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ONE-DIMENSIONAL ASYMPTOTICALLY
HOMOGENEOUS MARKOV CHAINS:
CRAMER TRANSFORM AND
LARGE DEVIATION PROBABILITIES

D. A. Korshunov *

Abstract

We consider a time-homogeneous ergodic Markov chain {X,,} that takes values on
the real line and has asymptotically homogeneous increments at infinity. We as-
sume that the “limit jump” £ of {X,,} has negative mean and satisfies the Cramér

condition, i.e., the equation Ee®¢ = 1 has positive solution 3. The asymptotic be-
havior of the probability P{X,, > z} is studied as n — oo and & — oo. In partic-
ular, we distinguish the ranges of time n where this probability is asymptotically
equivalent to the tail of a stationary distribution.

Key words and phrases: real-valued Markov chain, large deviation probabilities,
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1. Introduction

Let P(z,B), + € R, B € B(R), be some time-homogeneous transi-
tion probability in R; here and in the sequel, B(R) denotes the o-algebra
of Borel sets in R. In the present article the parameter n (time) ranges over
the set {0,1,2,...}. Consider a Markov chain {X,} with values in R and
the transition probabilities

P(z,B) = P{Xn41 € B | X,, = z}.

Let 7, be the distribution of X,,, i.e. m,(B) = P{X,, € B}. Denote by &(z)
the random variable whose distribution corresponds to the distribution of
the jump of {X,,} from the state x, namely,

P{z +¢(z) € B} = P(z,B), B € BR).
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In this article we study an asymptotically homogeneous (in space) Markov
chain Xy, i.e., a chain such that the distribution of the jump &(z) has a weak
limit as © — oo. Let the distribution of £(z) converges weakly to the distribu-
tion F of a random variable £. We assume that E€ < 0 and P{¢ > 0} > 0.

The Laplace transform ¢()\) = Ee*¢ of the random variable ¢ is a convex
function, ¢(0) = 1, and ¢'(0) = E£ < 0. Thus, the set {\ : p(A) < 1}
is an interval of the form [0, 3], where f = sup{)\ (A < 1}. Since
P{¢ > 0} > 0, it follows that § is a finite number. In the article we consider
the Cramér case corresponding to the situation when 5 > 0 and ¢(8) = 1.

We assume that X, is a Harris ergodic chain with the unique invariant
distribution 7. Then the distribution of X, converges in the total variation
distance to m as n — oo, i.e.,

7 — 7|(R) =2 sup |mn(B) —7(B)| =0 (1)
BeB(R)

(here and in the sequel, for every signed measure p and every set B, we denote

the total variation of 4 on B by |u|(B)). For a countable chain X, (1) takes
place automatically provided the chain is irreducible, nonperiodic, and positive
recurrent; for real-valued chains the corresponding ergodicity conditions can
be found, for example, in [2, 10].

In view of (1), the family of distributions X, is tight, i.e., sup,,~o P{ X, >
x} — 0 as © — 00. In the present article we study the asymptotic behavior of
the probability P{X,, > 2} as n — oo and z — co.

The simplest and, at the same time, very impotent example of such
Markov chain is provided by the random walk W, with delay at the origin
(which is called a space-homogeneous Markov chain in [4,5]) defined by the re-
cursion

Wn+1 = (Wn + gn)-l-,
where &y, &1, ... are independent copies of the random variable £&. Put Sy = 0,
Sk =&+ +&, and M, = maxg<i<, Sk. It is well known (see, for example,
[7, Chapter VI, Section 9]) that the distribution of the chain W, with zero
initial state Wy = 0 coincides with the distribution of M,, i.e.,
P{W,, >z} = P{M,, > x}. (2)

In particular, if Wy = 0 then the sequence W), is stochastically growing and,
hence, has a weak limit. Denote by W, the random variable with this limit
distribution. The following Cramér estimate is well known:

P{We >z} < e_ﬁx, x> 0.
In addition, if & = ¢/(3) = E€e is finite then

1—
P{Wy > x} ~ B&pe_ﬂx as T — 00 (3)
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(see [7, Chapter XII, Section 5; 6]), where p = P{My > 0} and a =
]E{STefBST;T < oo} with 7 = min{n > 1 : S, > 0}. Since E¢ < 0, we
have p < 1, and both 7 and S; are defective random variables.

In the case when the distribution of £ has a nonzero absolutely continuous
component, the prestationary distributions of W,, were studied in detail by
A. A.Borovkov in [1]. Theorems 7-11 of [1] provide the asymptotic expansion
for the probability ]P’{rnaxogkgn Sp>x, S, <x— y} within the broad ranges
of the parameters n, x, and y.

In [5] A.A.Borovkov and D.A.Korshunov generalized the results on
the asymptotic behavior of the probability P{W,, > z} as n — oo and
x — oo for the Markov chains with values on the real line. Namely, the case of
the so-called U -partially homogeneous (in space) Markov chain was considered.
We call a chain U-partially homogeneous, if, for every Borel set B C (U, 00),
the transition probability P(y, B) coincides with the probability P{y + ¢ € B}
when y ranges over (U,00). In other words, in the domain (U, c0) the sto-
chastic behavior of X coincides with the process of summation of independent
random variables with common distribution F'.

Earlier the author found the conditions on the asymptotically space-
homogeneous Markov chain under which the tail of the stationary distribu-
tion 7 is decreasing exponentially like in the estimate (3) for the distribution
tail of the supremum of partial sums (see [2, Section 27, Theorems 3-5]). We re-
produce the corresponding statements in view of their fundamental role in
the subsequent exposition. We start with the large deviation principle (rough
asymptotic behavior) which is valid under rather broad conditions. Following
traditions, henceforth the values of a measure p at the sets (x,y) and (z,y]
are denoted by p(z,y) and u(x,y].

Theorem 1. Let the jumps of an asymptotically space-homogeneous
Markov chain X,, satisfy the condition supyIEeﬁg(y)<oo. If w(y,00) > 0 for
every y then logm(z,00) ~ —fx as x — oo.

In [5, Theorem 1] this result was generalized on the prestationary dis-
tributions; the large deviation principle was proved for the asymptotically
homogeneous Markov chain.

In order to find the sharp asymptotic behavior of the probability 7(x, o),
it is not sufficient to know only that the chain is asymptotically homogeneous.
We need some additional information about the convergence rate of the jump
distribution to the limit distribution F'.

Theorem 2. Let the distribution F' be nonlattice and let the jumps
of X, satisfy the condition

/Oo PHP{e(y) <t} —P{€ < t}]dt < d(y), (4)
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where 6(y) is a function regularly varying at infinity with index —a, i.e.,
d(uy) ~ u=*(y) as y — oo for every fixed u > 0. If

/ " b(y) dy < oo (5)

(so that o > 1) then the tail of the invariant distribution 7 satisfies the as-
ymptotic equivalence

(2, 00) = ce P 4 o(e_ﬂm) as x — 00, (6)
where
S /Oo (B — 1) n(dy) € [0, 0) (7)
BEEPE | o ’

If F' is a lattice distribution with span A > 0 and the chain X,, takes
values on the lattice {nA, n € Z} then

7(nA) = cae P 4 o(e_ﬂ"A) as n — oo, (8)
where
n= D S (B ) — 1) e 27 (kA) € [0, 00). (9)
]Efeﬁf kEZ ,

In [2] we gave sufficient conditions for the positivity of the constant c.
Namely, if 7(y,00) > 0 and Ee®®) > 1 — 4(y) for every y, where v(y) > 0
and [ y(y)y(logy) dy < oo, then ¢ > 0.

The condition (5) says that, roughly speaking, the convergence rate of
the distribution of £(x) to that of & should be integrable. In Section 10 we
give an example showing that, in some sense, the conditions (4) and (5) are
necessary for (6).

In present article we obtain the exact asymptotics for the probability
P{X, > z} as n — oo and # — oo provided that the Markov chain X, is
asymptotically homogeneous in the space and satisfies the conditions like (4)
and (5). We distinguish the ranges of time n where the probability P{X,, > x}
is asymptotically equivalent to the tail 7(z, 00) of the invariant distribution.

A few words about the technique of proving. In [5] the study of U-partially
homogeneous chain is based on the total probability formula with respect to
the last entry into the set (—oo, U]; namely, on the formula

n—1
P{X, >z} = Z]P’{Xk < U, X; >U for every j € [k +1,n], X, > x}
k=0
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According to the Markov property the summand in the last sum equals

]P’{X;C < U, X; >U for every j € [k+1,n], X, > x}

-/ " BX, € du) /U " Pludo)

— 00

x P{Xj > U for every j € [k +2,n], Xn > 7 | Xppy = v}.

