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1. ERGODICITY IN A SENSE OF WEAK CON-

VERGENCE

Almost all papers on ergodicity of Markov chains are devoted to the study of the Harris-
irreducable (Harris-type) Markov chains. Ergodicity conditions for these Markov chains
are investigated very well. These conditions (see, for instance, (Nummelin, 1984; Borovkov,
1993) imply convergence of transition probabilities to the stationary distribution in to-
tal variation and this free one from necessity to study other forms of convergence. Visa
versa, if there is ergodicity in a sence of convergence in total variation then Harris-type
ergodicity conditions of Markov chain are fulfilled.

So the problem of ergodicity in a sence of weak convergence arises first of all in the
study of ergodicity of non Harris-type Markov chain. We know only a few results in this
area. For non Harris-type Markov chain convergence in total variation, generally speaking,
can not takes place and one have to study conditions under which some other form of
convergence of transition probabilities takes place. The most natural of them is the weak
convergence what makes one to introduce topology on state space of Markov chain. So
the main subjects of discussion in this section are ergodicity conditions (for Markov chain
in topological state space) which are not connected with Harris irreducability.

One can pick out three following approaches.
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Let X(x, n), n = 0, 1, 2, . . ., be a Markov chain (initial position X(x, 0) = x ∈ X )
in measurable metric space (X ,B) with metric ρ, where B — Borel σ-algebra. Denote
transition probabilities P (x, n,B) = P(X(x, n) ∈ B).

1. General approach. Ergodicity conditions in this case have three components:
1) Compactness-type condition: there exists compact set V such that for

τ(x) = inf{n : X(x, n) ∈ V }

(a) P(τ(x) < ∞) = 1 for any x,
(b) supx∈V P(τ(x) > k) ≤ r(k),

∑
r(k) < ∞,

(c) For any ε > 0, n ≥ 1 there exists compact set K(ε, n) such that

inf
x∈V

P(X(x, n) ∈ K(ε, n)) > 1− ε

(without “inf” condition (c) is always fulfilled).
2) Positivity-type condition: for any open set G and s ≥ 1 there exist numbers

k = k(G, s) and p = p(G, s) such that

inf
x∈V

P (x, k + j, G) ≥ p, j = 0, ..., s.

3) Continuity-type condition. Let f be bounded continuous function on X ,

fn(x) = Anf =
∫

f(y)P (x, n, dy).

We assume that the family {fn} is equicontinuous on any compact set K. (This condition
can be relaxed and have a form: there exist δ(t) ↓ 0, ε(n) ↓ 0 such that |fn(x1)−fn(x2)| ≤
δ(ρ(x1, x2)) for any x1, x2 ∈ K, ρ(x1, x2) ≥ ε(n)).

Theorem 1. If conditions 1)–3) are fulfilled then there exists a unique invariant mea-
sure π and P (x, n, ·) ⇒ π(·).

This result was published in (Borovkov, 1991).
2. Another approach is connected with the property of ”contraction” of transition

probabilities (see (Dobrushin, 1970)). It means that Kantorovich — Wasserstein distance
R(P (x1, ·), P (x2, ·)) between P (x1, ·) and P (x2, ·) has to be less than ρ(x1, x2), P (x, ·) =
P (x, 1, ·).

3. The third approach can be used in the case when Markov chain X(n) admits the
representation

X(n + 1) = f(X(n), ξn), (1.1)

where ξn are i.i.d. random variables, function f satisfies some regularity conditions. It
can be either monotonicity property (see (Loynes, 1962)) or contraction property.

Let us consider the following contraction-type (Lipshitz-type) condition:
1) ρ(f(x1, ξ1), f(x2, ξ1)) ≤ c(ξ1)ρ(x1, x2), E ln c(ξ1) ≤ −β < 0.
Besides we will need as well
2) Boundness-type condition: for some x0 ∈ X and any δ > 0 there exist n, m such

that
P(ρ(x0, X(x0, n)) > N) < δ

for all n ≥ m.
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Theorem 2. Under conditions 1), 2) there exists stationary sequence Xs, satisfying
(1), such that

T−nX(x, n + s)
p→ Xs, (1.2)

where T is measure conserving shift transformation, generated by stationary sequence
{ξn}∞−∞.

Condition 1) in this theorem can be relaxed (see (Borovkov, 1992, 1993)).
Of course it follows from Theorem 2 that distribution of X(x, n) (i.e. P (x, n, ·))

converges weakly to stationary distribution (distribution of X0). Similar results under
stronger condition were obtained in (Bhattacharya and Lee, 1988; Dubins and Freedman,
1966).

