�

(�)

P

��

�

�

(du)

! �

�

�

�

(�)

P

��

�

�

(A;1)�=�

by Theorem 4. Thus,

lim

A!1

sup

n

�

�

�

�

n�1

X

k=0

I

1

(k; A)

�

�

�

�

! 0: (52)

Now, 
onsider the integrals I

1

(k; A) for a �xed A. We have the estimates

�

�

�

�

�

I

1

(k; A)�

Z

A

�1

(P

�

)

n�1�k

�

u; (y; y +�℄

��

�

(�)

P

��

�

(du)

�

�

�

�

�

�

Z

A

�1

�

�

�

(�)

k

P

��

� �

(�)

P

��

�

�

(du)

=

�

�

�

(�)

k

P

��

� �

(�)

P

��

�

�

(�1; A)

�

�

�

�

(�)

k

� �

(�)

�

�

(�1; A) sup

u2R

jP

��

j(u;R)

� e

�A

j�

k

� �j(�1; A) sup

u2R

jP

��

j(u;R):
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From this and (46) it follows that, for a suÆ
iently large K, the sum

n�1

X

k=K

I

1

(k; A)


an be arbitrarily 
lose to the sum

n�1

X

k=K

Z

A

�1

(P

�

)

n�1�k

�

u; (y; y +�℄

��

�

(�)

P

��

�

(du)

uniformly in all n. Together with (52), this justi�es the passage from (50)

to (51).

From (51), using Theorem 4 and taking the equality (36) and Corollary 2

into a

ount, we dedu
e the asymptoti
 equality

�

(�)

n

(y; y +�℄ =

�

�

(�)

P

��

�

(R)

�

�

�

�

2

�

n�� y

p

y=�

�

+ o(1)

= 
���

�

2

�

n� � y

p

y=�

�

+ o(1) as y !1; n!1: (53)

Applying the inverse Cram�er transform (13) to the Markov evolution of

masses X

(�)

n

, we obtain

PfX

n

> xg =

Z

1

x

e

��y

�

(�)

n

(dy):

Therefore, for every � > 0, the upper estimate

PfX

n

> xg �

1

X

k=0

e

��(x+k�)

�

(�)

n

(x + k�; x+ k�+�℄ � s

1

(�)

and the lower estimate

PfX

n

> xg �

1

X

k=0

e

��(x+k�+�)

�

(�)

n

(x + k�; x + k�+�℄ � s

2

(�):

are valid. The ratio s

1

(�)=s

2

(�) of the upper bound to the lower bound

equals e

��

and tends to 1 as � ! 0. For ea
h �xed � > 0, from (53) we

dedu
e the relation

s

1

(�) = o(1)

1

X

k=0

e

��(x+k�)

+ 
��

1

X

k=0

e

��(x+k�)

�

�

2

 

n�� (x+ k�)

p

(x + k�)=�

!

= o

�

e

��x

�

+ 
���

�

2

 

n�� x

p

x=�

!

1

X

k=0

e

��(x+k�)

= o

�

e

��x

�

+ 


��

1� e

���

e

��x

�

�

2

 

n�� x

p

x=�

!

;
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whi
h implies the asymptoti


PfX

n

> xg = 
�

�

2

 

n�� x

p

x=�

!

e

��x

+ o

�

e

��x

�

(54)

as n ! 1 and x ! 1. For ea
h �xed n, we have PfX

n

> xg = o

�

e

��x

�

.

Hen
e, (54) holds as x!1 uniformly in n � 0.

So, the theorem is proven only under the additional 
onditions: existen
e

of a sto
hasti
 minorant for the family of jumps f�

�

(x)g and absolute 
ontinuity

of �

n

with respe
t to the invariant measure �.

7. Completion of the proof of Theorem 6

In this se
tion we 
onstru
t an auxiliary Markov 
hain

e

Z

n

that is equiv-

alent to the original 
hain X

n

from the point of view of the large deviation

probabilities but at the same time satis�es the additional 
onditions imposed

on the 
hain X

n

during the proof in the pre
eding se
tion.