Since the chain is U-partially homogeneous, above the level U the chain
stochastically behaves like a partial sum process with the common step dis-
tribution F'. This property allows us to calculate the last probability via
the well-known theorem on the taboo probabilities of large deviations for sums
of independent identically distributed random variables. For the asymptoti-
cally homogeneous chain this approach cannot be used since, in general, for
every high level U, the stochastic behavior of the chain above this level can-
not be described in terms of the partial sum process based on independent
variables. Therefore we propose a new technique of proving.

The sketch of the proof follows: First, we apply the Cramér transform with
corresponding parameter to the Markov chain under consideration. As a result,
we obtain some object called the Markov evolution of masses. The main
difference between the Markov evolution of masses and the usual Markov chain
is that the jump of the Markov evolution of masses can have the total mass
(“probability”) other than 1; in particular, it can be greater than 1. Then
some limit theory is developed for the Markov evolution of masses and for
the Markov chains. In particular, we prove the analogs of the central limit
theorem. After that, we apply the inverse Cramér transform to the Markov
evolution of masses what allows us to compute the asymptotic behavior of
the probability of the event {X,, > x}.

The article is organized as follows: We obtain the main results in The-
orems 6 and 7 (in Sections 6 and 8 respectively) describing the asymptotic
behavior of the large deviation probabilities of asymptotically homogeneous
Markov chain. In Sections 2—5, we develop the preliminary theory. In partic-
ular, in Section 2, we discuss the notion and some properties of the Markov
evolution of masses. In Section 3, we prove the local limit theorem and the lo-
cal renewal theorem for the asymptotically homogeneous Markov chain. Sec-
tions 4 and 5 are devoted to more delicate asymptotic properties of the distri-
bution of the Markov evolution of masses. The article is concluded with Sec-
tion 10 in which a simple example of asymptotically homogeneous Markov
chain demonstrates that the principal conditions of Theorem 6 on the integra-
bility of the convergence rate of the distribution of £(x) to that of £ cannot be
weakened.
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2. The Markov evolution of masses

A Markov chain X, with the distribution 7, may be considered as
the Markov evolution of unit mass in the space R. Specifically, at time n = 0
the unit mass is distributed on the space R according to the law my. At the
next moment of time n = 1 the mass is redistributed according to the tran-
sition function P(-,-), i.e., from every point u € R the element of mass is
redistributed on R according to the law P(u,-). Hence, at time n = 1 the to-
tal unit mass is distributed according to 71, i.e., the mass of every measurable
set B C R is equal to m1(B). And so on, at any time n.

Introduce the notion of generalized transition kernel Q(u,B), u € R,
B € B(R), possessing all properties of ordinary Markov transition kernel except
for the fact that the nonnegative function Q(u,R) of the argument u is equal
to one. Thus, the values of @Q(u,R) can be less or greater than one. Clearly,
the function

Q(u, B)

Q(u, R)
represents a traditional Markov transition kernel.

Let Qo be some nonnegative measure on R. Then the generalized transi-
tion kernel Q(u, B) generates the family of nonnegative measures {Q,,} defined
by the recurrent equality

Q*(u, B) =

Quir(B) = (QuQ)(B) = /R Q(u, B)Qu(du), n > 0.

Define the Markov evolution of masses (or simply the Markov mass)
Y,, corresponding to the generalized transition kernel Q(-,-) as follows: at
time n = 0 the mass Q(R) is distributed on R according to the law Q.
During the time step n — n+ 1 the element of mass Y;, at state u € R changes
Q(u,R) times and the new element of mass Y41 is distributed on the space
according to the measure Q(u, B)/Q(u,R). Therefore, at each moment of
time n the mass is distributed according to the law @, (+), i.e., the mass of every
measurable set B € B(R) equals @,(B). While speaking about an ordinary
Markov chain we use the term “the value of X,, at time n;” for the Markov
evolution of masses we use the term “element of mass Y;, at time n” and denote
the mass of B at time n by Mes{Y;, € B}.

Observe that, generally speaking, the finite-dimensional distributions of
masses (Yp,...,Y,) are not consistent. For example, if Q(u,R) = 2 then
the mass of By x - -- x By, x R is twice greater than the mass of By x - -- x By,.
Thus, in general, the analog of the total probability formula does not hold.
Nevertheless, in order to calculate the mass of the measurable set B at time n,
we can “trace” all trajectories of the element of mass leading to B and “sum”
the masses that are carrying along these trajectories according to the general-
ized transition kernel. For example, given two disjoint nonempty Borel sets B
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and By, the measure of B at time n can be calculated by the following formula
with respect to the last entry of the element of mass into Bj:

Mes{Yn € B} = Mes{Yg §‘§ Bi,...,Yh1 §§ B, Y, € B}

n—2

+ Y Mes{Yj, € By, Yii1 ¢ Bi,....Yuo1 ¢ By, Y € B}
k=0

+ Mes{Y,,—1 € By, Y,, € B}. (10)

Note in addition that here
Mes{Yk € Bi, Yis1 ¢ B1, ..., Vo1 & By, Yy € B}

= /Q(un—laB) /Q(Un—Qadun—l) "'/Q(Ukaduk-i-l)/Qk(duk)-
R\B; R\B; R\B; By
Denote by n(u) the jump of the Markov evolution of masses Y, from

state u. By definition, n(u) is a function on some measurable space with
the total mass Q(u,R) and the generalized distribution Q(u,u + +). Thus,
Mes{u+n(u) € B} = Q(u, B).

2.1. Numerical characteristics. By the mean value of a function Y on

some measurable space with finite total mass we mean the integral &Y =
Jr yQ(dy), where @ is the generalized distribution of Y. So,

8Yn=/Ran(dy), 5n(U)=/H{yQ(u,U+dy)-

Note that the mean value is a linear functional if we consider the functions on
a fixed space with a fixed measure. But the equality

Yo = EY, + /R € 1) Qn(dy),

in general, is not valid. For example, if the distribution of the jump n(u) does
not depend on u and equals p then €Y7 = £Y) - u(R) + Qo(R) - £n, but not
EY1 =&Yy +En.

Nevertheless, the time behavior of the exponential moments of the Markov
evolution of masses, namely the Laplace transform and the characteristic func-
tion, is completely the same as one of the exponential moments of ordinary
Markov chain. Since

et = [ NG (dy)

- /ReAy /RQ(% dy) Qn(du)
:/Rex(uﬂ)/]RQ(U’“+dZ)Qn(du),



Large Deviation Probabilities 37

the following equality holds:

z‘,'e>‘Y"+1:/]R AEANMQ,, (du). (11)

2.2. The analog of Chebyshev’s inequality. For every positive increasing
function f(u), the inequality

Mes{Y >y} <

is valid. In particular, for every A > 0, we have
Mes{Y <y} = Mes{—Y > —y} < eMEe™ M, (12)

2.3. The Cramér transform over a Markov chain: the inversion formula.
Let X, be a real-valued Markov chain with transition probabilities P(u, B) and

distribution 7,. Given A > 0, define a generalized transition kernel P(M(-,+)
by the equality
PN (4, dv) = X" P(u, dv);

the measure PO (u, u + +) represents the Cramér transform over the distribu-
tion P(u,u + -) with parameter A. In addition, for every n, define the mea-

(A)

sure 7y, as
m(l)‘)(du) = eMP{X, € du}.

The following recurrent equality is true:

N (B) = / MPIX, 1 € dv)

/ )‘”/ (u, dv)P{X,, € du}

= / / AT Py, dv)eMP{X, € du}

// (u,dv)m )(du)
_/R N, Byr (du).
0

Thus, the Markov evolution of masses X,

(N)

nel PA)(..) is distributed according to m; ", i.e.,

with generalized transition ker-

M(B) = Mes{x{" € B
for all n > 0 and B € B(R).
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By the construction of 7, ’, the following inversion formula is valid:

r(B) = /B =M (). (13)

In general, the following holds:
Lemma 1. For every n € Z™ and ug, ..., u, € R,

P{Xy € dug, ..., X, € dup} = e Mes{ XV € dug, ..., X" € du,}.
Proof follows from the equalities
P{Xy € dug, ..., X, € dup}
= P{Xq € dup}P(up,duy) - - - P(un—1, duy)
= e_AUOMes{XO()‘) € duo}e_A(ul_“O)Po‘)(uo, duy)
e M=) pN (1)

= e_}‘“”Mes{XO()‘) € duy, . .. ,X,(L)‘) € dun}.

3. The local renewal theorem for transient Markov chains

We start with some modifications of (the local limit) Theorems 7 (the lat-
tice case) and 8 (the nonlattice case) of the article [9] which are essential for
our subsequent study.