Example 1. Let X = Rd, ρ(x, y) = |x− y|,

X(n + 1) = G(ζnF (X(n)) + ηn),

where G and F are vector-functions, ζn is random matrix, ηn — random vector. Assume
that G and F satisfy Lipshitz conditions:

|G(x1)−G(x2)| < cG|x1 − x2|, |F (x1)− F (x2)| ≤ cF |x1 − x2|.

Let us denote ζ∗ — conjugate matrix to ζ, λ(ζ1) — maximal proper value of ζ∗1ζ1.

Theorem 3. If
2 ln cGcF + ln λ(ζ1) < 0,

E ln λ(ζ1) > −∞, E(ln |η1|)+ < ∞

then conditions of Theorem 2 are fulfilled and hence sequence X(n) converges to stationary
one in a sence of (2) ((Borovkov, 1993), see also (Brandt et.al., 1990)).

Next two sections of the talk stay apart from the first one.

2. EQUILIBRIUM-TYPE IDENTITIES

This section is devoted to the so-called equilibrium-type identities for stationary Markov
chains. These identities are of interest by themselves and can be of use at least for the
following three things:

• For the proof of necessity of ergodicity conditions for various Markov chains, and
particularly for Markov chains arising in applications, such as polling systems, Jack-
son networks, etc.

• Equilibrium-type identities can be of use in obtaining estimates (sometimes, sharp)
for probabilities of large deviations of stationary Markov chains (see Section 3).

• Equilibrium-type identities are very usefull in investigation of so-called transient
phenomena for stationary Markov chains (see (Korshunov, 1993; Borovkov, 1993)).
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The third part of the paper is devoted to the just mentioned problem of large deviations
of stationary Markov chains. We will give an example showing how the equilibrium-type
identities can be used for large deviations problem.

So, what are the equilibrium-type identities?
Let X(x, n), n = 0, 1, 2, . . ., be again a Markov chain in some measurable space (X ,B)

with initial position x : X(x, 0) = x, and with transition function P (x, B) = P(X(x, 1) ∈
B). We assume that there exists stationary version Xn of this Markov chain with the
same transition function P (x, B) and with stationary distribution π.

Let us consider a measurable functional g : X → R and denote by γ(x) the increment
of g(x) on Markov chain X(n):

γ(x) = g(X(x, 1))− g(x)

and by v(x) the mean of γ:

v(x) = Eγ(x) =
∫

(g(y)− g(x))P (x, dy).

If E|g(X0)| < ∞, then

Ev(X0) =
∫

v(x)π(dx) = E(g(X1)− g(X0)) = 0.

The equality
Ev(X0) = 0 (2.3)

will be referred to as equilibrium-type identity. So, if E|g(X0)| < ∞ it is obvious. But
the problem is that

1. We almost never know whether E|g(X0)| < ∞ or not

2. If Eg(X0) does not exist then Ev(X0) can take any value.

We now give conditions under which identity (3) is true.

Theorem 4. Let g(x) ≥ 0 be a functional such that

Emax(0, v(X0)) < ∞, (2.4)

E|γ(x)| ≤ c(1 + |v(x)|). (2.5)

Then (3) holds.

It is not always easy to verify conditions (4), (5); so we give some examples.

Example 2. X = [0,∞), g(x) = xk, k ≥ 1 is an integer. Then conditions (4), (5)
are fulfilled if

lim sup
x→∞

Eξ(x) < 0,

sup
x

E|ξ(x)|k < ∞,

where ξ(x) = X(x, 1)− x.
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Example 3. X = [0,∞), g(x) = eλx. Then (4), (5) are fulfilled if

lim sup
x→∞

Eeλξ(x) < 1, (2.6)

sup
x

Eeλξ(x) < ∞. (2.7)

Example 4. X is a separable Banach space, ξ(x) = X(x, 1) − x, a(x) = Eξ(x). Let
g(x) = l(x) be a linear functional, such that∫

E|l(ξ(x))|π(dx) < ∞.

Then conditions (4), (5) are fulfilled and∫
l(a(x))π(dx) = 0.