By the above 
onstru
tion and (30), the mean

E

n

e

�j�

(�)

(u)j

; �

(�)

(u) � 0

o

=

1

P

(�)

(u;R)

Z

0

�1

e

��y

P

�

�

(�)

(u) 2 dy

	

=

1

E e

��(u)

Z

0

�1

P

�

�(u) 2 dy

	

�

1

E e

��(u)

is bounded uniformly in u 2 R. In parti
ular, the squares of the negative parts

of the random variables �

(�)

(u), u 2 R, are uniformly integrable. Together

with the weak 
onvergen
e �

(�)

(u) ) �

(�)

, this implies the existen
e of level

U 2 R su
h that the family

�

�

(�)

(u); u > U

	

possesses a minorant with

positive mean and �nite se
ond moment. Choose suÆ
iently large U su
h

that (40) is satis�ed and inf

n�0

PfX

n

� Ug > 0.

Enlarge the 
hain X

n

by merging the states on the half-line (�1; U ℄

into one state U , i.e., 
onsider the Markov 
hain Z

n

taken values on the half-

line [U;1) with initial state Z

0

= maxfU;X

0

g and with the following transi-

tion probabilities P

Z;n

nonhomogeneous in time:

P

Z;n

(u;B) = P

Z

(u;B) = P (u;B) if u > U and B � (U;1);

P

Z;n

�

u; fUg

�

= P

Z

�

u; fUg

�

= P

�

u; (�1; U ℄

�

if u > U ;

P

Z;n

(U;B) =

1

PfX

n

� Ug

Z

U

�1

P (u;B)PfX

n

2 dug if B � (U;1);

P

Z;n

�

U; fUg

�

=

1

PfX

n

� Ug

Z

U

�1

P

�

u; (�1; U ℄

�

PfX

n

2 dug:
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Note that only the transition probabilities from the state U 
an be nonhomo-

geneous in time. Moreover, in view of the 
onvergen
e in variation (1), we

have the asymptoti
 time-homogeneity as n!1:

P

Z;n

(U;B)!

1

�(�1; U ℄

Z

U

�1

P (u;B)�(du) if B � (U;1);

P

Z;n

�

U; fUg

�

!

1

�(�1; U ℄

Z

U

�1

P

�

u; (�1; U ℄

�

�(du):

By the 
onstru
tion of the initial distribution of Z

0

and the transition proba-

bilities of the 
hain Z

n

, we have

PfZ

n

= Ug = PfX

n

� Ug;

PfZ

n

> xg = PfX

n

> xg for x > U:

Consider one more 
hain, say

e

Z

n

, with the atom U and initial state

e

Z

0

= U .

Its transition probabilities

e

P (u; �) are equal to P

Z

(u; �) for u > U , and those

for u = U are equal to

e

P (U;B) =

1

�(�1; U ℄

Z

U

�1

P (u;B)�(du) if B � (U;1);

e

P

�

U; fUg

�

=

1

�(�1; U ℄

Z

U

�1

P

�

u; (�1; U ℄

�

�(du):

The transition probabilities of the 
hain

e

Z

n

are time-homogeneous. The in-

variant measure e� of this 
hain 
oin
ides with the measure � on the set (U;1),

and e�

�

fUg

�

= �(�1; U ℄. The jumps

e

�(u) of the 
hain

e

Z

n

possess a minorant

with positive mean and �nite varian
e. This 
hain with atom is geometri
ally

ergodi
 (see, for example, [10, Se
tion 15℄). Thus, j�

n

� �j(R) = o(r

n

) for some

r < 1, and the 
ondition (46) is ful�lled. Moreover, for every B 2 B(U;1),

we have the equality

P

�

e

Z

n

2 B

	

=

n�1

X

k=0

P

�

e

Z

k

= U

	

P

n

e

Z

k+1

>U; ::: ;

e

Z

n�1

>U;

e

Z

n

2 B

�

� e

Z

k

= U

o

:

Hen
e,

P

�

e

Z

n

2 B

	

�

n�1

X

k=0

P

n

e

Z

k+1

> U; : : : ;

e

Z

n�1

> U;

e

Z

n

2 B

�

� e

Z

k

= U

o

;

on the other hand, there exists " > 0 su
h that

P

�

e

Z

m

2 B

	

� "

m�1

X

k=0

P

n

e

Z

k+1

> U; : : : ;

e

Z

m�1

> U;

e

Z

m

2 B

�

�
e

Z

k

= U

o

:
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It follows that, for every n < m, the measure P

�

e

Z

n

2 �

	

is absolutely 
ontin-

uous with respe
t to the measure P

�

e

Z

m

2 �

	

and the 
orresponding density

is bounded by 1=". Thus, for every n, the measure P

�

e

Z

n

2 �

	

is absolutely


ontinuous with respe
t to the measure e� too; the density is also bounded

by 1=".