Let X, be a real-valued Markov chain. Denote the jump of this chain at
the state x by &*(z).

Theorem 3. Let the jumps of X* possess a minorant ¢ with E¢ > 0
and Var ¢ < oo, i.e., for every x € R, the following stochastic inequality holds:

£ () >t € (14)

Let £*(z) = £* as x — oo, let the relations

EE () = o+ o(1/v/E),

Var £*(z) = 02 > 0

hold, and let the family {(f*(x))2, x € R} be uniformly integrable. In addi-
tion, assume that the initial distribution of the chain satisfies the condition
P{X; < -z} =0(1/\/x) as z — oco.

If £* is a nonlattice random variable and, for every A > 0,

sup ‘]Eei)‘f* () _ gt | =o0(1/z) as z — o (15)
IAl<A
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then, for each fixed A > 0, the following relation holds as n — oc:

sup [P{X} € (z,z + A]} — ~(w—na)?*/2no®| _ o(1/vn).

A
—e¢
z€R V2rno?

If the chain X takes its values on the lattice {Ak, k € Z}, A > 0, this
lattice is minimal, and

sup ‘]Eei}‘g* (k2) _ g eA¢" | =o(1/k) as k — oo,
IA<m/A

then, as n — oo, we have

sup [P{X; =kA} — = ¢~ (kA=na)®/ama®| _ o(1/vn).

kez+ V2mno?

Proof. As was observed in [9, Section 4.2], the condition (14) of the ex-
istence of minorant ¢ with positive mean and finite variance together with
the condition on the left tail of the initial distribution provide the following
estimate:

P{X} < kE(/2 for some k >n} =o(1/v/n) as n— oco.

Thus, all conditions of Theorems 7 and 8 of [9] are satisfied, which completes
the proof.
Define the renewal measure generated by the Markov chain X}:

H(B) = i]}»{x;; € B}
n=0

and the renewal process
oo
H(B)=) I{X; € B}.
n=0
The equality H(B) = EH (B) holds.
Lemma 2. Let the minorization condition (14) hold with E¢ > 0 and

Egz < oo. Then there exists a random variable 0 with finite mean such that

H(z,x 4+ 1] <g 0 for every x € R.

Proof. Consider the sums Z,, = ¢, +---+¢ , Zy =0, where ¢, (,,... are
independent copies of ¢. Since the mean ¢ is positive and the second moment
is finite, we have (see, for example, [11, Corollary 2.5])

oo
0=> 1{Z,<1} <00, Ef <. (16)

n=0
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Let 7(z) = min{n > 0 : X; > x}. Since { minorizes the jumps, the Markov
chain X and the sequence Z,, can be defined on a common probability space

so that X:(m)+n > x + Z,, with probability 1 for every n > 0. Therefore,

oo

H(z,z+1] = ZI{X:(I)-HL € (z,z +1]}

n=0

oo
<D U pn S 741}
n=0
oo
<st ZI{x+Zn <z+ 1},
n=0

which, together with (16), implies the lemma conclusion.

From now on, we assume, in addition, that the chain X is asymptotically
homogeneous. Let F* be the limit distribution of the variable £*(z) and let
&* be a random variable with the distribution F*.

Theorem 4. Let F* be a nonlattice distribution, let a = E£*, and let
the jumps of the chain X* possess a minorant ¢ and a majorant ¢ withIE¢ > 0,

Var ¢ < oo, and E( < 00, i.e., for every z, the following stochastic inequalities
are satisfied:

§ <st g*(ﬁ) <st C_a
Then, for each fixed A > 0, we have

lim H(z,z+ Al = A/a.

r—00

If, in addition, 0> = Varf* < oo and the local limit theorem holds, i.e., if
the relation

]P){X;; c (x,x+A]} _ —(z—na)?/2nc? —|—0(1/\/E)

A
— ¢
V2mno?

holds as n — oo uniformly in x then, as n — oo and x — 00,

Z]P’{X;; € (z,z+A]} = %@(72(”&—;5) o).
k=0

Vil

Proof. Denote by 7(x) and x(z) the time and the value of the first
overshoot of the level = by the chain X:

7(r) =min{n >0: X} >z}, x(z)= Xl — T
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Let &7,&5,... be independent copies of the random variable £*. Put S; =
&+ -+ & Denote by 7*(x) and x*(z) the time and the value of the first
overshoot of the level x by the sums S}:

m™(z) =min{n > 0: S} >z}, X'(x) =Sk, — 5

and by

oo

H (B) =Y IS € B},

n=0

the renewal process. It is known (see, e.g., [11, Theorem 2.3]) that the distri-
bution of y*(x) converges weakly as © — oo to the distribution of the over-
shoot x*(c0) of the so-called infinite level, and the distribution of x*(o0) is
absolutely continuous. In view of absolute continuity of the overshoot weak
limit, the distribution of fl*(x, r + A] converges weakly as x — oo to some
distribution, say G. By virtue of the local renewal theorem for sums of indepen-
dent identically distributed random variables (see, for example, [7, Chapter XI;
11, Appendix]), the mean of the distribution G is equal to A/a.

The conditions of Theorem 4 allow us to apply Theorem 2.2 of [3] ac-
cording to which the distribution of the overshoot x(z) converges weakly to
the distribution of x*(co). Therefore, the distribution of H(z,z + A] con-
verges weakly to the distribution G. Taking it into account that, by Lemma 3,

the family {I:T(x,x + Al,z € R} admits an integrable majorant, we obtain

the convergence of the mean value of f[(w, z + A] to that of G as © — o0, i.e.,
H(z,z2+A] = Ala,

and the first assertion of the theorem is proven.
If the local limit theorem is valid then, for any fixed s and ¢, s < ¢,
the following convergence holds:

z/a+t\/T z/a+t\/z A (o ka)? 2o
S O PNje(mataA}- Y k)2t
\/ 2
k=x/a+s\/z k=z/a+s\/x 2mko

as x — o0o. Thus,

z/a+t\/T A
Z ]P’{X;; € (z,x + A]} — —(chQ (ta3/2) ~ 3 (Sa3/2)>.
k=z/a+syz a

The last convergence, together with the first assertion of the theorem, implies
the second assertion. The proof is complete.
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In the lattice case assertions of Theorem 4 can be formulated as follows:
if F' is a lattice distribution with span A > 0 then

lim H(kA) = AJa,

k—o0

S P{X;=kA) = %q>02 <M> +o(1)
=0

VEA ]«

uniformly in k as n — oc.

4. Some preliminary estimates for
the distribution of a Markov evolution of masses

We consider a Markov evolution of masses {Y,} with jumps {n(z)}. De-
note Qn(B) = Mes{Y;, € B} and Q(z, B) = Mes{z + n(z) € B}. Put

-~

Q(z) =supQ(y,R), @ =supQ(y,R).

y>x yER
First of all we find conditions on the Markov evolution of masses which
provide the boundedness of the sequence of the whole space masses.

Lemma 3. Let Qy(R) < oo and @ < oo. If, for some sequence of
levels x,, n > 0,

> Qn(—00,75] < o0, (17)
n=0
> G(zn) < o0, (18)
n=0

where

(x) = sup |Q(y, R) — 1],
y>x

then the sequence of total masses is bounded:

sup Qn(R) < oo;
n>0

moreover, there exists a finite limit

lim Qn(R) = Q € [0, 00).

n—oo
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Proof. By induction on n, we check the inequality

Qn+1(R) < Qo(R H «’Ek+QZQk —00, %] H (19)
k=0 = j=k+

We have
Quir (R ( / / ) £, R)Qn (dz) < DQn(~0, 2] + Oln)Qn(R).

For n = 0 this estimate implies the inequality

Q1(R) < QQo(—00, z0] + Q(z0) Qo (R),
which justifies the basis of the induction. By the induction hypothesis,

Qn+1(R) < QQn(—00, 2] + Q(n)Qn(R)

< Q\Qn(_ooal'n]
R n—1 R An—l n—1 R
+ Qzn) [Qo(R) [] Qzr) + Q) Qu(—o0,zx] [ Qzy)
k=0 k=0 j=k+1
= Q®) [] Q) + QD Qu(—o0, 2] [[ Q=)
k=0 k=0 j=k+1

which implies the induction step.
Since the series (18) converges, we obtain

Qsup —SUPHQ ry) < SUPH + qlar)) <

n>0

From here and (19) we derive the estimate

Qn—H (R) < QO (R)qup + @qup Z Qk(—OO, xk]a (20)
k=0

which proves the first assertion of the lemma. Further, for every n > 0, we

have
|Qn11(R) — Qnu(R)| = ‘ (/ / ) —1)Qu(dx)

< (Q + 1)Qn (=00, Tp] + Qn(R) G ().