If ∫
E ‖ ξ(x) ‖ π(dx) < ∞, (2.8)

then ∫
a(x)π(dx) = 0 ∈ X . (2.9)

In this last case we have an equilibrium-type identity in its most transparent form.
Of course, condition (8) is always fulfilled if supx E ‖ ξ(x) ‖< ∞.
The assertion of Theorem 1 was used in form (9) to derive necessary conditions of er-

godicity for Polling and Jackson Networks. It was done jointly with Prof. R. Shassberger.
For some special cases and under more restrictive conditions, assertion (9) can be found
in (Sennott et. al., 1983; Sennott, 1987; Borovkov et. al., 1992). Assertion (9) is very
natural and we do not exclude that there are other papers with similar results (see also
(Baccelli and Bremaud, 1987, p. 36)). Results mentioned in this section will be published
in (Borovkov, 1993; Korshunov, 1993).

3. LARGE DEVIATIONS

Now we will speak about large deviations. We shall consider the problem mostly for a
one-dimensional Markov chain on [0,∞). Besides, something will be said about a Markov
chain in Rd

+, d > 1.
So, let X be [0,∞). The subject of investigation is the asymptotic behavior of the

probability

P(X0 > x) as x →∞.

Let us again denote by ξ(x) the increment of Markov chain. We can now write down

X(n + 1) = X(n) + ξn(X(n)),
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where
ξn(x)

D
= ξ(x).

Of course we need some restrictions on X(n) to acquire a regular behaviour of P(X0 > x).
We assume that Markov chain is asymptotically homogeneous, that is, that

ξ(x) ⇒ ξ as x →∞ (3.10)

in the sense of weak convergence. We shall assume as well that

Eξ < 0. (3.11)

Let us introduce some notations

ϕ(λ) = Eeλξ,

µ+ = sup{λ : ϕ(λ) < ∞} > 0,

β > 0 is a solution of the equation
ϕ(λ) = 1.

This solution is defined if ϕ(µ+) ≥ 1.
Our next assumption is

sup
x

Eeµξ(x) < ∞ (3.12)

for

µ = sup{λ : ϕ(λ) ≤ 1} =

{
β, if ϕ(µ+) ≥ 1,
µ+, if ϕ(µ+) < 1.

Theorem 5. If (10)–(12) hold, then

lnP(X0 > x) ∼ −µx as x →∞.

It is quite easily to obtain an upper estimate for lnP(X0 > x) using an equilibrium-
type identity. To illustrate the use of these identities we prove here

Theorem 6. If (10)–(12) hold and λ < µ, then

P(X0 > x) ≤ ce−λx.

Proof. Put g(x) = eλx. According to Example 3, the conditions of Theorem 4 are fulfilled
if (6)–(7) are true. We already have (7), since (12) is valid. And we have (6) because for
λ < µ it follows from (10), (12) that

Eeλξ(x) → ϕ(λ) < 1 as x →∞. (3.13)

In our case
v(x) = Eeλ(x+ξ(x)) − eλx = eλx(Eeλξ(x) − 1).
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Therefore, by Theorem 4 ∫
v(x)π(dx) = 0. (3.14)

According to (13), we have

v(x) < −δeλx

for sufficiently large x > N and so

sup
x

v(x) ≤ v0 < ∞.

Further, ∫ ∞

N
v(x)π(dx) ≤ −δ

∫ ∞

N
eλxπ(dx),

∫ ∞

N
eλxπ(dx) ≤ −1

δ

∫ ∞

N
v(x)π(dx)

(14)
=

1

δ

∫ N

−∞
v(x)π(dx) ≤ v0

δ

It remains to use Chebyshev inequality: for x ≥ N

π(x,∞) ≤ v0

δ
e−λx.

Since this inequality is true for any λ < µ, it is easy to infer thence that

lim sup
x→∞

1

x
lnP(X0 > x) ≤ −µ.

To establish the reverse estimate for lim inf is more difficult.
If the rate of convergence (10) is known and sufficiently fast then we can obtain a

more precise result about asymptotics of the probability P(X0 > x) by itself.
Let us assume that β is defined and∫ ∞

−∞
eβt|P(ξ(x) < t)−P(ξ < t)|dt ≤ ε(x) = x−αl(x) (3.15)

where l(x) is slowly varying at infinity function.

Theorem 7. Let (10)–(12) hold and

Eξeβξ < ∞,
∫∞
0 ε(x)dx < ∞.

Then

P(X0 > x) = e−βx(c + o(1)), c < ∞.

If β is not defined or (15) is not true then asymptotic of P(X0 > x) can be different.
A more advanced asymptotic analysis is also available, but although for less general

Markov chains.
We consider here three types of Markov chains on X = (−∞,∞):
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• The so-called homogeneous Markov chain

X(n + 1) = (X(n) + ξn)+

where ξn
D
= ξ are i.i.d. random variables.