Thus, the 
hain

e

Z

n

is satis�ed all additional 
onditions (45){(47) of

the pre
eding se
tion. Therefore, the equivalen
e

P

�

e

Z

n

> x

	

= e
�

�

2

�

x� n�

p

x=�

�

e

��x

+ o

�

e

��x

�

(55)

uniform in n � 0 holds as x!1, with

e
 =

1

��

Z

1

U

�

E e

�

e

�(u)

� 1

�

e

�u

e�(du)

=

1

��

�

Z

1

U+0

�

E e

�(u+

e

�(u))

� e

�u

�

�(du)+

�

E e

�(U+

e

�(U))

� e

�U

�

�(�1; U ℄

�

=

1

��

Z

1

�1

�

E f

�

u+ �(u)

�

� f(u)

�

�(du); (56)

here f(u) = max

�

e

�U

; e

�u

	

. The values of the fun
tion g(u) = e

�u

� f(u)

lie between �e

�U

and 0. Hen
e, if the 
hain X

n

is in the stationary regime,

i.e., if X

n

is distributed a

ording to �, then E g(X

n+1

) = E g(X

n

). Therefore,

the equilibrium-type identity

Z

1

�1

�

E g

�

u+ �(u)

�

� g(u)

�

�(du) = 0

is valid. Dividing this identity by �� and summing with (56), we obtain

the �nal representation for the 
onstant e
 :

e
 =

1

��

Z

1

�1

�

E e

�(u+�(u))

� e

�u

�

�(du):

Let Z

(�)

n

and

e

Z

(�)

n

be the Markov evolution of masses obtained from

the 
hains Z

n

and

e

Z

n

respe
tively by the Cram�er transform with parameter �.

Analyze the measures Mes

�

Z

(�)

n

2 �

	

and Mes

�

e

Z

(�)

n

2 �

	

from the point of

view of the last entry into the point U . With regard to the �rst measure,



62 D.A.Korshunov

we have

Mes

n

Z

(�)

n

2 [y; y +�)

o

= Mes

n

Z

(�)

0

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

o

+

n�1

X

k=0

Mes

n

Z

(�)

k

= U

o

�Mes

n

Z

(�)

k+1

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

�

�

Z

(�)

k

= U

o

: (57)

Re
all that (40) holds. In view of (the 
entral limit) Theorem 5, the value of

Mes

n

Z

(�)

0

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

o

and, for ea
h �xed k, the value of

Mes

n

Z

(�)

k+1

> U; : : : ; Z

(�)

n�1

> U; Z

(�)

n

2 [y; y +�)

�

�

Z

(�)

k

= U

o

are of order o(1) as n ! 1 uniformly in y. Hen
e, the repla
ement of ea
h

�nite (with respe
t to k) set of the transition probabilities among P

(�)

Z;k

(U; �)

with the probabilities

e

P

(�)

(U; �) 
hanges Mes

�

Z

(�)

n

2 (y; y + �℄

	

by the value

of order o(1). Taking the relation

Mes

�

Z

(�)

k

= U

	

= e

�U

PfZ

k

= Ug ! e

�U

�(�1; U ℄

as k !1 into a

ount, from (57) we dedu
e that

Mes

n

Z

(�)

n

2 [y; y +�)

o

= o(1) + e

�U

�(�1; U ℄

n�1

X

k=0

Mes

n

e

Z

(�)

k+1

> U; : : : ;

e

Z

(�)

n�1

> U;

e

Z

(�)

n

2 [y; y +�)

�

� e

Z

(�)

k

= U

o

as n ! 1 uniformly in y. By the same reasons, we 
an obtain the same

relation for the time-homogeneous Markov evolution of masses

e

Z

(�)

n

:

Mes

n

e

Z(�)

n

2 [y; y +�)

o

= o(1) + e

�U

�(�1; U ℄

n�1

X

k=0

Mes

n

e

Z

(�)

k+1

> U; : : : ;

e

Z

(�)

n�1

> U;

e

Z

(�)

n

2 [y; y +�)

�

� e

Z

(�)

k

= U

o

:
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Thus,

Mes

n

Z

(�)

n

2 [y; y +�)

o

= Mes

n

e

Z

(�)

n

2 [y; y +�)

o

+ o(1):

Applying the inverse Cram�er transform (with parameter ��, see Lemma 1) to

the measures Mes

�

Z

(�)

n

2 �

	

and Mes

�

e

Z

(�)

n

2 �

	

, we obtain the relation

PfZ

n

> xg = P

�

e

Z

n

> x

	

+ o(1)

uniformly in x as n!1, whi
h, together with (55), 
ompletes the proof.