Since the sequence @, (R) is bounded, from (17) and (18) it follows that
the sequence @Qn(R) is fundamental. The proof is complete.
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Lemma 4. Assume that the Markov evolution of masses takes positive

values only. Let @ < oo and let, for each fixed € > 0, the condition (18) hold
for the sequence xp = ke. If, for some A > 0,

Egup = sup Ee W) < (21)
u>0

then there exists ¢ < oo such that, for any n > 0 and initial distribution @)y,
the following estimate holds:

Qn(R) < /C\(QO(R) + 1)'

Proof. By (11), we have the estimate

o0
e M — / e Mge  MMMes{Y,, 1 € dy}
0

o0
< Esup/ e_}‘“Mes{Yn_l € dy}
0
= Esupge—Aan_

Therefore,
Ee M < ge_}‘YO(Esup)n < Qo[0, 00) (Esup)™.

Using the analog of the exponential Chebyshev inequality (12) with y = ne,
we arrive at the inequality

Mes{Y,, < ne} < e M < 0, 00) (e)‘sEsup)n.
Since Egy, < 1, there exists a sufficiently small € > 0 such that
§ = e Fgyp < 1. (22)

With such choice of ¢, the condition (17) of Lemma 3 is satisfied. The lemma
assertion follows from the estimate (20).

In the following lemma we consider the Markov evolution of masses that
do not necessarily satisfy (17). Nonfulfillment of this condition leads to the pos-
sibility of unbounded growth of the sequence of the total space masses. In the
case of ordinary Markov chain, it is impossible since, if the mass tends to in-
finity, then the mass disappears near the origin. In the case of the Markov
evolution of masses the jumps can generate masses greater than 1 and, there-
fore, the states near the origin can serve as a permanent sources of new masses.

Lemma 5. Let Qp(R) < oo, @ < 00,

sup Qn(—OO, 0] <00
n>0
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and, for each fixed £ > 0, the condition (18) hold for the sequence xj = ke.
If, for some A > 0, the condition (21) is satisfied then there exists ¢ < oo such
that, for any n > 0 and x > 0, the following estimate holds:

Qn(—o0,z] <e(x+1).

Proof. In view of the condition sup,, @, (—00c, 0] < oo, it is necessary and
sufficient to prove that, for some cq,

Qn(0,2] < cr(x +1). (23)
We make use of the formula (10) on the last entrance into the set (—oo,0]:
Qn(0,2] = Mes{YO >0,...,Y,-.1>0,Y, € (O,x]}
n—1

+) Mes{V;; <0, Vi1 >0, ..., Yooy >0, Y, € (0,2]}.
k=0

By Lemma 4, there exists co < oo such that, for any n > 0 and k < n,
Mes{Yy > 0,..., Y, > 0} < ¢,
Mes{V}; <0, Y41 >0, ..., Y, >0} <.
Here the second estimate follows from the fact that the value
Mes{Y; <0, Vi41 >0} < Qr(—00,0]Q

is bounded uniformly in £ > 0.
Choose £ > 0 so that (22) is valid. If n < 22/ then the lemma assertion
follows from the inequalities

Qn(o,x] S nce S 2{E02/8.

If n > 2z /e then

n—zx/e
Qn(0,2] < > Mes{V; <0, Vi1 > 0,..., Y1 >0, ¥, € (0,2]}
k=0
+ zca/e. (24)

We now estimate the kth term in the sum. Consider an auxiliary Markov
evolution of masses Z,, taken values on the positive half-line with initial dis-
tribution

Mes{Y}; <0, Y41 € B}, B € B(0,00)
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(thus, Mes{Zp € R} = Mes{YV;, < 0, Y41 > 0} < 02), and with jumps on
positive half-line possessing the distribution Mes{n(u) € B}, B € B(0, 00).
We obtain the inequality

Mes{Y;, <0, Y41 >0, ..., Yoy >0, Y, € (0,2]} < Mes{Z,_j_1 <z}
It follows from Lemma 4 that
Mes{Zn_k_l <(n—k-— 1)5} < ookl
with § < 1. Therefore, for n > 2z/e and k < n — x/e (thus, z < (n — k)e),
Mes{V; <0, Viy1 >0, ..., Vo1 >0, Y, € (0,2]}
< Mes{Zn_k_l < x}
<Mes{Z, 1 < (n—k— 1)}
S Cz(sn—k—l‘

Finally,

n—zx/e

Qn(0,2] < e Z gnk—1 4 zegfe <
k=0

% + zeg /€.
Both the estimate (23) and the lemma are proven.

5. An analog of the central limit theorem
for a Markov evolution of masses

The characteristic function of the sum of independent random variables
is equal to the product of the characteristic functions of the summands. If we
deal with a Markov chain or, moreover, a Markov evolution of masses, then
the characteristic function is not a product of something in view of the non-
homogeneity of jumps. In the following lemma we establish to what extent
the time-behavior of the characteristic function of a Markov evolution of masses
differs from the time-behavior of the characteristic function of a sequence of
partial sums of independent variables.

Consider a Markov evolution of masses {Y,,} with jumps {#,(z)}. Denote

Qn(B) = Mes{Y,, € B} and Q(z, B) = Mes{z + n(z) € B}. Let

@ =supQ(y,R) < 0o, @ =supQy(R) < oo.
yER n>0
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Lemma 6. Let x; be an arbitrary sequence of levels in R. For all \ € R,
n > 1, k <n and a complex number ¢ € C, |p| < 1, the following inequality
holds:

n—1 n—1
g — " FEdNE) < (Q+1)) Qj(—00, 2] + Q) ¢,
Jj=k Jj=k
where _
£j = sup ‘Se”‘”(m) - ¢l (25)

T>T;

Proof. Take j € [k + 1,n]. By (11), we have
EeMNi = / (Sei)‘"(m))e“‘mQj_l(dx).
R
Therefore,

EeNi — pgeMiz

— ‘ \/R(gei)\n(:c) - (,O)ei}\mQj—l(de')

< ‘ / (gei)\n(m) . 90) ei)\ij_l(d{E)
$j71

Zj—1 . .
N ‘ / J (861)\17(:::) - QO)@ZAij_l(d.'L')

<gj-1Q-1(R) + (Q + 1)Qj—1(—oo,xj_1]
in view of (25). Combining the last estimate with the inequality
n
< 2
j=k+1

n
= Y |ee - e
j=k+1

geiNn _ ik g iNVi PIEENYT — pr—(i=1) gAY

Y

we deduce the lemma assertion.

In the formula (25) the value ¢; is defined as the maximal difference
between the jump characteristic function and some complex number ¢ € C,
|| < 1, on some phase subspace rather than on the whole space. We are going
to apply this lemma below in the case when the mass of the corresponding
subspace is close to the mass of the whole real line.

In the following theorem we give sufficient conditions under which a Mar-
kov evolution of masses on real line [0, 00) satisfies the central limit theorem
in some sense.
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Theorem 5. Let the conditions of Lemma 4 be satisfied and let
Qo[0,00) < co. Assume that the family of jump squares {n*(z), = > 0} is
uniformly integrable. If, for some o > 0 and o > 0, the relations

E(n(z) —a) =o(1/Vx), (26)
E(n(z) — a)2 — o2 (27)

hold as © — oo then the distribution of the mass (Y, — n«)/\/n converges
weakly as n — oo to the normal law with zero mean and variance o2, i.e., for
every y € R the following convergence holds:

Qn[0,n0 +yvn] = Q8 (y),
with @ = lim @Q,(R).
n—o0
Proof is carried out by the method of characteristic functions. Hereinafter

A € R. In view of the uniform integrability of the family of the jump squares,
the following decomposition is valid:

£eM@)=0) — Q(2,R) +iAE (n(z) — o) — A;zf(n(ac) —0a)" +0(3?)

as A — 0 uniformly in z. Taking into account the conditions (26) and (27),
we obtain the inequality

‘561')\(77(90)—0) (- )\2(72/2)‘ <e(z, A (M VE+A%) + Q= R) — 1

b

where £(z,A\) — 0 as A — 0 and z — oo. Fix arbitrary A € R and ¢ > 0.
From the last inequality we have

gV (1 = X202 )| < E(n,2)/ /i + e),

where 2(n,z) — 0 as n — oo and j — oo uniformly in the domain = > je.
Applying now Lemma 6 with ¢ = 1 — \26?/2n and xrj = je to the Markov
evolution of masses (Y;, — na)/y/n, we obtain the estimate

\ Yp— 2 2\ "=k v, _ka
861)\ ”\/7_:“" _ (1 B )\20' ) 861)\ T
n

< (@H)SQ'[O jel +QT§(@+ a(m).

i=k

Since all conditions of Lemma 4 are satisfied, the value @ is finite and
Q;10,je] < Qp[0,00)d7, 6 < 1. Thus, for each fixed A € R, the difference

-\ Yn—na 2 .2 n—k Y —ka
SeM VR (1—)\—(7) SeM vn

2n
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can be made arbitrarily small uniformly in n > k by choosing a sufficiently
large k. For each fixed £,

\Y.—k
itk E

£V 5 Qi(R)

as n — oo and Qk(R) — @ as k — oo by Lemma 3. Thus, in view of
the convergence

2 2\ n—k

(1 — )\—U> S e N2 as oo
2n

for each fixed k, the following holds:

-AYn—na 42 2
eV 5 Qe AT2 s n — 0o,

which completes the proof of the theorem.
6. Large deviation probabilities for
an asymptotically homogeneous Markov chain

In this section we consider an asymptotically space-homogeneous Markov
chain, i.e., £(u) = £ as u — co. We assume that F' is a nonlattice distribution
of the random variable &; the lattice case is discussed in Section 8.