• The so-called almost homogeneous Markov chain

X(n + 1) =

{
(X(n) + ξn)+, ifX(n) > 0,
ηn, ifX(n) = 0,

where ηn
D
= η ≥ 0 are also i.i.d. random variables independent of {ξn}.

• The so-called partially homogeneous Markov chain on X = (−∞,∞):

X(n + 1) = X(n) + ξn(X(n))

where ξn(x)
D
= ξ(x) and (x + ξ(x))+ D

= (x + ξ)+, x > 0.

Homogeneous Markov chain. A homogeneous Markov chain is a well known and
investigated model. Let us recall some basic results about it. We denote

Sn =
n∑

k=0

ξk, S = supk≥0 Sk.

Theorem 8. For a homogeneous Markov chain X0 D
= S,

1) If

µ+ > 0, ϕ(µ+) > 1 or

µ+ > 0, ϕ(µ+) = 1, ϕ′(µ+) < ∞;

then P(X0 > x) = P(S > x) = c1e
−βx(1 + o(1)) where c1 is known (Cramer, (Feller,

1971)).
2) If

µ+ > 0, ϕ(µ+) < 1 or

µ+ = 0, ϕ′(µ+) > −∞

then P(X0 > x) = c2

∫∞
x P(ξ > t)dt(1 + o(1)) (Borovkov, 1972).

Almost homogeneous Markov chain. What is the asymptotic behaviour of P(X0 >
x) for an almost homogeneous Markov chain? Let us denote by χ− the first nega-
tive sum among S1, S2, . . . , by H(t) a renewal function for a random variable χ−, by
G(t) =

∫∞
0 P(η > t + u)dH(u) (in regular cases G(t) ∼ c

∫∞
t P(η > u)du), and by ζ a

random variable with distribution function

P(ζ > x) =
G(t)

G(0)
.
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Theorem 9. For an almost homogeneous Markov chain

P(X0 > x) = c3P(S + ζ > x), x > 0,

where S and ζ are independent, c3 is known.

This Theorem allows us to find the asymptotic behaviour of P(X0 > x) like in Theo-
rem 8, depending on the asymptotic behaviour of P(S > x) and G(x).

Example 5. If conditions of part 1 of Theorem 8 are fulfilled and Eeβη < ∞, then

P(X0 > x) = c3c1Eeβζe−βx(1 + o(1)),

c1, c3 are the same as in Theorems 8, 9.

Partially homogeneous Markov chain. Let us consider now a partially homoge-
neous Markov chain, when (x + ξ(x))+ = (x + ξ)+, x > 0.

Theorem 10. For a partially homogeneous Markov chain the asymptotic behaviour
of P(X0 > x) can be described as in Theorem 9, where we have to take as η the random
variable with distribution

P(η ∈ B) =
∫ 0

−∞

π(dy)

π(−∞, 0)
P (y, B)

=
∫ 0

−∞

π(dy)

π(−∞, 0)
P(y + ξ(y) ∈ B).

So, if, for instance, conditions of part 1) of Theorem 8 are fulfilled and supy≤0 Eeβ(y+ξ(y)) <
∞ then the behaviour of P(X0 > x) will be the same as in Example 5:

P(X0 > x) = c4e
−βx(1 + o(1)).

The results mentioned in this section will be published in (Borovkov, 1993).
Multidimensional Markov chains. What can be said about multidimensional

Markov chains in X = Rd
+? Let us assume that

sup
x

Ee(λ,ξ(x)) < ∞

for some λ > 0 and that the Markov chain in question is asymptotically homogeneous:

ξ(x1, . . . , xi1 , . . . , xik , . . . , xd) ⇒ ξ(x1, . . . ,∞, . . . ,∞, . . . , xd)

as xi1 →∞, . . . , xik →∞. In this case

lim sup
t→∞

1

t
lnP(‖ X0 ‖> t) < 0,

i.e. the rate of the decreasing of P(‖ X0 ‖> t) as t → ∞ is exponential. This result
was announced on conferences four years ago (see for instance (Borovkov, 1990)) and will
soon appear in (Borovkov, 1993).

The only more precise result which we know in this area is that of (Malyshev, 1973). It
deals with the simplest Markov chain in R2

+, for which ξ(x) takes only the values (0,±1)
and (±1, 0). The result looks too complicated to reproduce it here.
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