8. The latti
e 
ase

Let X

n

be a Markov 
hain taken values on the latti
e fk�; k 2 Zg

with span � > 0, and this latti
e is minimal. Consider an asymptoti
ally

homogeneous 
hain, i.e., �(k�)) � as k !1; the values of the variable � are

proportional to �. We formulate the 
orresponding theorem on large deviation

probabilities.

Theorem 7. Let E e

�X

0

be �nite. Assume that the family of jumps

�

�(k�), k 2 Z

	

possesses a sto
hasti
 majorant � su
h that E �

2

e

��

< 1.

Let the jumps of the 
hain satisfy the following 
onditions:

inf

k2Z

E e

��(k�)

> 0;

E �(k�)e

��(k�)

= � + o(1=

p

k) as k !1:

In addition, assume that there exists a bounded de
reasing sequen
e Æ(k) =

o(1=k) summable at in�nity and su
h that the inequality

sup

�2[��=�;�=�℄

�

�

�

E e

(�+i�)�(k�)

� E e

(�+i�)�

�

�

�

� Æ(k)

holds for every k 2 Z. Then

P

�

X

n

= m�

	

= 


�

e

��m�

�

�

2

�

n��m�

p

m�=�

�

+ o

�

e

��m�

�

uniformly in n � 0 as m!1, where




�

=

�

E �e

��

X

k2Z

�

E e

��(k�)

� 1

�

e

�k�

�(k�) 2 [0;1):

Proof 
an be 
arried out in the same way as in the nonlatti
e 
ase.

The only di�eren
e is generated by the latti
e variant of the lo
al renewal the-

orem, whi
h implies the di�erent multiple in the �nal asymptoti
 of the prob-

ability PfX

n

� m�g.



64 D.A.Korshunov

9. On the positivity of the multiplier 
 in Theorem 6

As was noted just after Theorem 2, the 
onstant


 �

1

��

Z

1

�1

�

E e

��(y)

� 1

�

e

�y

�(dy) (58)

is positive if E e

��(y)

� 1� 
(y), where 
(y) � 0 for every y and

Z

1

0


(y)y log y dy <1:

In the following theorem this 
ondition is somehow weakened. The proof is

a substantially improved version of the proof of Theorem 5 in [2, Se
tion 27℄.

Theorem 8. Let the 
hain X

n

be asymptoti
ally spa
e-homogeneous,

i.e., �(y) ) � as y ! 1. Assume that E � < 0 and there exists � > 0 su
h

that E e

��

= 1. Let E e

��(y)

� 1�
(y), where 
(y) is a nonnegative de
reasing

fun
tion, 
(y) = o(1=y) as y !1, and

Z

1

0


(y)y dy <1: (59)

Let � be an arbitrary probability invariant distribution of the 
hain X

n

su
h

that �(y;1) > 0 for every y and �(y;1) = O

�

e

��y

�

as y ! 1. Then

the 
onstant 
 de�ned by the equality (58) is positive.

Proof. Prove �rst that, under the 
onditions of the theorem, the equality

Z

1

�1

e

�u

�(du) =1 (60)

is valid.

Enlarge the 
hain X

n

by averaging the states on the half-line (�1; U ℄

with respe
t to the measure � and by merging them into one state U ; namely,


onsider the Markov 
hain X

U;n

taken values on the half-line [U;1) with

the following transition probabilities P

U

:

P

U

(y; B) = P (y; B) if y > U and B � (U;1);

P

U

�

y; fUg

�

= P

�

y; (�1; U ℄

�

if y > U ;

P

U

(U;B) =

1

�(�1; U ℄

Z

U

�1

P (u;B)�(du) if B � (U;1);

P

U

�

U; fUg

�

=

1

�(�1; U ℄

Z

U

�1

P

�

u; (�1; U ℄

�

�(du):
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By the 
onstru
tion of the transition probabilities P

U

, the invariant mea-

sure �

U

of the 
hain X

U;n


oin
ides with the measure � on the set (U;1), and

�

U

�

fUg

�

equals �(�1; U ℄. For every y > U , the jumps �

U

(y) of the 
hainX

U;n

satisfy the sto
hasti
 inequality

�

U

(y) �

st

�(y): (61)

Choose a level U so large that, for every u > U , the inequality

u

�

E e

��(u)

� 1

�

+ E �(u)e

��(u)

> 0 (62)

hold. This 
hoi
e is possible due to 
(u) = o(1=u) and

lim inf

u!1

E �(u)e

��(u)

� E �e

��

2 (0;1℄

in view of the weak 
onvergen
e �(u)) �.