As before, the parameter § > 0 is defined as the solution to the equation
¢(f) = EeP¢ = 1. The measure, defined by the equality

FB®) (du) = P F(du), (28)

is probabilistic. Let f(ﬂ) be a random variable with the distribution F¥).
Assume that

a=E{P) = 4/(B) € (0,00),
o = Vare® = ¢"(8) — (¢/(8))” < oo,

Theorem 6. Let EefX0 be finite and let the family of jumps {{(u),
u € R} possess a stochastic majorant & such that

]Ef_zeﬁg < 00. (29)

Assume that the chain jumps satisfy the following conditions:

inf Ee* ™ > 0, (30)
ue

E&(u)e ™ = o + o(1/y/u) as u— oc. (31)
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Moreover, suppose that, for each fixed A > 0, there exists a bounded decreasing
function 6(u) = o(1/u) integrable at infinity and such that

sup  |[EeBHiNEw) _ g (0+iNE ‘ < 6(u) (32)
AE[—A,A]

for every u € R. Then the following relation holds:

P{X, >z} = ce PP » <na — x) + o(e_ﬂm)

Jila

as x — oo uniformly in n > 0, where

¢ = é /_oo (Be5® —1)e% n(dy) € [0, c0). (33)

The condition (30) is equivalent to the fact that there is no sequence of
points uy € R such that (uy) = —o0 as k — oo.

In this theorem we do not assume that the function d(u) is regularly
varying at infinity as it is assumed by the condition (4) in Theorem 2; so,
the condition (32) is weaker than (4). Moreover, since

EeB+HiNE(w) _ g o(B+iA)¢
| |
= ‘/_00 eB+HiNvg, (]P’{f(u) <v}-P{E< v})‘
=8+ M|‘ /_00 elBHiAv (P{f(u) <v}-P{¢< v}) dv

oo
< B +i) / B
—0o0

we can propose the following condition sufficient for (32):

00
[
—00

From Theorem 6 we deduce

P{¢(u) < v} —P{¢ < v}‘ dv,

P{&(u) < v} — P{¢ < v}‘ dv < 5(u).

Corollary 1. Let y(x) — oo as ¥ — oo. Then we have the asymptotic
P{X, >z} =e P (c+o(1))

as x — oo uniformly in n > x/ag + y(x)/x. If ¢ > 0 then the following
equivalence holds in the above-indicated ranges of n:

P{X, >z} ~m(x,00) as x — oc.
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Proof of Theorem 6. First of all, note that the condition (32) with A =0
implies the relation

Ee® ™ =14+ 0(6(w)) =1+o0(1/u) as u — oc. (34)

Consider the Cramér transform with parameter 5 over the chain X,,, i.e.,
introduce the generalized transition kernel

PP (u, dv) = =" P(u, dv).

Let Xy(,ﬂ ) be a Markov evolution of masses with the generalized transition kernel
P®B) (. .). The following equality is valid:

m(lﬂ)(du) = Mes{Xy(lB) €du} = B, (du) = eﬂ“]P’{Xn € du}.

Since EefX0 is finite, we have ﬂ((]ﬂ) (R) < oco. By (34), the total masses of

the jumps of the Markov evolution of masses Xﬁbﬁ) are uniformly bounded, i.e.

@ = sup P(ﬁ)(u,R) < 00.
u€ER

Represent the kernel P(%) as the sum of the transition probability P* and
the signed kernel P** as follows:

o PO
P ({17, )_ P(ﬁ)(x,R)’
B)(5. R

The measure P**(z,-) is negative in the case P®)(z,R) < 1, positive in
the case P (z,R) > 1, and is equal to 0 in the case P®)(z,R) = 1. Thus,
the total variation |P**|(u, B) of the measure P**(u,+) on the set B equals
| P**(u, B)|.

Applying the nth power of the kernel P®) to the measure wéﬂ ), we ob-
tain the measure 7r7(1ﬁ); so, we have TrT({B) = Wéﬁ)(P* + P**)". Decomposing

the power (P* + P**)" into the sum with respect to the last application of
the kernel P**, we obtain the equality

n—1
k=0
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From here we deduce the representation which is basic for our subsequent
analysis:

n—1
WT(LB) _ ﬂ_(()ﬁ)(p*)n + Z 7TI(€5)13>|<>|<(P*)n—l—k. (35)
k=0

The main idea of the further considerations consists in the following: Since

the sequence of measures ' )(du) converges weakly to the measure e®%r(du)

and the tail of the measure 7 behaves, as a rule, asymptotically as the expo-

nential with parameter — /3, the weak limit of the sequence of measures m&ﬂ ) far

away from the origin behaves like the Lebesgue measure up to some constant.
In particular, (34) implies the tightness (in the same sense as that for prob-
ability measures) of the family of measures {m(f )P**}. In addition, the nth
power of the transition kernel P* satisfies the local limit theorem. All of these

allows us to compute the local asymptotic of the measure m&ﬁ ),

Lemma 7. The family of measures {W,(CB)P**, k > 0} is tight in the sense
that

sup ‘Tr,(f)P**‘(—oo, —x] = O(e_’gm),
k>0

sup ‘F](cﬂ)P**‘(x, o) = 0
k>0

as r — oo. Moreover, the sequence of measures w,(f ) pr converges in the total

variation distance to the measure 7 P** as k — oo, where W(B)(du) =
7 (du)eBr.

Taking it into account that (F(B)P**)(R) is equal to

/ P, Ry () = / h (PO, B) — P*(u,8)) =) (du)

—00 — 00

= /_00 (]Eeﬁg(“) — 1) eﬁuﬂ(du), (36)

we obtain
Corollary 2. The constant c¢ in (33) is finite.

As far as the positivity of ¢ is concerned, some sufficient conditions are
given just after Theorem 2. Note that these conditions are satisfied auto-
matically for the partially homogeneous chain with the uniformly bounded
moments of order 2 + ¢ of negative parts of jumps.
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Proof of Lemma. We have the inequality

=P P|(B) < / h |P**|(u, B)w? (du). (37)

—00

From the definition of P**(u,-) and the condition (32) with A = 0 it follows
that

| PP (u,R) — 1]
P(ﬁ)(u,R)
B ‘]Eeﬂgf(U) — 1‘
E eB¢(w)
0(u)
— Eefé(w)

|P**|(u, B) = PB®(u, B)

PP (u, B)

PO (u, B); (38)
thus, in view of (30), we deduce the estimate

|P**|(u, B) < ;PP (u, B). (39)

The measure ﬂ'liﬁ ) is the Cramér transform with positive parameter 3
over a probability measure; therefore, its negative tail admits an exponential
estimate like ﬂ(ﬂ)(—oo,—x] < e P g > 0. Thus, from (37) and (39) with

B = (—o0, —z] we can deduce the following estimates:

7 P (—00, —2] < 1 / PO (u, (=00, ~a])m” (du)
(8)

= 017rk+1(—oo, —x]

< cre P",

The proof of the first uniform estimate of the lemma is complete.

Now, check the second uniform convergence stated in the lemma. Fix ar-
bitrary A € (0,/); we have Ee* < 1. Since £(u) = € as 2 — oo and
the family of random variables {eﬂf(“)} is uniformly integrable, we obtain

EeM(® — Eer < 1. Thus, there exists a sufficiently large U such that

sup Eer(™ < 1. (40)
u>U

Without loss of generality we may assume that U = 0. Then, by Lemma 5,
we have

sup ﬂ,(cﬂ)(—oo,x] =0(z) as = — oc. (41)
k
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In view of (29), from (39) it follows that

A
‘P** (u, (z, oo))‘ < (Iif_ MR _Zu)z (42)

for u < z. From (38) we infer that

‘P**(u, (z, oo))‘ < Eigz()u) PO (u,R) = 6(u) (43)

for all w and x. Inserting (42) and (43) into (37) with B = (z, 00), we obtain

z/2 00
[l P (z,00) < 03/ (z = uw) 2 (duw) + [ o(u)m)(du).  (44)

—00 z/2

Here the first integral vanishes as + — oo. To calculate the second integral,
we use the formula of integration by parts:

ot /x: 7 D0, uld(-6(u).

By (41) and the relation 6(u) = o(1/u), the first term on the right-hand side
of the last equality vanishes as # — oo uniformly in k. By the same theorem
and monotonicity of the function §, we have the following estimate uniform
in k:

h 5(u)m (du) = 6 (u)rt?[0, u]
z/2

oo

oo
/ 7200, u)d(=6(u)) < ey / ud(—6(u)).
z/2 z/2

Successive integration by parts and integrability of the function ¢ at infinity
imply that the second integral in (44) vanishes as © — oo uniformly in & as

well. Thus, the family of measures w,(f)P** is tight.

The weak convergence follows from the convergence in total variation of

the sequence of measures 7r,(f) as k — oo to the measure 7(%). The lemma is

proven.

The end of the proof of Theorem 6 is carried out under three additional
conditions: the condition of existence of minorant for the family of jumps of
the chain with transition probability P* (see (45)), a condition of sufficiently
fast convergence rate of T, to 7 (see (46)), and a condition of absolute conti-
nuity of the distribution 7, with respect to the invariant measure 7 (see (47)).
The end of the proof in the general case is considered separately in Section 7.

Let £*(x) be the jump at the state = of the Markov chain X with tran-
sition probabilities P*, i.e., be a random variable such that ]P’{f*(x) € B} =



Large Deviation Probabilities %)

P*(z,z + B). Since P®)(z,R) — 1 as z — oo, by the definition of P*,
the following weak convergence holds:

&*(z) = 0 as z - .

So, assume that the family of jumps {f* (x), x € R} possesses a mino-
rant ¢ with positive mean and finite variance, i.e., the stochastic inequality

£ () Zs € (45)

takes place for every x € R. Let the convergence rate in (1) be sufficiently
fast; namely,

> | — 7l(R) < oo. (46)
n=1

Moreover, assume that, for every n, the measure m, is absolutely continuous
with respect to the measure 7, i.e., the (nonnegative) Radon—Nikodym deriv-

ative is defined as
_dmy

fulw) = T2 u) (47)

and this derivative is bounded from above by some number p < oo uniformly
in n and u. By the definition of the Cramér transform, we have

drP dr,
() = W) = faw).

Then the measure m, P** is absolutely continuous with respect to the mea-
sure mP** and the corresponding signed density f**(u) can be estimated as
follows:

| fr¥ (u)| = 1B pr

(u)\ < (48)
This is possible due to the estimate
wOP(B) = [ P B) s )
R
<p / P*(u, B)r®(du) = pr'® P**(B)
R

if B € B(R).

Since

=(8)
. B Mes{ﬁ(ﬁ) > u} Mes{§ > u}
P{E@) > u} = =5y < T pomE
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by (29) and (30), the family of random variables {£*(x)} possesses a square
integrable majorant. In view of (31) and (34), we have

. ]Ef(x)eﬂg(w) a—|—0(1/\/§)
EE @) = —pei@ = Tto(1/a)

=a+o(l/Vzr) as z — oc.

From the weak convergence &(u) = £ and the conditions (29) and (34) we infer
that

2
E B¢ ()
]E(f*(x))2 = (5];:?265) — o2 +a® as T — 0.

For each fixed A > 0, from (32) and (34) it follows that

E e(l)\-l-ﬁ)g(m)

~goem B | = 0(dla)

sup ‘EeiAﬁ* () _Eeixﬁ(ﬁ)‘ = sup
A€[—AA] Ae[—A,A]

as * — oo. So, all conditions of Theorem 3 (in particular, the existence of
a proper minorant) are fulfilled. Thus, the chain X satisfies the local limit
theorem. In particular, for each fixed A > 0, we obtain

supP{X} € (y,y+ A]} =0 as n — oo. (49)
y

According to (35), we have

n—1
s g,y + Al = 70 (P (ygoy + Al + Y PP Ry, y 4+ AL
k=0

By (49), the contribution of the term ﬂéﬂ)(P*)"(y, y + Al, as well as of each

(for a fixed finite set of k’s) of the terms ﬂ,(f)P**(P*)”_l_k(y,y + A], to
the resultant sum is negligible (of order o(1) as n — oo uniformly in y). Thus,
for each fixed K, we have the relation

n—1
Dy + Al = Y oD PP IR (g + A+ o(1) (50)
k=K

as n — oo uniformly in y. Recall that W,SB)P** converges in total variation to

the measure 7(9) P** as k — oo (see Lemma 7). Hence, our immediate goal is
to make such a change of measures in (50) and prove the following relation as
n — oo uniformly in y:

n—1

s g,y + Al = S 7O PP 1Ry g 1 A+ o(1). (51)
k=0
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Justify the passage from (50) to (51).
Given A, we have

W,E,ﬁ)P**(P*)n_l_k(y, Y+ A]

A 00
- ( | </ )(P*)"—l—’%u, (. + A]) (P ()
= [1(k, A) + Iz(k, A)

Using (48), we can estimate the second integral as follows:
oo
|Io(k, A)| = /A (P*)" 7 F (u, (y, y + A]) fi* (u) (« D P**) (du)

<o [P ey A [OP ).

A
Hence,
n—1 oo n—1
sup Zh(k,fl)‘ <r/, (P R (u, (y,y + A |70 P (du)
" k=0 k=0

— p‘ﬂ'(ﬂ)P**‘(A, o0)A/a

by Theorem 4. Thus,

n—1

le(k,A)‘ — 0. (52)

k=0

lim sup
A—o0 n

Now, consider the integrals I (k, A) for a fized A. We have the estimates

A
[1(k, A) - / (P*)n_l_k (U, (ya Y+ A]) (ﬂ-(ﬁ)P**)(du)

—0o0

A
< / ‘WI(CB)P** - W(ﬁ)P**‘(du)

= ‘ﬂ,(f)P** — ﬂ(ﬂ)P**‘(—oo,A)
< |m? = 7P| (=00, A) sup |P**|(u, R)
u€R

< eﬂA|7r;c — 7|(—00, A) sup |P**|(u, R).
ueR
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From this and (46) it follows that, for a sufficiently large K, the sum

n—1
Z Il(ka A)
k=K

can be arbitrarily close to the sum

Z/ P*n 1— k (y y—i—A])( P**)( )

uniformly in all n. Together with (52), this justifies the passage from (50)
o (51).

From (51), using Theorem 4 and taking the equality (36) and Corollary 2
into account, we deduce the asymptotic equality

A+ 81 = (P RS 2 (P ot1)

a Vy/a
= cfAD > (na — y) +o0(l) asy — o0, n — 0. (53)
Vyla
Applying the inverse Cramér transform (13) to the Markov evolution of
masses Xﬁf ), we obtain
P(X, >z} = / A (dy).

Therefore, for every A > 0, the upper estimate

P{X, >z} < Ze Bla+kA) (ﬁ)(x + kA, z+ kA + A] = 51(A)
k=0
and the lower estimate

o0
P{X, >} > Y e POt (4 4 kA o4 kA + A] = 55(A).
k=0

are valid. The ratio s1(A)/s2(A) of the upper bound to the lower bound

equals €2 and tends to 1 as A — 0. For each fixed A > 0, from (53) we
deduce the relation

G B(z+kA) B(z+kA) no — (l‘ + kA)
1),;06 HMZQ ¢”2< (x+kA)/a>

oo
) Z o—Blr+kA)
k=0

=o(e me) + cABD 2(

Vo
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which implies the asymptotic

P{X, >z} = cB,» (”O‘ "”) =BT 1 o) (54)
Vo
as n — oo and # — oo. For each fixed n, we have P{X,, > 2} = o(e™97).
Hence, (54) holds as x — oo uniformly in n > 0.
So, the theorem is proven only under the additional conditions: existence
of a stochastic minorant for the family of jumps {£*(x)} and absolute continuity
of m, with respect to the invariant measure 7.

7. Completion of the proof of Theorem 6

In this section we construct an auxiliary Markov chain Zn that is equiv-
alent to the original chain X, from the point of view of the large deviation
probabilities but at the same time satisfies the additional conditions imposed
on the chain X, during the proof in the preceding section.