Assume now that the integral in (60) is �nite. Then, for every � 2 [0; �℄,

the mean drift of the exponent e

�X

U;n

for one step in the stationary regime �

U

is equal to zero, i.e., the following equilibrium-type identity holds:

Z

1

U

e

�u

�

E e

��

U

(u)

� 1

�

�

U

(du) = 0: (63)

Di�erentiating this equality with respe
t to �, we obtain

Z

1

U

e

�u

u

�

E e

��

U

(u)

� 1

�

�

U

(du) +

Z

1

U

e

�u

E �

U

(u)e

��

U

(u)

�

U

(du) = 0

for every � 2 [0; �℄. Putting � = �, we arrive at the equality

Z

1

U

e

�u

h

u

�

E e

��

U

(u)

� 1

�

+ E �

U

(u)e

��

U

(u)

i

�

U

(du) = 0;

whi
h 
annot be true in view of (62), (61), and �(U;1) > 0. Thus, (60) is

proven.

Further, assume that 
 = 0 in (58). Then, as it was demonstrated in

the pro
ess of 
al
ulating the 
onstant e
 in (56), for ea
h level U , the equilib-

rium-type identity (63) is valid for � = �. Therefore,

�

E e

��

U

(U)

� 1

�

e

�U

�(�1; U ℄ =

Z

1

U+0

�

1� E e

��

U

(u)

�

e

�u

�(du): (64)

By the de�nition of the transition probabilities P

U

, the right-hand side of

the last equality is equal to

e

�U

Z

U

�1

E max

n

0; e

�(u+�(u)�U)

� 1

o

�(du):
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Sin
e �(u) ) �, there exist " > 0 and Æ > 0 su
h that, for all suÆ
iently

large U , the inequality E max

�

0; e

�(u+�(u)�U)

� 1

	

� Æ holds for every u 2

(U � "; U ℄ and, hen
e,

�

E e

��

U

(U)

� 1

�

e

�U

�(�1; U ℄ � Æe

�U

�(U � "; U ℄: (65)

By (61) and the 
onditions of the theorem, the right-hand side of (64) does

not ex
eed

Z

1

U+0


(y)e

�y

�(dy) � 


Z

1

U+1


(y)dy; (66)

where 
 <1. Inserting (65) and (66) into (64), we arrive at the inequality

e

�U

�(U � "; U ℄ �




Æ

Z

1

U+1


(y)dy: (67)

Sin
e this holds for all suÆ
iently large U , from the 
ondition (59) it follows

that the exponential moment of order � of the distribution � is �nite, whi
h


ontradi
ts (60). Thus, the assumption 
 = 0 leads to 
ontradi
tion, and

the theorem is proven.

The 
ondition (59) 
an be 
onsiderably weakened by imposing stronger

moment 
onditions on the jumps of X

n

. If, for example, the 
hain has bounded

jumps, i.e., if there exists a 
onstant A < 1 su
h that j�(y)j � A with

probability 1 for every y, then it suÆ
es to assume that

Z

1

0


(y)y

�

dy <1 (68)

for some � > 0. In order to prove this, observe that, in this 
ase, we have

Z

1

1

e

�u

u

1��

�(du) =1: (69)

Indeed, sin
e the mean drift v

�

(y) � E V

�

�

y+�(y)

�

�V

�

(y) of the test fun
tion

V

�

(y) = e

�y

y

��1

Ify > 1g is equal to

e

�y

y

1��

 

E e

��(y)

�

1

1 + �(y)=y

�

1��

� 1

!
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for y > 1 + A, under the jump boundedness 
ondition, we have

dv

�

(y)

d�

�

�

�

�

�=�

=

ye

�y

y

1��

�

E e

��(y)

� 1�

1� �

y

E �(y)e

��(y)

+O(1=y

2

)

�

+

e

�y

y

1��

�

E �(y)e

��(y)

+O(1=y)

�

=

ye

�y

y

1��

�

o(1=y)�

1� �

y

E �e

��

+O(1=y

2

)

�

+

e

�y

y

1��

�

E �e

��

+O(1=y)

�

=

e

�y

y

1��

�

o(1) + �E �e

��

�

; y !1;

whi
h is a positive value for large y and implies (69) (as was observed in

the pre
eding proof). Further, multiplying (67) by U

��1

and summing up, we

arrive at the inequalities

1

X

k=0

e

�(U+k")

(U + k")

1��

�

�

U + (k � 1)"; U + k"

�

�




Æ

1

X

k=0

1

(U + k")

1��

Z

1

U+k"+1


(y)dy

� 


�

Z

1

U


(y)y

�

dy;

where 


�

< 1, whi
h imply the �niteness of the integral in (69) in view of

the 
ondition (68). This 
ontradi
tion 
ompletes the proof.