By the above construction and (30), the mean

0
{0 €0 <0} = g [ RO < )
’U/, —00

1 0
— ) /_Oo P{f(u) € dy}
L
— K eBé(u)
is bounded uniformly in v € R. In particular, the squares of the negative parts
of the random variables £ (u), u € R, are uniformly integrable. Together
with the weak convergence £ (u) = £ this implies the existence of level

U € R such that the family {f(ﬂ) (w), u > U} possesses a minorant with
positive mean and finite second moment. Choose sufficiently large U such
that (40) is satisfied and inf,>o P{X, < U} > 0.

Enlarge the chain X,, by merging the states on the half-line (—ooc, U]
into one state U, i.e., consider the Markov chain Z,, taken values on the half-
line [U, oo) with initial state Zy = max{U, Xy} and with the following transi-
tion probabilities Pz, nonhomogeneous in time:

Pzn(u, B) = Pz(u, B) = P(u, B) if u>U and B C (U,0);
P (1 {U}) = P2 (s (U)) = Pl (—0,0) i > U

Pz,(U,B) = (u, BYP{X, € du} if BC (U,o0);

P{X, <U}/

Pza(UAUY) = 00, U])P{X,, € du}.

P{X, < U}/
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Note that only the transition probabilities from the state U can be nonhomo-
geneous in time. Moreover, in view of the convergence in variation (1), we
have the asymptotic time-homogeneity as n — oo:

1 v .
Pz .U, B) — m/_m P(u, B)r(du) if B C (U,);

1 U
PralUAVY) =~ /_oo P (u, (—o0, U))r(du).

By the construction of the initial distribution of Zy and the transition proba-
bilities of the chain Z,,, we have

P{Z, = U} = P{X, < U},
P{Z, >z} =P{X, >z} for z>U.

Consider one more chain, say Em with the atom U and initial state 20 =U.

[ts transition probabilities P(u,+) are equal to Pz(u,+) for u > U, and those
for u = U are equal to

1 v - _
P, B) = m/_oo Pu, B)(du) if B C (U, 0):

N U
P(U{U}) = m/_mP(u,(—oo,U])ﬂ(du).

The transition probabilities of the chain Zn are time-homogeneous. The in-
variant measure 7 of this chain coincides with the measure 7 on the set (U, 00),

and 7 ({U}) = n(—o0, U]. The jumps &(u) of the chain Z,, possess a minorant
with positive mean and finite variance. This chain with atom is geometrically
ergodic (see, for example, [10, Section 15]). Thus, |m, — 7|(R) = o(r™) for some
r < 1, and the condition (46) is fulfilled. Moreover, for every B € B(U, c0),
we have the equality

n—1
P{Z,eB}=Y P{Z; = U}IED{Zk+1 SU, .,y >U, Zn € B| Z), = U}.
k=0

Hence,
n—1
P{Z, € B} < ZP{2k+1 SU... 0 >U Zy€B| Z, = U};
k=0
on the other hand, there exists € > 0 such that

m—1
P{Zm € B} zeZP{EkH SU,....Zm1 > U, Zm e B| Zy :U}.
k=0
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It follows that, for every n < m, the measure ]P’{gn € } is absolutely contin-
uous with respect to the measure P{Zm € } and the corresponding density

is bounded by 1/¢. Thus, for every n, the measure ]P’{En € } is absolutely
continuous with respect to the measure 7™ too; the density is also bounded
by 1/e.

Thus, the chain Z, is satisfied all additional conditions (45)-(47) of
the preceding section. Therefore, the equivalence

P{Z, >z} =, (x _ "O‘> e 4 o(e™07) (55)

Jela

uniform in n > 0 holds as x — oo, with

1 o0 ~
o BE(u) _ Puz
c= e /U (]Ee 1)6 7(du)

_ iﬁ (/Oo (Eeﬂ(u+g(u)) _ eﬂu>ﬂ_(du)+<Eeﬂ(U+g(U)) _ eﬂU)ﬂ.(_Oo’ U])
o U+0
= 04_15 /_Z (]Ef(u + &(u)) — f(u))ﬂ(du); (56)

here f(u) = max{e’V,ef*}. The values of the function g(u) = e* — f(u)
lie between —ePU and 0. Hence, if the chain X,, is in the stationary regime,
i.e., if X, is distributed according to 7, then E¢(X,+1) = Eg(X,). Therefore,
the equilibrium-type identity

oo
[ (Bo(u+ g) - g(w)mdn) =0
—00

is valid. Dividing this identity by «af and summing with (56), we obtain
the final representation for the constant c:

c= aiﬁ/_oo (]Eeﬁ(“"'g(“)) - eﬁu>7r(du).

(8)

n

Let ZT(L’B ) and 7
the chains Z,, and Z,, respectively by the Cramér transform with parameter 3.

Analyze the measures Mes{Zﬁ[B) € } and Mes{zgg) € } from the point of
view of the last entry into the point U. With regard to the first measure,

be the Markov evolution of masses obtained from
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we have

Mes{ZﬁLﬂ) € [y,y+A)}

:Mes{Zéﬂ)>U,...,Z(ﬂ) >U, 2 ey, y+A} ZMes{ }

n—1

X Mes{z,gﬁ)l U220 su 28 elyy+a)| 2P = U}. (57)
Recall that (40) holds. In view of (the central limit) Theorem 5, the value of
Mes{zéﬁ) >U,...,720 >, 2P e ly,y+ A)}
and, for each fixed k, the value of
Mes{z,gi)1 U, 2% >0, 2 e lyy+0) | 27 = U}

are of order o(1) as n — oo uniformly in y. Hence, the replacement of each

finite (with respect to k) set of the transition probabilities among Péﬁlz(U *)

with the probabilities ]B(ﬂ)(U, -) changes Mes{Z (y,y + A} by the value
of order o(1). Taking the relation

Mes{ 2" = U} = PUP{Z;, = U} — "VUs(—o0, U]

as k — oo into account, from (57) we deduce that

Mes{zﬁﬁ) €lyy+ A)}

n—1
= 0(1) 4+ ’Un(—oc0, U] ZMes{Z(ﬁ_)l >U,..., 25;3_)1 > U,
k=0

2 elyy+8) ]2 =)

as n — oo uniformly in y. By the same reasons, we can obtain the same

~(8)

relation for the time-homogeneous Markov evolution of masses 7,

Mes{Z(ﬁ)n € ly,y+ A)}
n—1
= 0(1) 4 e’Vn (=00, U] ZMes{Z,(ﬁL)l >U,..., 223_)1 > U,
k=0

z) e+ ]2 =v}
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Thus,

(8)

Mes{Zy(,ﬁ) € [y,y+A)} = Mes{Zn € [y,y+A)} +o(1).

Applying the inverse Cramér transform (with parameter — /3, see Lemma 1) to

the measures Mes{ZﬁLﬂ) € -} and Mes{Ziﬂ) € -}, we obtain the relation
P{Z, >z} =P{Z, >z} + o(1)

uniformly in z as n — oo, which, together with (55), completes the proof.

8. The lattice case

Let X, be a Markov chain taken values on the lattice {kA, k € Z}
with span A > 0, and this lattice is minimal. Consider an asymptotically
homogeneous chain, i.e., {(kA) = £ as k — oo; the values of the variable £ are
proportional to A. We formulate the corresponding theorem on large deviation
probabilities.

Theorem 7. Let EePXo be finite. Assume that the family of jumps

{€(kA), k € Z} possesses a stochastic majorant & such that I[E‘gzeﬁé < 0.
Let the jumps of the chain satisfy the following conditions:

inf Ee’ &) >,
kez
E&(kA)ePFR) = o 4 o(1/VE) as k — oo.
In addition, assume that there exists a bounded decreasing sequence §(k) =
o(1/k) summable at infinity and such that the inequality

sup ‘Ee(ﬂwx)ﬁ(m) _ Ee(ﬂﬂ')\)ﬁ‘ < (k)
Xe[—m/A,m[A]
holds for every k € Z. Then
—mA
P{X, =mA} = cpe PMAD (M) + o(e_ﬁmA)
vVmA/a

uniformly in n > 0 as m — oo, where

A
— BE(kA) BkA
CA Eeoie kEEZ(IEe 1)6 n(kA) € [0, 00).

Proof can be carried out in the same way as in the nonlattice case.
The only difference is generated by the lattice variant of the local renewal the-
orem, which implies the different multiple in the final asymptotic of the prob-
ability P{X,, > mA}.
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9. On the positivity of the multiplier ¢ in Theorem 6

As was noted just after Theorem 2, the constant
1 o0
c= —/ (]Eeﬁg(y) - 1) P m(dy) (58)
—00

is positive if EefW) > 1 — ~(y), where v(y) > 0 for every y and

o0
/0 Y(y)ylogy dy < oo.

In the following theorem this condition is somehow weakened. The proof is
a substantially improved version of the proof of Theorem 5 in [2, Section 27].

Theorem 8. Let the chain X,, be asymptotically space-homogeneous,
ie, £(y) = & as y — oo. Assume that E{ < 0 and there exists f > 0 such

that Eef¢ = 1. Let Eef¢W) > 1 —~(y), where v(y) is a nonnegative decreasing
function, vy(y) = o(1/y) as y — oo, and

/Ooo Y(y)y dy < oo. (59)

Let m be an arbitrary probability invariant distribution of the chain X,, such
that 7(y,00) > 0 for every y and w(y,00) = O(e‘ﬂy) as y — oo. Then
the constant ¢ defined by the equality (58) is positive.

Proof. Prove first that, under the conditions of the theorem, the equality

/_ Z P (du) = oo (60)

is valid.

Enlarge the chain X, by averaging the states on the half-line (—ooc, U]
with respect to the measure 7 and by merging them into one state U; namely,
consider the Markov chain Xy, taken values on the half-line [U,oc0) with
the following transition probabilities Py:

Py(y,B) = P(y,B) if y > U and B C (U, c0);
Py(y,{U}) = P(y, (-0, U]) if y>U;

U
Py(U, B) = m/_ P(u, Byr(du) if B C (U,0):

U
Py (U, {U}) = m/_ P (u, (o0, U]) 7 (du).
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By the construction of the transition probabilities Py;, the invariant mea-
sure 77 of the chain Xy, coincides with the measure 7 on the set (U, 00), and

U ({U}) equals 7(—o0, U]. Forevery y > U, the jumps {7 (y) of the chain Xy,
satisfy the stochastic inequality

Eu(y) > E(y). (61)

Choose a level U so large that, for every u > U, the inequality
u(EeH M — 1) + Be(u)e ™) > 0 (62)
hold. This choice is possible due to v(u) = o(1/u) and
lim icngg(u)eﬁf(“) > EéePt e (0, o]

in view of the weak convergence £(u) = .

Assume now that the integral in (60) is finite. Then, for every A € [0, 5],

the mean drift of the exponent e’XUn for one step in the stationary regime s

is equal to zero, i.e., the following equilibrium-type identity holds:

/ Au (]Ea*fv(u) . 1>7TU(du) ~0. (63)
U

Differentiating this equality with respect to A, we obtain
oo oo
/ My (]Eeka(“) — 1>7TU(du) +/ MEEy (u)e v Wy (du) = 0
U U
for every A € [0, B]. Putting A = 3, we arrive at the equality

/Uoo eBu [u (]Eeﬁﬁu(u) - 1) + EfU(U)eﬁgU(u)]ﬂU(du) _0,

which cannot be true in view of (62), (61), and 7 (U,o0) > 0. Thus, (60) is
proven.

Further, assume that ¢ = 0 in (58). Then, as it was demonstrated in
the process of calculating the constant ¢ in (56), for each level U, the equilib-
rium-type identity (63) is valid for A = 3. Therefore,

(]EeﬁgU(U) — 1>eﬁU7r(—oo,U] = /00

(1 . ]Eeﬁ@(“))e%(du). (64)
U+0

By the definition of the transition probabilities Pr;, the right-hand side of
the last equality is equal to

U
efBU/ E maX{O,eﬁ(“"'g(“)_U) — 1}7r(du).
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Since £(u) = &, there exist ¢ > 0 and ¢ > 0 such that, for all sufficiently

large U, the inequality ]Emax{O,eﬁ(“+5(“)_U) — 1} > 0 holds for every u €
(U — &,U] and, hence,

(EeﬁsU(U) _ 1)eﬁU7r(_oo, U] > 6e"Ur(U - &,U]. (65)

By (61) and the conditions of the theorem, the right-hand side of (64) does
not exceed

/ ) Pn(dy) < ¢ / )y, (66)

U+0 U+1
where ¢ < co. Inserting (65) and (66) into (64), we arrive at the inequality

= oo

HUn(U — e, U] < ¢ /U iy (67)

Since this holds for all sufficiently large U, from the condition (59) it follows
that the exponential moment of order 3 of the distribution 7 is finite, which
contradicts (60). Thus, the assumption ¢ = 0 leads to contradiction, and
the theorem is proven.

The condition (59) can be considerably weakened by imposing stronger
moment conditions on the jumps of X,,. If, for example, the chain has bounded
jumps, i.e., if there exists a constant A < oo such that |{(y)] < A with
probability 1 for every y, then it suffices to assume that

/0 N YY)yt dy < oo (68)

for some g > 0. In order to prove this, observe that, in this case, we have

00 eﬂu
/1 7(du) = oo. (69)

ul—n

Indeed, since the mean drift vy(y) = EV), (y—i—f(y)) —V(y) of the test function
Va(y) = Nyt 11{y > 1} is equal to

eNY 1 1=n
E Af(y)( ) _
y'h ( ’ 1+&(y)/y 1)
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for y > 14+ A, under the jump boundedness condition, we have

do)| v (o se) l—p BE () 2
A |y = (]Ee v —1— T]Ef(y)e Y+0(1/y ))
By
o (B W 01 /y)

Py

= 0 (o - Ee 01y

By
+ ;——u (Ege™ +0(1/y))

Py

= (o) + uEEeT), g = oo

which is a positive value for large y and implies (69) (as was observed in
the preceding proof). Further, multiplying (67) by U#~! and summing up, we
arrive at the inequalities

o0 B(U+ke)
D GRS (U + (k= 1)e,U + ke
k=0
é 1 /”
) ey g Y(y)dy
5kzz()(U+k5)1 B JUtke+1 )

o0
< C*/ v(y)ytdy,
U

where ¢* < oo, which imply the finiteness of the integral in (69) in view of
the condition (68). This contradiction completes the proof.

10. On necessity of the condition
for integrability of the convergence rate
of the jump distribution to the limit distribution

In conclusion, we construct an example of Markov chain, which demon-
strates that the condition (32) on the convergence rate of the jump distribution
to the limit distribution F' is so significant that it can be considered as almost
necessary.

Consider a Markov chain X,, with values in Z*. Assume that the chain is
continuous from above as well as from below, i.e., the chain changes its value
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at most by 1 in one step. Denote

plkk—1)=P{X,1=k—1|X,, =k}, k>1,
plk,k+1) =P{Xpp1 =k+1| X, =k}, k>0,
p(0,0) = P{X,11 =0 X, = 0}.

Assume that

and

It is known (see, for example, [8, Chapter 3, Section 7]) that the last condition
is necessary and sufficient for the ergodicity of chain of this type. Denote
the stationary probabilities of the chain by {m(k), & € Z*}. The special
simplicity of the system of equations

m(k+Dplk+1,k)+nk—1)pk—1,k)=n(k), k>1,
m(1)p(1,0) + 7 (0)p(0,0) = 7(0),

for the stationary probabilities {7 (k)} allows us to compute the stationary
probabilities in explicit form (see again [8, Chapter 3, Section 7)):

where

Let p(k,k + 1) — p and, therefore, p(k,k — 1) — 1 —p as k — o0, so
that the limit distribution F' is a Bernoulli distribution with parameter p and
the Laplace transform

p(\) = pe* + (1 — p)e ™.
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In order to have an ergodic chain, we assume that p < 1/2. The unique nonzero
solution f to the equation ¢(A) =1 is equal to

B =log p>0.

Under the above conditions, the integrability condition (32) for the rate of
convergence to the limit distribution is equivalent to the following:

> " |p(k) = p| < 0. (70)
k=0

Theorem 9. Lete(k) = p(k, k+1)—p > 0 for every k. Then the following
two assertions are equivalent:

(a) there exists ¢ > 0 such that

7(k) ~ ce™PF as k — oo;
(b) the condition (70) holds.
Proof. We have

k-1 . kk—1 .
R = pteld)  _ p L+ (c(7)/(»))
() = (0)g1—p—8(1+1)_ (0)<1—p> gl—(e(jﬂ)/(l—p))'

Taking the definition of 3 into account, we obtain

+(c()/(p))
e +1)/(1-p)

k—1
(k) =m(0)e F I !
=01 (

Hence, (a) is equivalent to the following:

= 1 (/W)
=G o

In turn, this is equivalent to the convergence of the series

0 1+ (6)/P) ) = (E0)/®) + (G + 1D/ - p)
Z(l—(dﬂl)/(l—p)) 1)_2 L= (G+D/0-p)

Since £(j) — 0, this is equivalent to the inequality

i(s(jﬂ) +e(j)> < 0.

o\ 1P p

< 00.

7=0 7=0

which is equivalent to (70). The proof is complete.
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