10. On ne
essity of the 
ondition

for integrability of the 
onvergen
e rate

of the jump distribution to the limit distribution

In 
on
lusion, we 
onstru
t an example of Markov 
hain, whi
h demon-

strates that the 
ondition (32) on the 
onvergen
e rate of the jump distribution

to the limit distribution F is so signi�
ant that it 
an be 
onsidered as almost

ne
essary.

Consider a Markov 
hain X

n

with values in Z

+

. Assume that the 
hain is


ontinuous from above as well as from below, i.e., the 
hain 
hanges its value
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at most by 1 in one step. Denote

p(k; k � 1) � P

�

X

n+1

= k � 1 j X

n

= k

	

; k � 1;

p(k; k + 1) � P

�

X

n+1

= k + 1 j X

n

= k

	

; k � 0;

p(0; 0) � P

�

X

n+1

= 0 j X

n

= 0

	

:

Assume that

p(k; k � 1) + p(k; k + 1) = 1; p(0; 0) + p(0; 1) = 1;

and

1

X

k=1

k�1

Y

j=0

p(j; j + 1)

p(j + 1; j)

<1:

It is known (see, for example, [8, Chapter 3, Se
tion 7℄) that the last 
ondition

is ne
essary and suÆ
ient for the ergodi
ity of 
hain of this type. Denote

the stationary probabilities of the 
hain by

�

�(k); k 2 Z

+

	

. The spe
ial

simpli
ity of the system of equations

�(k + 1)p(k + 1; k) + �(k � 1)p(k � 1; k) = �(k); k � 1;

�(1)p(1; 0) + �(0)p(0; 0) = �(0);

1

X

k=0

�(k) = 1

for the stationary probabilities f�(k)g allows us to 
ompute the stationary

probabilities in expli
it form (see again [8, Chapter 3, Se
tion 7℄):

�(k) = �(0)

k�1

Y

j=0

p(j; j + 1)

p(j + 1; j)

; k � 1;

where

�(0) =

 

1 +

1

X

k=1

k�1

Y

j=0

p(j; j + 1)

p(j + 1; j)

!

�1

:

Let p(k; k + 1) ! p and, therefore, p(k; k � 1) ! 1 � p as k ! 1, so

that the limit distribution F is a Bernoulli distribution with parameter p and

the Lapla
e transform

'(�) = pe

�

+ (1� p)e

��

:
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In order to have an ergodi
 
hain, we assume that p < 1=2. The unique nonzero

solution � to the equation '(�) = 1 is equal to

� = log

1� p

p

> 0:

Under the above 
onditions, the integrability 
ondition (32) for the rate of


onvergen
e to the limit distribution is equivalent to the following:

1

X

k=0

�

�

p(k)� p

�

�

<1: (70)

Theorem 9. Let "(k) � p(k; k+1)�p � 0 for every k. Then the following

two assertions are equivalent:

(a) there exists 
 > 0 su
h that

�(k) � 
e

��k

as k !1;

(b) the 
ondition (70) holds.

Proof. We have

�(k) = �(0)

k�1

Y

j=0

p+ "(j)

1� p� "(j + 1)

= �(0)

�

p

1� p

�

k

k�1

Y

j=0

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

:

Taking the de�nition of � into a

ount, we obtain

�(k) = �(0)e

��k

k�1

Y

j=0

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

:

Hen
e, (a) is equivalent to the following:

1

Y

j=0

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

<1:

In turn, this is equivalent to the 
onvergen
e of the series

1

X

j=0

 

1 +

�

"(j)=(p)

�

1�

�

"(j + 1)=(1� p)

�

� 1

!

=

1

X

j=0

�

"(j)=(p)

�

+

�

"(j + 1)=(1� p)

�

1�

�

"(j + 1)=(1� p)

�

:

Sin
e "(j)! 0, this is equivalent to the inequality

1

X

j=0

�

"(j + 1)

1� p

+

"(j)

p

�

<1;

whi
h is equivalent to (70). The proof is 
omplete.
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